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Ahscrnec. The characteristic wave approach is developed as an alternative to

modal methods which may lead to significant errors in the presence of

impulsive or concentrated loads. The method Is applied to periodic

structures. Some special phenomena like cumulatfnn effects end trnn_irinn_ to

ergodicity are analyzed.

INTRODUCTION

Controlled large apace structures, which will

likely be composed of networks of long slender

members, are subjected to disturbances (coming

from the actuators) with a relatlvely small

contact zone and short time interval. From the

mathematical viewpoint such disturbances are

characterized by discontinuities which can be

considered as • very high frequency. In

truncation techniques which are used in modal

analysis the contribution of high frequencies is

lost, and therefore, the impulsive concentrated

loads are supposed to be treated by some other
methods.

Since any discontinuity propagates with the

characteristic speed, it is reasonable to turn to

the characteristic wave approach in treating the

impulsive loads. The advantage of this approach

is In the fact that characteristic speeds depend

only on the coefficients at the highest (second

order) derivatives in the governing equation of

structural members which significantly simplifies

the analysis of characteristic waves.

Thus, it appears that the appllcation of the

characteristic wave approach is the most

beneficial in the domains where spectral methods

fall. That is why it can be used as a supplement

to modal methods for linear analysis of con-

trolled structures when loads can be decomposed

in to "smooth" and impulsive components.

In this article, some aspects of characteristic

wave propagation, reflection and transmission in

structures with one-dimensional structural

mmbers as yell as posslble engineering tools for

their analysis are discussed.

PROPAGATION OF

ONE-DIMENSIONAL

We rill start vith a

member subjected to 8

load assuming that

IHPUL.qlVE LOADS IN

STRUCTURAL HE/1BLqs

one-dimensional structural

concentrated or impulsive

L
AQ (( L, and At ((

(I)

in which L is the length of the structural
member, A! is the width of the contact zone of

the impulse, At is the duration of the

concentrated load, and C is the characteristic

speed of wave propagation, while

2 E 2 G 2 GAs
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- • " 01' • 0 (7)

Here Cg. CT, CV, CN, and CS are the

characteristic speeds for longitudinal,

torslonal, shear, bending and transverse string

waves, respectively. E is the Young modulus, G

is time shear modulus, A is the cross-sectional

ares, A s is an effective shear area of a
Timoshenko beam, El is the cross-sectional area

moment of inertia, pI is the rotatory inertia per

unit length, p is the mess per "Jnit length. T is

the string tension, U. Flugge. 1962.

For homogenlous structural members all the

characteristic speeds (2) are constant, and

consequently, the vldth AI as yell as the

duration At of the impulse viii be constant too.

However. the |mitts1 configuration of the impul_

will be preserved only for the simple wave

equation without damping.

In all other cases due to the dispersion

phenomenon this configuration, strictly speaking.

viii not be preserved. Nevertheless, the

dispersion can be ignored if the conditions (I)
are satisfied. For further cou':enience ve will

introduce an equivalent rectangular impulse of

the same length and enerc_'. For such a

rectangular impulse, all the waves listed in (2)

are decoupled even if they propagate

simultaneously in a structural member, and this

is the qost important advantage of the

characteristic wave approach to propagation of

impulsive loads,

As follows from the energy conservation lay the

height of the rectangular impulse expressed in

terms of velocity, strain or stress viii be

constant if there is e, material damping. If

material damping is proportional to the velocity

being characterized by the damping coefficient

then the height h of the rectangular i, pulse viii

exponentially decrease:

h 2 . h2o e-_t (3)

HOH- HOHOGEHEITY EFFECTS

The situation becomes more complicated even for a

rectangular impulse if the speed of propa_atio,

is not constant. This effect can be caused by

non-linear material properties (if the impulse Is

large enough to generate finite strains) or by

non-homogenious properties of the structural
member.

In the first case the speed becomes non-

characteristic since it depends on the magnitude

of the transmitted parameters, i.e., for a

rectanKu|ar impu]se:

c - c(t,) (4)

This dependence may lead to a qualitatively new
effects such as shock wave formation.
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In the second case the speed remalns

characteristic, but it depends on the space
coordinate:

c - c(x) (5)

Although the Soverning equations for wave

propagetlons remain linear (but vlth variable

coefficients) the dependence (5) may lead to some

• urprislng effects. In order to describe them.

ve will •tart with the energy balance. The

energy E of • propagating impulse consist of

potential and kinetic components:

x 2

x 1

in which x I and x 2 are the apace coordinates of

the trailing and leading fronts of the

propagating wave, [v] and [_] are the impulsive

velocity end strain, respectively, while

[_J - -c[vl (7)

@• follows from the kinematical condition •t the

front of a discontinuity, Hlklowitz, (1984).

Hence. for a rectangular impulse:

£- ply} 2 (x 2 - x1) (8)

and Instead of Eq. (3) nov one obtaJlts:

h2(x2 - x 1) - h_ _h -ft (9)

The first effect which can be found from Eq. (9)

Ls associated with the specific energy

cumulation, i.e., with the unbounded growth of h

due to shrinking width (x 2 - x 1) of the

propagating impulse. This effect was first

described and explained by H. Zak. 1983.

The second effect is associated with a trapping

of a propagating lapulee within a locelized area

of a structural member. Similar effect of normal

node localization yes predicted by C.H. Hodges,

1982. in connection vlth a system of coupled

linear oscillators vLth damping. Thus, the

trapping effect of a prop_geti:lg impulse can be
considered as a "contlnuu_ version" of the normal

node localization. A mathematical treatment of

this effect i• presented below.

Consider a function (5) in the following form:
I

/Co at x < x_ and x >
X_

C i
t _C° at x,> x > xe,, 0 < _ < 1 (10) .

Such • discontinuity of the characteristic speed

C within a small segment (x** - x,) < _t can be

caused by some structural irregularities (such as

mlteria| inc|usions. Joints, etc.)

As follows from Eq. (10)

_l at Xl-Xe-6f, x2-x .

_f-Co(1-_)t at Xl<X.<.x2<x**

x2-x 1 - [_f.(x**-x.) at Xl<X .. x2>x** (1])
i

_/-(x**-x.)+Co(1-r)t at x.'xl<x**,x2>x**

[_f at x 1, x 2 • xe,

Substituting (11) into (9) one finds:

h 2 •

h2e TM at Xl=X ;_IX_=X,
o

h2e-_tl(l-_t) at Xl<Xe(X2(X**
o

h2e-_t/(l-_) at Xl<Xel(X2<X**
1

h2e-_t/(1-_+_t) at x,(xl(X**lX2>X**
0

h_e-'_t" at x i, x 2 ) x,,

in which

Co(l-g) x**-x.

= _ , _ = -- ...._

2 .2 -St 2 .2 r'(_ ÷tg)

' h I = rSoC , b 2 = n0e -

= hoeh; 2 "

(12)

(Ill

x ) -r-x x
._.t_--1--.13-6

Simple analysis of Eq. (17) show_ that the

function h(x) tlas maximum st x 1 < x. < x 2 < Xe,
If

¢< t<--L
I-X (14)

This maximt.uil is:

(I - _)£

hLx" h2_e
(15)

The maximum of hma x as a function of r./_ will be

at

= _ (i + re) (16)

and therefore:

h2max,max - 8.15 h2o (17)

Substituting (]6) into (l&) one obtains:

< 0.382 (18)

But. as follows from (13):

- _ (l+y+X)t

2 (19)
h 3 = h_e

Hence, the trapping affect uill be the strongest
tf

X - 0.382 (20)
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ORK;INAL PAGE IS
OF POOR QUALITY

Indeed, in this case the function (12) has the

sharpest •hap_ since Eq. (16) provides the

laraesL maximum (17). virile Eq. (20) leads to the

highest degree of dlsslp•tion after thls maximum.

Thus. the conditions (16) and (20) can be used •s

the key for structural Implement@Clan of the

trapping effect.

_Ovfrnine £ouationa

As shown by Zak, H. 1985, the governing equations

for a propagation, reflection and transmission of

8n initial impulse in • two-member structure with

isolated ends It x - 1, 8nd x - 3, and • Joint it

x - 2 form • system of difference equations:

hk+ 1 - Ah k (21)

where

0 (12fl 0 0

-_12C2z2 0 0 -_12_2(1-z21

-_23_2(1-z2) 0 0 -_23_2z2 Ii

0 0 "_23(3 0 /

h12_

L./h21]

in which h12 is the wave at x - 2 coming from x -

1, etc. (12 and f13 are the damping coefficients

!n the corresponding __t__,_,ctura! members, rl. ,r2,
(3 ere the damping coefficients at x - 1,2,3,

respectively, £2 is the reflection coefficient at

X - 2, while _i " £3 " 1.

The same procedure can be applied to multi-member

structural systems, while the matrix A will

attain new eubmatrlces corresponding to

edditl?nal strue_,tral m_.:hors (like 8 stiffness
matrix in finite element methods).

Thus, a-y structure with n Identlcal structural

members subjected to Impulsive loads is 8overned
by the matrix difference equation (21) while the

order of this system is 2n.

Analysis of Solutions

In the case of n-somber structure the solution to

the governing equation (21) where the matrix A Is

of the order 2n can be written in the following
form:

h k - A k b o, k - 0.112 .... (23)

All the qualit•tlve properties of this solution

are defined by the eigenv•lues of the matrix A,

i .e,, by the roots of the characteristic

polynomial :

I^ - J(II - 0 (2_)

For instance, the solution is stable if

[_'il < I. i - 1.2 .... 2n (25)

By applying • linear frsctlonal transformation

X - -- (26)
_-1

to Eq. (25) one reduces the stehility analysis to
conventional methods.

Transition to Ereodlcltv

So far Late o.ly structures wiLh Idea,tirol t.embers

(characterized by the dlmentionless time delay I)
were considered. It was demonstrated that there

exists • formal analogy between the matrix

techniques for treating these structures under

impulsive loads end for conventional modal

anllysis (although the matrices have different

physical nature). However, in reality the
Identicalness of structural members even in

periodir structures I_ an exception rather than a

rule. htdeed, different time delays for
different structural members can be caused not

only by different lengths, but also by different

characteristic speeds. In turn, different

ch•racterlstlc speeds may_ccur if Joints convert

one type of deformation into another (see Eq.

(2)). Another source of different time delays is

essoclatod with external forces if they applied

not to j_int•. In this c•se. the points of their

• pplicatlon must be considered as additional

Joints, but without reflection or damping, and

this will lead to additional structural members

with different time delay:;. As will be shown

below, different time d,,lays lead to new

qualitative effects which do not occur in modal
methods.

For simplicity, ve vilI start with the two-member

structure and assume the following

(dimensionless) lengths:

AB - 4, BC - 6 (27)

Then, tile characteristic equation for this t,_-

member system obviously has the order 24 (which

is the least common multiple of 2x4 and 2x6)

But in the case

AB - 1, BC - _ (28)

the ratio of the time delays is irr•tlonal, and

therefore, for successive rational approximations

of J_ the order of the governing difference

equation tends to infinity as:

4, 14, 282, 1414 .... etc. (29)

Now It Is easy to deduce, that if in an n-member

structure the time delays _1, r2 .... _n _.c

commensurate, than the order of the governing
difference equation will be finite and equal to

the least common multiple of 211. 212 .... 2, n.

If st least two time delays are not co_ersurate,

this order viii tend to infinity. Obviously,

this effect does not have an analogy in modal

approach where the order of the governing

differential equat4on depends only on the number

of modes (or finite elements) considered.

In order co clarify the physical meaning of such

• phenomenon let us start rich the following

question: du_lng what time interval T an initial

impulse will return to its original location In

"one piece'? Simple geometrical consideration
show that

T - 2 if ^B - 1, gC - 1

T - 24 if ^B - 1, gC - 6

T- - If AS - 1, sc - J_

(30)

In other v_rds, this (dlmnn_tnn|e_s) interval is

equal tn Cite order of the Koverning difference

equation.
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Thus, if at least two time delays in an n-member

structure are not commensurate, the system will
never return to its initial position, i.e., the

motion will lose Its periodicity. In classical
mechanics such systems ere known as ergodic

systems. For infinite number of times they pass
through every, state of motion (which is

consistent with constraints) spending equal time
intervals near ech state.

At however, the rational numbers are s sat of
measure zero. practically every motion of this

type sooner or later become ergodlc.

Nevertheless. in engineering applications there
always can be found such 8 characteristic time

interval within which the motion is approximately

periodic, while the transition to ergodicity can
be ignored due to damping.

It is worth emphasizing that the transition to
argodlrlty is not "inevitable" if one takes into

account uon-llnear properties of real structures.
Non-llnesrlties may provide some mechanisms (such
as dynamical synchronization effects) which

depress the disorder and lead to periodical
motion. In this connection, It is relevant to

mention the experiment with coupled chain of
harmonis oscillators performed by Fermi, Pasta

end Diam. |nsteJd of ergodlclty which was
expected they found periodic oscillations•
However, if dynamical synchronization effects do

not depress argodicity and if the characteristic
time during which the motion can be approximated

as periodic is too short one has to apply method_
of 8tetlstleal mechsnlcs.
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