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SYSTEM TOPOLOGY

A coupled dynamical system is defined as an assembly of rigid/flexible bodies

that may be coupled by kinematical connections. Large relative displacement

and rotation are permitted. The interfaces between bodies are modeled using

hinges having 0 to 6 degrees of freedom. A hinge is defined as a pair of two

material points, one on each of two adjoining bodies. A reference body is

arbitrarily selected and it is assumed for convenience that the reference body

is connected to an _M_Lgj_I]_ inertially fixed body. For consistency, a ficti-

tious hinge is assigned to the reference body by assuming P0 (See Figure), an
inertial point. Thus the number of hinges equals the number of bodies in the

system (as shown in Figure 2).
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CONSTRAINED DYNAMICAL SYSTEM

For a mechanical system of n flexible bodies in a topological tree configura-

tion, the equations of motion are presented in Reference 1. Lagrang_s form

of D'Alembert's principle was employed to derive the equations. A detailed

discussion of the approach is available in References 1 and 2. Equations

(14), (15) in Reference 1 are the motion equations for the system of Figure 2.

These equations are augmented by the kinematical constraint equations. This

augmentation is accomplished via the method of singular value decomposition
(see Reference 3).
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CONSTRAINED DYNAMICAL SYSTEMS

LET ql ..... 'qn DEFINE THE

UNCONSTRAINED SYSTEM

CONFIGURATION OF

CONSTRAINT EQUATIONS

A _I = B A
msrn

m(n

NUMBER OF INDEPENDENT COORDINATES

= n-RANK A

EQUATIONS OF MOTION

M _1" = f + f
c

f - FORCES/MOMENTS OF CONSTRAINT
C

PROBLEMS OF PRACTICAL INTEREST

- SIMPLE NON HOLONOMIC OR HOLONOMIC CONSTRAINTS

- n+m 2nd ORDER D.E.

OR 2n+m 1st ORDER D.E.
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SINGULAR VALUE DECOMPOSITION

• L nxn MATRIX

THERE EXIST ORTHOGONAL MATRICES U
mxm

x I o ]SUCH THAT uTLv = --_-- = S

o J o

X = DIAG (X1)X2) .... )Xr) r = RANK L

• Z.2i - NONZERO EIGENVALUES OF LTL

T
L = USV

AND V
nXll

l[ ]X 0 V 1-> [ 91 J u 2 ] .....
o I o v 2

V 2 SPANS NULL SPACE OF L

U 2 SPANS NULL SPACE OF L T

-1

LV 2 = 0 L + = V [ X
0

,o].... 4--- u T
I o

'4-
L = PSEUDO INVERSE OF L
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APPLICATION OF SVD TO CONSTRAINED SYSTEMS

A_ = E

= A+B + V2_ 7. COLUMN VECTOR (n-r)

V2Z SOLUTION OF Aq = 0

A+B PARTICULAR SOLUTION

• DIFFERENTIATE

A_'- _- A_

A_" = B'

_" = A+B + V2_"

Z's ARE REDUCED SET OF n-r COORDINATES

V 2 IS THE DESIRED TRANSFORMATION
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M_" = F ÷ F©

PROJECTION ON NULL SPACE OF A

T o

SUBSTITUTE FOR

T T c vTMA+BV MV2_'= V2F + V2F - 2

F c = ATx X - LAGRANGE MULTIPLIERS

T c v_ATxV2F =

= [ AV 2 ]T_ = 0

[v2TMv2]_" = VTF - vTMA+B

= A+B + V2_

GOVERNING DIFF. EON.
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DAMPING LAW

ACTUAL DAMPING LAW :

Ff(t 1) = f(LOAD OVER CONTACT

x(t), O (

F = FRICTION FORCE
f

x(t), 0 ( t ( t 1, REPRESENTS

PR I OR TO t

AREA,

t ( t I , t 1 ,

THE HISTORY OF MOTION

IN GENERAL THE DAMPING LAW IS VERY

COULOMB DAMPING

Ff(t 1) = f(N, SIGN(i(tl)), PS" Pd

N - NORMAL LOAD

- STATIC COEFFICIENT OF
6

Pd - DYNAMIC COEFFICIENT OF

SIGN(X(tl))
1 i(t 1 )

= _ 0 i(t 1 )

-1 i(t I )

FRICTION

FRICTION

) 0

= 0

( 0

COMPLICATED
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COULOMB DAMPING (CONT. )

p N ffi F
S $

F
f

F d = pd N

THE MOST COMMON DRY FRICTION

Ps Pd OR F s = F d

DAMPING LAW

MANY TIME DOMAIN AND FREQUENCEY DOMAIN STUDIES HAVE

BEEN PERFORMED FOR HARMONICALLY EXCITED SYSTEMS WITH

DRY FRICTION DAMPING. THERE ARE TIIREE BASIC METHODS
OF ANALYSIS

- EXACT

- HARMONIC APPROXIMATIONS

- TIME INTEGRATION

• OUR APPROACH IS TIME INTE6RATION

• STICK/SLIP MOTION

x(t)

W I

t o STUCK

t o BECOMES AN UNKNOWN.

REGION

STUCK HINGE RESULTS IN ADDITIONAL CONSTRAINTS ON
KINEMATICAL VARIABLES.
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COULOMB DAMPER ALGORITHM

• A TYPICAL HINGE WITH COULOMB DAMPER

Y

fd

V

• TRACK Y (RELATIVE VELOCITY) FOR SIGN CHANGE

CHANGES SIGN

COMPARE IY DIFFERENCE[ TO A PRESCRIBED s e_ 0

IF GREATER THAN s GO BACK TO PREVIOUS STEP AND REDUCE
THE STEP SIZE AND REPEAT UNTIL IY DIFFERENCE[ ( 8

ACTIVATE THE CONSTRAINT Y -_ 0 AND COMPUTE CONSTRAINT

FORCE fc FOR THIS CONSTRAINT

IF fc OVERCOMES fd SLIP CONDITION, DEACTIVATE Y _- 0

IF NOT, STICK CONDITION, RETAIN Y _- 0 AND KEEP

COMPARING fc WITH fd UNTIL SLIP CONDITION
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EXAMPLE

fcl fc2

" !j"l
yl - y2 7

INITIAL
CONDITION

m I = 1 m 2 = 1

k I = 2 k2 = 2.5

YI = 1 Y2 = .2

TEST CASES FOR VARIOUS COULOMB DAMPER LEVELS

fcl fc2

CASE 1 0 0
CASE 2 .1 0
CASE 3 .1 .1
CASE 4 .1 8000.
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