
L

L

VECTORIZABLE ALGORITHMS FOR ADAPTIVE SCHEMES

FOR RAPID ANALYSIS OF SSME FLOWS

~

I

FINAL REPORT: P.O. H-85080-B

to the George C. Marshall Space Flight Center
National Aeronautics and Space Administration

TR-87-03

by
J. Tinsley Oden

April, 1987

(h A S A - C G - 179Ck2) V E C ? C B I Z B E L E ALGOBA:THi!lS N87-2 276.4
t C 6 A C A E ' X I V E S C € E L E S ECB 6 A E I L BEALYSXS C E
: : B E ELCLS P i o a l Eekort (Ccnfutational
Ecchanics C c n s u l t a n t s) 3 0 F A v a i l : BXIS Unclas
k C A C 3 / H F A01 CSCL 218 G312O C 0 6 3 S S S

Computational Mechanics Co.,lnc.
4804 Avenue H
Austin, Texas 78751

mFI COMPI'TATIONAI. MFCIIAYICC COMPANY. INC.

https://ntrs.nasa.gov/search.jsp?R=19870013331 2020-03-20T10:31:43+00:00Z

TABLE OF CONTENTS

1. INTRODUCTION

2. A FAST, ELEMENT-BASED, ADAPTIVE
REFINEMENT STRATEGY

3. A VECTORIZED HAYES-DEVLOO SCHEME FOR
ELEMENT-BY-ELEMENT MATRIX PROCESSING

4. CLOSING COMMENTS AND FUTURE WORK

REFERENCES

1

3

15

22

28

3

I. INTRODUCTION

This report describes an initial study into vectorizable algorithms for use in
adaptive schemes for various types of boundary-value problems. The project
described here focused on two key aspects of adaptive computational methods which
are crucial in the use of such methods for complex flow simulations such as those in
the SSME:

1) The adaptive scheme itself, Le., the significant data-management
requirements for schemes on which grid-point labels and cell numbers dynamically
change during the solution process, and

2) The applicability of element-by-element matrix computations in an
vectorizable format for rapid calculations in adaptive mesh procedures.

In the first area, we explore versions of a rapid, h-type scheme for mesh
refinement on unstructured meshes in two-dimensional domains. Schemes such as
this were originally proposed by the authors in a series of papers on adaptive finite
element methods (see, e.g., [l-51). The present version of the scheme is described
in Chapter 2 of this report, and exhibits the following features:

a) The scheme is designed for unstructured meshes of quadrilateral
elements (although an experimental code employing triangular elements is
operational and under study.)

b) The scheme does not employ the notion of hierarchial families of shape
functions (and thus is distinctly different from and many times faster than the
adaptive schemes of Babuska, Zienkiewicz, Gago, and others; see [6]).

c) The scheme does not rely on a tree structure (and hence is different than
the adaptive schemes of Rheinboldt and Mesztenyi E71 and Ewing [8]).

d) The scheme is portable to other program structures, provided they do not
require a fully structured mesh; and

1

. . .

e) The scheme can be extended to three-dimensional domains.

With regard to the issue of fast, element-by-element matrix calculations, we
exploit the new element-by-element algorithms which have gained much popularity
in recent times. In particular, the Hayes-Devloo algorithm for fast matrix-vector
multiplication [9] emerged as our choice for the basis of a rapid processing of
equations in an adaptive code. A discussion of the principal ideas in such schemes
and in how they are used to produce vectorizable matrix assembly procedures is
given in Chapter 3 of this report.

It should also be mentioned that, while this report deals with elliptic cases,
all of the methods described here have been successfully applied to parabolic
problems and hyperbolic systems. The adaptive scheme itself is independent of the
equation type under consideration, and the matrix schemes are applicable to any
situation calling for fast numerical linear algebra procedures.

2

11. A FAST, ELEMENT BASED, ADAPTIW
REFINEMENT STRATEGY

2.1 Error Indicators. All adaptive finite element schemes employ some local
measure of solution quality as a basis for changing the local structure of the
approximation (the mesh size, locatio of grid points, degree of the polynomial shape
functions, etc.). In many cases, the classical interpolation estimates of finite element
theory (e.g., [10,11]) have provided a convenient basis for computing local error
indicators. For example, let

U =

Uh =
K =

hK =

the exact solution of a boundary-value problem in IRn
a finite element approximation of u
a typical fuzite element in the mesh supporting uh

the diameter of K (the local mesh size)

PK =
k =

the diameter of the largest sphere (disk) that can be inscribed in K

the degree of the complete polynomial appearing in the element
shape functions

a constant, independent of hK, rK, and u
real numbers; 1 I p, q I
the dimension of the domain of u (generally n = 1,2, or 3)

C =

P 4 =
n =

I @ Im,q,K = the Sobolev semi-norm of order m,q of a function @ defined on K

In one dimension,

Then the general, local, finite element interpolation error estimate is of the form,

where iih is an interpolant of u, Le., iih and various of its derivatives coincide with
u and its derivatives at the nodes.

If quasi-uniform refinements are used (which is the case with the adaptive
process to be described), we have

hk

PK
- I oo= const.

One can arrive at a local error estimate by replacing u - iih with eh = u - uh* u
by uh on the right-hand side, and assuming quasi-uniform refmements:

n n

9 P
p = - - - + k + l - m

For a mesh with E(h) elements, we can define as the error indicator 8, for

elements e(=K),

For example, if

m = 0 , q = p = 2 , k = l

we have

8, = Ch2 1 ~ ~ 1 2 2 ~ . .
e

4

with he = h, and I uh 122e I . = ((uh,1112 + I u ~ , ~ ~ l2 + luh,22 l2 dxldx2j2

and ee represents an approximation of the L2 - error over an element.

If

m = 0 , q = 1 , p = - , k = O ,

we have

8, = Ch, I uh tl,-

and

I uh l1,- = max IV uh (x) I

XE K

Then ee is an approximation of the average of I eh I over an element.

To handle the constant C, one can either set C = 1 (in which case the
indicators can only hope to measure relative error between successive meshes) or
one can estimate C. One approach is as follows: consider the case of a bilinear Q1-
element (k = 1) and let the element K be the image of a master unit square K under

an affine invertible map TP

A

h
Denote + = VTK for an arbitrary function + and suppose that

5

AA h A
We denote b Pu the projection of u = UOTK onto the quadratic polynomials P2(K)
definedon .

Let u2 be the bilinear interpolant of u over K. Then choose as an approximation of
C the constant

A A
XI

The use of such error indicators rests on several sweeping assumptions:
1) The local approximation error is bounded by the local interpolation emr.

2) The error in replacing u by Uh in the semi-norm on the right-hand-side of

(2.1) is negligible for h sufficiently small.

Numerical experiments suggest that these assumptions are frequently valid,
while the validity of 2) depends on how this semi-norm of uh is computed and on
super convergence properties of uh. Eriksson and Johnson [12] have recently
presented rigorous proofs of a-posteriori estimates similar to (2.2) for a class of
elliptic boundary-value problems.

2.2 The Adaptive Scheme Let us now suppose that error indicators 8, can be

calculated for each cell K = Qe, 1 5 e I E, in a mesh of Q1 - quadrilaterals modeling

a bounded two-dimensional domain Q.

We begin with an initial coarse mesh containing only enough elements to
model the basic geometrical features of the domain. This mesh defines a mesh level,
denoted 0. Finer meshes are obtained by successive mesh bisections yielding mesh
levels 1,2,3, * - (Fig. 1). The size of the 0 - h level elements is to be that of the
largest elements in the mesh. The largest level, of course, corresponds to the finest
(local) mesh size. The calculation is initiated at some reasonably coarse mesh, say
level 3 or 4, and thereafter different refinement levels are attained at different regions
of the mesh.

6

(STARTING MESH)

FIGURE 1 7

The idea of bisection to a starting mesh sets the stage for unrefinernents in
groups of four elements (i.e., the collapse of four elements into one element of
lower level.)

We then proceed as follows:
1. After a set number of bisections of an initial mesh (producing 4-group

clusters), a starting mesh is identified and an initial numerical solution of the
problem under study is obtained on the starting mesh.

2. The adaptive procedure is initiated by computing solution quality

indicators 8, over all M elements in the grid. Let

8 M M =max 8,
l l e l M .

3. Next, scan groups of a fixed number P of elements and compute

where e km denotes the m* element number for group k, P=4 for 2-D grids and P=8

for 3-D grids.

4. The solution quality bounds are defined by two real numbers, Oca,

pel. If

element 8, is refined. This is done by bisecting into four new sub-elements. If

ekGROUP ' "'MAX
group k is unrefined by replacing this group with a single new element with nodes
coincident with the comer nodes of the group. This is always possible because each
group is itself the result of an initial bisectioning.

8

This general process can be followed for any choice of a solution quality
indicator.

2.3 Data Structures. An important consideration in all adaptive schemes is the
data structure and associated algorithms needed to handle the changing number of
elements, their node locations and numbers, and the element labels.

As noted in the preceding paragraphs, the algorithm is designed to process
(refine or unrefine) in groups of four elements at each local refinement /
unrefinement step. Consider, for example, the case of an initial mesh of 20
quadrilateral elements shown in Figure 2. Assign to each element in this mesh an
element number, NEL = 1,2,. .., NELEM and to each global node a label NODE.
The array, NODES(J,NEL) relates the local node number J (J = 1,2,3,4) of element
NEL to the global node number NODES. In addition, the coordinates XJ, YJ of
each node are also provided relative to a fixed global coordinate system. File these
numbers in two arrays,

NODES (J,NEL) = the array of global node

numbers assigned

to node J of element NEL

XCO (JC0,NODE) = the array of JCO --
coordinates of global

node NODE (JCO = 1 or 2).

If a solution quality indicator signals that an element should be refined, say
element 10 in the example, some system for assigning appropriate labels to the new
elements and nodes must be devised. Toward this end, a convention can be
established that defines the connectivity of the specified element with its neighbors in
the mesh. This information is provided by a third connectivity array,

NELCON(NC,NEL) = the NCth connection of

element “EL,

where NC = 1,2, ..., 8

9

FIGURE 2
10

As seen in Figure 2, each side of an element may be connected to two other elements
so that NELCON is dimensioned accordingly;

NELCON(8 ,MAXEL)

with MAXEL denoting the maximum number of elements in the mesh.

The entire refinement process (or its inverse -- the unrefinement process)
just described is accomplished by specifying a series of element levels. For example,
the initial coarse mesh could be assigned level 0. When an element is refined, its
sub-elements belong to a higher level, level 1, and when these sub-elements are
refined, elements of level 2 result, and so on. In this way, if the maximum level any
element in the mesh can achieve is limited, then the maximum number of elements
the mesh can contain is also limited. In general, no such limit need be set.

Thus, the bookkeeping element and node numbers evolved in a refinement
process is monitored by the arrays NODES (. , .) , XCO, NELCON (. , .) and an
array LEVEL (NEL) which assigns a level number to element NEL. Initially, the
same level can be assigned to all elements, and this level is an arbitrary parameter
prescribed in advance by the user. Thus, provisions are now in hand for an
arbitrary, dynamic renumbering of elements and nodes.

2.4 Adaptation Rules. Several rules must be established to successfully
implement the refinement or coarsening of the mesh. The following "element" rules
are employed:

1) An element may be refined only if its neighbors are at the same
refinement level or higher.

2) If a "neighbor" element of an element to be refined is at a lower level of
refinement, it must be refined first;

3) Refinement of an element results in creation of 8 sub-elements for 3-D
meshes and 4 sub-elements for 2-D meshes.

4) To be eligible for coarsening a group of elements must not contain
another group of elements and each element of the group to be coarsened must not
be connected to a "neighbor" element of a higher level.

11

For example if element 10, in Figure 2, is to be refined, we proceed through
the following steps:

1) Loop over the neighbors of element 10 (which is made possible with the
NELCON array) and check the level of the neighboring elements relative to the
level of element 10;

2) If any neighboring element has a level lower than 10, then the element
cannot be refined at this stage;

3) If 10 can be refined (as is the case in Fig. 2), we generate new element
numbers (thus changing NELEM and new node numbers for unconstrained nodes);

4) Compute the connectivity matrix NELCON for the new elements;
5) Adapt the connectivity matrices for the neighboring elements (since the

refinement of 10 has now changed this connectivity).

In addition to the element rules, a set of nodal rules must be used. Nodes
which exist along the edge of an embedded domain must be given special treatment
by the finite element code used. The "constrained" nodes will appear and disappear
as a mesh is refined or coarsened. This necessitates the following "node" rules:

1) An intermediate node is common to two members of a group, only.
2) An intermediate node that is created along a domain boundary cannot be

3) If an element and its neighbor both of which are at the same level are
connected to a third element at a lower level, then the intermediate node which exists
along the edge common with the third element is constrained.

4) If a group of elements is eligible for coarsening, then the intermediate
constrained node along the edge common to an element which is not a member of the
group will be eliminated

5) If a group of elements is eligible for coarsening, then the node along the
edge common to this group and its neighbor group will become constrained.

6) If a group of elements is eligible for coarsening, then the intermediate
node along a domain boundary edge is eliminated.

constrained.

Use of the above rules can be illustrated by considering the uniform grid of
four elements shown in Figure 3a. Suppose element A is marked for refinement. By

12

v
0

4 3

2 1

., < ' B

h

"1"

x -ACTIVE NODE

0 -CONSTRAINED NODE

FIGURE 3

13

, . .

applying element rules 1 and 3 element A is divided into sub-elements, 1,2,3,4 as
shown. Application of node rules 1 and 2 dictates that the nodes marked by circles
be constrained. Nodes marked X with the symbol are unconstrained.

Next, let element 3 be chosen for further refinement. Element 3 cannot be
refined since one of its neighbors, B is at a lower level. Refinement of element 3
before element B would violate element rule 1. Therefore, element B is refined as

shown in Figure 3b. Note that node p is no longer constrained, since node rule 2 no
longer is satisfied. Node C1 remains constrained.

Now that element B has been divided into elements 5,6,7,8, element rule
1 can be applied. Figure 3c illustrates this division.

Suppose the group of elements 5,6,7,8 shown in Figure 3c is marked for

coarsening. This group is not eligible for coarsening until the group of elements, a,

p, y, 6 has been coarsened. Element 7 has neighbors p and 6 which are of a higher
level. This violates element rule 4.

Now let the group of elements, a, p, y, 6 be marked for coarsening.

Element rule 4 is satisfied and elements a, p, y, 6 are replaced by element 3 . The

intermediate constrained nodes associated with elements a, p, y, 6 are eliminated
through use of node rule 4. The intermediate node along the upper domain boundary
is eliminated using node rule 6.

14

III. THE VECTORIZED HAYES - DEVLOO SCHEME
FOR ELEMENT BY ELEMENT MATRIX PROCESSING

We shall now describe a version of an algorithm structure introduced by
Hayes and Devloo [9] which provides for a new, fast, vectorizable method for
multiplying and assembling stiffness matrices in a fine element environment which
has the following features:

1) The method focuses on the element by element assembly process
common to finite element techniques; it is an "element-by-element" strategy.

2) The process is independent of (global) numbering of grid points or
elements.

3) The process is applicable to unsymmetric matrices as well as symmetric

4) The process exploits parallelism in vector machines by "stacking"
element stiffness rather than using the usual assembly process.

5) The introduction of new elements in a mesh merely results in the
corresponding new stiffness being added to the stiffness matrix stack and does not
interfere with the structure of the existing element matrices.

matrices.

Obviously, these properties are critically important in adaptive procedures of
the type discussed in Chapter 2.

For a given finite element mesh, it is standard procedure to compute local

element stiffness matrices k,, solution vectors u,, and load vectors be for each

element e, e = 1,2, ..., E, and to assemble the elements so as to obtain the global
stiffness relation

Ku = b

By appropriate node and entry numbering, this process can be written

15

m

K = c ALkeAe
e

Aeu = U,

T 2 Aebe = b

where Ae are Boolean matrices.

Alternatively, if
m

K, = kekeAe

we can write

K u = (X K e) u = :keue = %be = b
e

so that the assembly process is accomplished by a finite sum after or during a
sequence of matrix multiplications. When using traditional sequential computing,
the assembly is performed first and then the multiplication is perfoxmed. However,
on a vector computer it makes more sense to use elementwise multiplication. Then

the assembly process deals with the element vectors be.

16

3.1 The Matrix Multiplication k,u,. The single matrix multiply of a 4 x 4

matrix is done in a diagonal form as follows:

K"

K"

Ke

K"

1

2

3

4

I f f

f f

f f

1 5

14 2

11 15

e
1

U

e
2

U

e
3

U

e
4

U

+

f

If:

f

f

K"

K"

K"

K"

K"

K"

Ke

Ke

9

6

3

16

5

6

7

8

13

14

15

16

f

If

It

Ke

13

10

7

4

e
1

U

e
4
U

e
1

U

e
2

U

e
3

U

17

+

e
1

U

e
2

U

e
3

U

e
4
U

Ke

Ke

Ke

10

1:

12

be
1

be
2

be
3

be
4

- -

e
3

U

e
4
U

e
1

U

e
2

U

and the elements of matrix Ke are stored by diagonals. Calculations are done in four

vector multiplications and two vector additions. To increase the length of each
vector instruction, element matrices are stacked as shown in Figure 4. The data
structure which is used in the stacked form of the algorithm is

+

+

K5

K6

K7

K8

K13

K14

K15

16

u4

u1

"2

u3

K9

K1o

Kl 1

K12

bl

b2

b3

b4

where Ki ,ui and bi are vectors whose lengths are the number of elements in the
grids. Conceptually, the Ki entries are multiplied with the ui entries for all the
elements in the grid, then the K2 entry is multiplied by the u2 entry for all the
elements in the grid, etc., so that multiplication can be performed in four vector
multiply operations and two mamx addition instruction whose lengths are four times
the number of elements in the grid.

3.2 Assembly Process. Here we follow Ref. [9]. According to Hayes and
Devloo, once the elementwise multiplication has been performed, it is necessary to
assemble or add the results into the final form. This corresponds to adding to node i
contributions from all of the elements which contain that node. The following

algorithm was designed so that:

1) only one rearrangement of the data be is needed in the assembly;
2) a minimum number of operations are done on zero data; and
3) a minimum number of vector operations are performed.

For each node, i, the number of element connections, NEC,, is defined to
be the number of elements which contain the node i. Then define the maximum
number of connections in the grid as

The values in the element resultants, be, are rearranged in the following manner.

The values in the small vectors be are placed into vectors B,, where B, is a vector

containing one data value from every node which has at least K element connections.
If node i has four element connections, then its element contributions from the four

vectors be will be placed into the four vectors B, - B,. The B, arrays will be used

for the addition in the assembly process, so it does not matter what order the data

values from be are placed into the B, arrays. The NEci array will be used to create

an index array that will be used for the rearrangement of data.

The Bk can then be added, and the final product b will be calculated as

MAXNEC
b = k = l Bk

The vectors B, are of different lengths, and there are two options when performing

the additions: 1) the vectors can be zero filled to the maximum length, and a
divide-and-conquer strategy can be used, or 2) one can perfoxm additions only on
entries corresponding to the shorter vector. The following scheme is defined to
maximize vectorization and to minimize calculations on artificially filled zero data.

Each of the N nodes belongs to at least one element, the length of vector Bi is N. In

addition, the length of Bi is greater than or equal to the length of Bj whenever i is

less than or equal to j.
The number of maximum element connections hereafter is set to 8 for

illustrarive purposes.

19

1. The differences in the length of the vectors B + B,, B, + B6, B3 +
vector -ation, by B4, and B, + B8 is minimal; so we add them together in

arranging the arrays as shown (cf[9]):

Thus, if Bl < B2 < B3 < -
between the dotted lines below:

< B,, the vector instruction length is as shown

. I Bl GI
I B5

I B,

B 6 1

I . B, B 8 1 . .

1 B12

I B34

1 B78

2. Memory locations between the end of B6 and the beginning of B, are
filled with zeros. Here,

Bjj = Bi + Bj

3. Next, the addition B,, + BM is performed (now with no zero fill) to
give

B1234 and B5678

20

and the final addition is performed by adding B1234 and B,,, with the array

12345678

the final result.

Notice that although all vectors had a different length, only two vectors had
to be zero-filled and the addition of the 8 arrays, B, - B,, is accomplished in three
vector additions.

To obtain an ordering of B12345678 in the order of consecutive node
numbering, an addition permutation is needed only for output.

21

IV. FINAL COMMENTS AND FUTURE WORK

t

I

I

This report describes a small pilot study of algorithms for adaptive schemes
that could, with additional work, form the basis for new, fast, vectorizable schemes
for SSME flow analysis. Principal conclusions of this investigation are:

1. The analysis of complex elliptic problems defined on general
two-dimensional computational domains can be carried out using an adaptive,
vectorizable, data management scheme that enables the code to automatically refiie
and unrefme meshes when signaled by computed error indicators.

2. The procedure uses fully unstructured meshes, and handles the
significant problem of managing a changing list of node labels, connectivities, and
element labels.

3. Need for a sophisticated mesh generator is minimized or eliminated.
Rather than have the analyst guess where mesh refinements are needed, the adaptive
process attempts to produce an optimal mesh with an equidistributed error. The
algorithm produces the mesh necessary to yield a preassigned level of accuracy.

4. The procedures described here have been tested extensively during the
report period on elliptic problems, but that general procedure is independent of
equation type. Results of an Euler calculation are given in Fig. 4 for comparison
with those obtained on a uniform mesh.

5. Element-by-element solution schemes are ideally suited for adaptive
schemes of the type described here. The new vectorized matrix-vector multiply
schemes of Hayes and Devloo were found to be particularly attractive for these types
of adaptive methods. Moreover, the element-by-element, by exploiting the natural
vector structure of the methods used here, can produce solution schemes quite
superior to more common direct solvers and iterative schemes. Comparisons of
computation times experienced by Hayes' using an element-by-element solver with
those obtained with an ELLPACK solver are given in Table 1 [9].

22

Figure 4. Representative nsults of an adaptive Euler calculation and comparison of
density contours for uniform and adapted meshes.

23

. .

Figure 4, continued.

24

Problem Size

441 equations

1,68 1 equations

1 1,025 equations

TABLE 1

Time (Sec)
Element-by- ELLPACK
Element [9] Solver

0.015 0.045

0.102 0.208

1.70 2.60

SDeeduD

67%

49%

35%

Similar results have been obtained on comparing such
schemes with a variety of other well-known linear
equation solvers, including the Symmetric Yale Sparce
Matrix solver and others (see [9,13,14].

It is important to note that the results in Table 2 were
obtained for regular meshes. For irregular meshes, of
the type generated by adaptive methods, speedup times
of element-by-element procedures ran as high as 7 1 %
faster conventional sparce matrix solvers and iterative
methods.

25

6. As noted earlier, the adaptive schemes described here are quite different
from some others recently published in the literature:

a) The strategy does not use a tree structure, as, for example, in
Rheinboldt and Mesztenyi [7], and therefore does not require the generally
inefficient step of retaining data at tree roots and branches. The new scheme
described here abandons labels and connectivities as they are changed and, thus,
does not require additional storage for this purpose.

b) The scheme does not use hierarchial families of shape functions
(such as those schemes which assign new shape functions to each new node added
in the refinement as in 161) and, thus, realizes an increase in efficiency several times
that of hierarchial methods.

The results of this study point to several issues worthy of study in the

1. First and foremost, the implementation of the schemes developed here in
large-scale codes for SSME analysis should be actively pursued. These methods are
very general and can be easily incorporated in any code that is not restricted to fixed
structured meshes. On the other hand, it may be possible to adapt these procedures
to structured meshes, although it is likely that some of the principal advantages of
these methods may be lost or hampered.

2. W e believe that adaptive schemes of the type described here may offer
the only hope for solving one of the classical problems in computational fluid
mechanics: that of scales. How can one resolve complicated features of
three-dimensional flow, such as shock structures, separations, etc., and at the same
time, resolve finer features of the flow in thin boundary layers? The successful
resolution of shocks generally requires a healthy portion of artificial viscosity to
dampen oscillations, but such artificial viscosity can override actual viscosity effects
unless the mesh is very, very fine. This paradox has led some to suggest the use of
meshes with as many as lo6 grid points, a prospect leading to serious doubts that
these issues are being dealt with correctly by contemporary difference schemes.

We believe that adaptive methods can be used to resolve these classical
computational fluid dynamics issues; however, it is likely that a new family of
adaptive methods will have to be developed for this purpose. It is known that fewer
degrees of freedom are required of spectral or p-methods than by mesh refinement

future:

methods to yield the same accuracy. On the other hand, such methods place great
demands on the data management routines. These facts, we believe, point to
combined h-p or h-spectral adaptive methods as having great potential for the most
complex flow problems. We conjecture that a very effective strategy for such
problems would be to use a fast h-method for adaptive refinement up to a fixed
level, say level 4 or 5, so that major features of the flow are identified, and that then
a p- or spectral adaptive scheme could be put into action to resolve finer features
such as thin boundary layers. Theoretical estimates suggest that such techniques
may be able to resolve boundary layers using one- or two-orders of magnitude fewer
unknowns than the ultra-fine difference grids mentioned earlier.

An equally appealing feature of such methods is that these combined
methods are ideally suited for parallel computing. By exploiting both parallel
architectures and algorithms and h-p adaptivity, it should be possible to produce the
most powerful and efficient computational fluid dynamics strategies ever devised.

27

REFERENCES

Oden, J.T., Strouboulis, T., and Devloo, Ph., "Adaptive Finite Element Methods for the
Analysis of Inviscid Compressible Flow: I. Fast Refinernenflnrefinement and Moving
Mesh Methods for Unstructured Meshes," Computer Method in Applied Mechanics and
Engineering, 59 (3), 1986.

Oden, J.T., Strouboulis, T., Devloo, Ph., Robertson, S.J., and Spradley, L.W.,
"Adaptive Moving Mesh Finite Element Methods for Flow Interaction Problems,"
Proceedings, Sixth International Conference on Finite Element Methods in
Fluids, Antibes, France, June, 1986.

Demkowicz, L. and Oden, J.T., "An Adaptive Characteristic Petrov-Galerkin Finite Element
Method for Convection Dominated Linear and Non-Linear Parabolic Problems in One Space
Variable, Journal of Computational Physics, Vol. 68, No. 1, pp. 188-273, November,
1986.

Oden, J.T., Strouboulis, T., and Devloo, Ph., "Recent Advances in Error Estimation and
Adaptive Improvement of Finite Element Calculations", Computational Mechanics -
Advances and Trends, edited by A X . Noor, ASME , New York, 1986, pp.369-410.

Oden, J.T., Spradley, L.W., Strouboulis, T., Devloo, Ph., and Price, J., "An Adaptive
Finite Element Strategy for Complex Flow Problems.," Paper AAIA -87-0557, 25th
Aerospace Sciences Meeting, Reno, 1987.

Zienkiewicz, O.C., Kelley, D.W. Gago, J.P. de S.R., and Babuska, I., 'I Hierarchical
Finite Element Approahces, Adaptive Refinement, and Error Estimates," The
Mathematics of Finite Elements with Applications, Ed. by J. R. Whiteman,
Academic Press Ltd., London, pp. 313-346, 1982.

Rheinboldt, W., and Mesztenyi, C.K., "On a Data Structure for Adaptive Finite Element
Refinements," TOMS, Vol. 6, pp. 166-187, 1980.

Ewing, R., "Adaptive Mesh Refinements in Large-Scale Fluid Flow Simulation",
A c c u r a c y Estimates and Adaptive Refinements in Finite Element
Computations,Ed. by Babuska et al., John Wiley and Sons, Ltd., Lond, pp. 299-314,
1986.

Hayes, L.H., and Devloo, Ph., "A Vectorized Version of a Sparse Matrix-Vector
Multiply," International Journal of Numerical Methods in Engineering, Vol. 23, pp.
1043-1056, 1986.

Oden, J.T., and Reddy, J.N., An Introduction to the Mathematical Theory of
Finite Elements, Wiley - Interscience, New York, New York, 1976.

Men, J.T., and Carey, G.F., Finite Elements: Mathematical Aspects, Englewood
Cliffe, 1983.

Ericksson, K. and Johnson, C., "An Adaptive Finite Element Method for Linear Elliptic
Problems," Chalmers University of Technology, Preprint, 1986.

28

13) Hayes, L.J., "A Vectorized Matrix-Vector Multiply and Overlapping Block Iterative
Method," Proceedings: Super Computer Applications Symposium, Plenum
Press, October, 1984.

14) Hayes, L.J., "Advances and Trends in Element-by-Element Techniques," State of the
Art Surveys in Computational Mechanics, Ed. by A. K. Noor, ASME, Special
Volume, New York, 1987.

29

