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The purpose of this work is to develop models of randam impacts on a Space
Shuttle Main Engine (SSME) turboputp blade and to predict the probabilistic
structural response of the blade to these impacts. The randam loading is
caused by the impact of debris. The probabilistic structural response is
characterized by distribution functions for stress and displacements as
functions of the loading parameters which determine the random pulse model.
These parameters include pulse arrival, amplitude, and location. The
analysis can be extended to predict level crossing rates. This requires
knowledge of the joint distribution of the response and its derivative.

The model of randam impacts chosen allows the pulse arrivals, pulse
amplitudes, and pulse locations to be randam. Specifically, the pulse
arrivals are assumed to be governed by a Poisson process, which is
characterized by a mean arrival rate. The pulse intensity is modelled as a
normally distributed randam variable with a zero mean chosen independently at
each arrival. The standard deviation of the distribution is a measure of
pulse intensity. Several different models were used for the pulse locations.
For example, three points near the blade tip were chosen at which pulses were
allowed to arrive with equal probability. Again, the locations were chosen
independently at each arrival.

The structural response was analyzed both by direct Monte Carlo simulation
and by a semi-analytical method. In the Monte Carlo method, appropriate
random number generators were used to develop simulated pulse arrival
processes. These processes were used as forcing functions in a dynamic
analysis of the SSME blade implemented by the camputer code STAEBL
(Structural Tailoring of Engine Blades). The dynamic analysis originally
used by this program was a modal superposition based on up to five modes;
this analysis was replaced by a direct time integration which used the
Newmark Beta Algorithm.

In the semi-analytical method, the classic analysis of shot noise by S. O.
Rice was generalized to the present problem. This analysis requires that the
unit pulse response of the blade be known at each point where a pulse can
arrive. The unit response was found by numerical simulation using the STAEBL
code. Once the unit pulse response is known, all required distribution
functions are developed analytically.

Camparisons between the Monte Carlo studies and the semi-analytical method

showed excellent agreement. Of course, the semi-analytical method has the
advantage of requiring considerably less camputer time to implement.
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An analysis was begun of the joint distribution of response and its time
derivative. This joint distribution can be used to predict level crossing
rates which are frequently used in fatigue life predictions. The joint
distributions were evaluated both by direct simulation and semi-
gnalytlcglly._ In this case, the Monte Carlo simulations require very long
integration times to produce smooth distributions.

Possible extensions of this work include clustering effects in level

crossings, direct simulation of the level crossing process, and analysis of
the distribution of extreme values.

OBJECTIVE RANDOM LOADINGS

Estimate the influence of random loading on 1. Pulse

2. Pressure
SSME blade responses
3. Temperature

4. Centrifugal

RANDOM IMPULSE LOADING

o Poisson arrival pattern
o Random impulse amplitude

o Random impulse location

RANDOM STRUCTURAL RESPONSES

o Natural Frequency

SSME BLADE

0 Root Stress

o Tip Displacement
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RANDOM RESPONSES DUE TO RANDOM IMPULSE LOADING PROBABILITY CHARACTER OF SSME BLADE RESPONSE

SUBJECTED TO RANDOM PULSE LOADING
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where A = Poisson Arrival Rate
hk(t) = Ranodm Unit Impulse Response
. T = Unit Impulse Response Duration
(Random Pulse Location)
gk(y) = k-Fold Convolution of Probability Density
function of h(t)
* .
gk(y,y) = k-Fold Convolution of Joint Probability
Probabilistic characteristics of model 1 density function of h(t) and h(t)

and 2 are partially known
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Simulated Joint
Probability Density Function

EXAMPLE 3 (MODEL 3)
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