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THERMOCAPILLARY BUBBLE MIGRATION FOR LARGE MARANGONI NUMBERS 

R. Balasubramaniam 
Case Western Reserve U n i v e r s i t y  

Cleveland, Ohio 44106 

SUMMARY 

The thermocap i l la ry  mot ion o f  spher ica l  bubbles present  i n  an unbounded 
l i q u i d  w i t h  a l i n e a r  temperature d i s t r i b u t i o n  i s  analyzed, when t h e  Reynolds 
number and t h e  Marangoni number a re  large. Previous c a l c u l a t i o n s  o f  t h e  t e r -  
minal  v e l o c i t y  performed f o r  t h i s  parametric range d i d  no t  take  i n t o  complete 
cons idera t ion  the  thermal boundary layer  present near the  sur face o f  t h e  bub- 
b le .  I n  the  present study, a sca l ing  ana lys i s  i s  presented f o r  t h i s  problem. 
The thermal boundary l a y e r  i s  analyzed by an i n t e g r a l  method. The r e s u l t i n g  
te rm ina l  v e l o c i t y  I s  lower than t h e  one p rev ious l y  ca lcu la ted ,  though i t  I s  o f  
t he  same order  of magnitude. 

m 
& 

INTRODUCTION 

I n  t h e  absence o f  g r a v i t y ,  bubbles present  i n  a hos t  f l u i d  w i th  a tempera- 
t u r e  g rad ien t  w i l l  move towards t h e  h o t t e r  p o r t i o n  o f  the  f l u i d .  Th is  i s  due 
t o  t h e  shear s t ress  a t  the  i n t e r f a c e  t h a t  i s  generated by the  temperature 
induced sur face tens ion  gradient .  Many s tud ies,  both t h e o r e t l c a l  and exper i -  
mental, have been performed on t h i s  phenomenon ( r e f s .  1 t o  7 )  where the  objec- 
t i v e  i s  t o  determine the  te rmina l  v e l o c i t y  o f  m ig ra t i on  and t h e  shape o f  t h e  
bubble. 

Two o f  t he  most impor tant  parameters t h a t  i n f l u e n c e  t h e  f l o w  and t h e  heat 
t r a n s f e r  i n  t h i s  problem a r e  t h e  Reynolds number R, and the Marangoni number 
Ma. The Marangoni number I s  r e a l l y  a Peclet  number. Other parameters (Weber 
number, C a p i l l a r y  number, e tc . )  con t ro l  t h e  shape o f  t h e  bubble ( r e f .  6). Most 
analyses a re  r e s t r i c t e d  t o  small and u n i t  order  R, and Ma as they use t h e  
creeping f l o w  equations o r  per tu rba t ions  t o  it. I n  reference 6, a s o l u t i o n  was 
found f o r  any R,, so long as Ma i s  smal l .  Crespo and Manuel ( r e f .  7)  have 
ca l cu la ted  t h e  te rmina l  v e l o c i t y  f o r  l a r g e  Ma, where no r e s t r i c t i o n  i s  s ta ted  
on R, e x p l i c i t l y .  However, a l a rge  R, i s  imp l i ed  as a t h i n  f l o w  boundary 
l a y e r  i s  assumed. The authors i n  reference 7 use a mechanical energy argument, 
f i r s t  used by Lev ich ( r e f .  8) i n  h i s  ana lys is  o f  t h e  r i s e  o f  bubbles i n  a 
l i q u i d  i n  a g r a v i t a t i o n a l  f i e l d ,  f o r  l a r g e  Reynold's numbers. I n  re ference 7, 
t h e  temperature f i e l d  i s  n o t  analyzed a t  a l l  and t h e  work o f  t h e  sur face ten-  
s ion  fo rces  a t  t he  i n t e r f a c e  t h a t  was ca l cu la ted  i s  suspect, e s p e c i a l l y  a t  t h e  
f r o n t  and r e a r  s tagnat ion po in ts .  I n  t h e  present  study, t h e  ana lys i s  i n  
reference 7 i s  extended and the  temperature f i e l d  i s  analyzed by an i n t e g r a l  
method. This  r e s u l t s  i n  a decrease i n  t h e  ca l cu la ted  te rm ina l  v e l o c i t y  com- 
pared t o  t h e  value repor ted i n  reference 7. 

NOHENCLATURE 

A temperature grad ien t  f a r  away f rom t h e  bubble 

Ca C a p i l l a r y  number, ~ V R / U  



reference quantity for the ratio 

Harangoni number, ( -uT)ARl /( pa) 

Prandtl number, u/a 

dimensionless and dimensional pressure 

bubble radius 

Reynolds number, V R R ~ / U  

surface tension Reynolds number, (-uT)AR1/(pv) 

dimensionless and dimensional radial coordinate 

temperature 

dimensionless transformed temperature 

bubble surface temperature 

time 

dimensionless and dimensional radial velocity 

dimensionless and dimensional tangential velocity 

V'/Vi 
2 

2 

velocity vector 

Weber number, pVRRl /a 

thermal diffusivity 

2 

reference quantity for the boundary layer -,,.ckness 

tangential coordinate 

inverse of the boundary layer thickness at any 8 

vi scosl ty 

kinematic viscosity 

stretched radial coordinate 

dens i ty 

surface tension 

temperature coefficient of surface tension 

viscous stress 

a z i mut ha1 coord 1 na te 
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Supersc ri pt s 

I correction fields In the boundary layer 

Subscripts 

i inviscid fields 

R reference values 

m values far from the bubble 

Formul at1 on 

As the bubble moves through the fluid at its terminal velocity, It is con- 
venient to choose a coordinate system on the bubble with the origin at its 
center of mass. In this system, the bubble is stattonary and the fluid outside 
approaches the bubble at the terminal velocity. The velocity field is steady. 
The temperature field is not steady, as the bubble constantly moves to a warmer 
region. However, the gradient of the temperature field is steady and it is 
easy to transform to another temperature that is steady (ref. 5). 

The flow is considered to be incompressible and laminar. All physical 
properties other than the surface tension are taken to be independent of tem- 
perature and are hence spatially constant. 
spherical shape. From the geometry and the boundary conditions, the problem 
is symmetric about the flow direction. It is assumed that the viscosity and 
thermal conductivity of the gas inside the bubble are negligible compared to 
those in the liquid outside it. Hence, the flow and the heat transfer within 
the bubble is not analyzed. The coordinate system is R,e,+ with the origin 
at the center of the bubble (fig. 1). e is measured counterclockwise from the 
point of incidence of the flow. The basic equations and boundary conditions 
describing the flow are the same as In reference 6 and are reproduced below in 
equations (1) to (10). 

The bubble is assumed to retain its 

V v = - ,  
vR 

U 
u s - ,  

vR 
R r = - ,  
R1 

where R1 is the radius of the bubble, A Is the temperature gradient in the 
liquid far away from the bubble, V R  = (-uT)AR~/~, is a reference velocity 
determined from the shear stress condition at the interface, TI is the 
dimensionless transformed temperature which is steady. -In what follows, 
unless otherwise mentioned, T will be used to denote TI, for convenience. 
UT = d d d T  
taken to be a constant. It is usually negative. V, is the terminal velo- 
city. The basic equations are 

is the rate of change in surface tension with temperature and is 

a - ( v  sin e )  = o ' La 2 
r 2 at (r + r sin e ae 
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" a v + v f i + u v  = -  1*+L 
r s i n  e ar r ae r r ae Ra 

a T + v a T  1 2  = K V T  v = + u G  r a e  

v =  ~-IL(~z&)+ r 2 a r  
r s i n  e ae (sln e k) 1 

where R, = V R R ~ / U  = ( -uT)AR?/(~v)  i s  t he  surface-tension Reynolds number, 
Ma = P r  R, i s  the Harangoni number, and vm = VJVR. 

The boundary cond i t ions  are  

A t  r = 1,  

u = o  

As r + *, 
m 

P 
u + -v,cos e, v + vmsin e, P + - -  T + r cos e 

( 3 )  

( 4 )  

( 9 )  

I n  a d d i t i o n  t o  the  above condi t ions,  we have another c o n d i t i o n  r e s u l t i n g  

This c o n d i t i o n  i s  used t o  determine v,, 
f rom the  f a c t  t ha t  the  t o t a l  f o rce  a c t i n g  on t h e  bubble i s  zero, as t h e  bubble 
i s  moving a t  a constant v e l o c i t y .  
t he  dimensionless te rm ina l  v e l o c i t y .  

As an a l t e r n a t i v e  t o  t h e  n e t  fo rce  cond i t ion ,  Crespo and Manuel ( r e f .  7 ) .  
f o l l o w i n g  Lev ich ( r e f .  8 ) ,  have used a c o n d i t i o n  a r l s i n g  f rom t h e  conservat ion 
o f  mechanical energy. I n  a reference frame i n  which t h e  bubble i s  s ta t i ona ry ,  
conservat ion o f  mechanical energy imp l i es  t h a t  t h e  r a t e  o f  energy d i ss ipa ted  
i n  the  l i q u i d  by viscous forces must equal t he  r a t e  o f  work done by the  sur face 
tens ion  fo rces  a t  t h e  i n t e r f a c e .  
( r e f s .  7 t o  9).  

Hence, t h i s  c o n d i t i o n  may be w r i t t e n  as 
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[(V 5) ds = dV = r(p/kurl V curl N V dV s R=R, N 1 

Simplifying and using U = 0 at R=Rl this becomes 

where 
vorticity and T is the dimensionaci transformed temperature. 

[a/aR(RV) - aU/aeI2 = lcurl VI2 I the square of the magnitude of the 

While in typical boundary layer problems (like flow over a flat plate), 
using an energy method such as the one above to determine the drag i s  more 
difficult than directly integrating the surface stresses, it appears that in 
problems with spherical bubbles, the energy method is easier to apply. Levich 
(ref. 8) and Moore (ref. 10) have used such a method to predict the terminal 
velocity of rise of bubbles In a gravitational field, when the Reynolds number 
is large. 

Anal ys i s 

The boundary value problem that has been formulated is very difficult to 
solve. In the introduction, the various conditions have been mentioned under 
which solutions have been obtained. In the present study, our interest is to 
predict the terminal velocity for large R, and Ma. As a first step, an 
estimate for the terminal velocity, i.e., V R  is determined for large R, and 
Ma. The previous estimate V R  = ( - u T ) A R ~ / ~  (ref. 6) is valid only for small 
Ma, as the shear stress was assumed to be of order ~ V R / R ~ ,  whfch excludes the 
presence of sharp gradients, i.e., the presence of boundary layers. We will 
determine V R  by scaling analysis. For large R, and Ma, we expect a 
boundary layer to be present near the bubble surface. We will represent the 
velocity field V as the sum of the inviscid velocity field Vi and a boun- 
dary layer correction velocity field VI, i.e., ..9 

u 

The order of magnitude of Vi is denoted to be V R  and that of V I  to 
be fVR. The correction field V' is nonzero within the boundary layer and is 
zero outside it. d denotes thickness of the boundary layer. VR, f, and d 
are all unknown and must be determined. These are determined below by appro- 
priate balance of terms in the equations and boundary conditions. 
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Nondimensional q u a n t i t i e s  a re  defined as fo l lows 

v i = - ,  vi 

"R 
u i = - ,  

vR 

R r = - ,  
R - R1 

Rl 
E=-, 

6R1 

where U t ,  V i ,  and Pi are  t h e  dimensional i n v i s c i d  v e l o c i t y  components and 
t h e  pressure and U '  and V '  a re  the  c o r r e c t i o n  v e l o c i t i e s  i n  t h e  boundary 
layer .  Using equation (14)  i n  equations ( 2 )  t o  ( 5 ) .  t h e  f o l l o w i n g  equations 
a re  obtained 

(15) 
a - (VI  s i n  e) = 0 1 a 2 1 

2 - aE + *E) "1 + ( 1  + s i n  e ae 
(1  + a t )  

1 "' - 2 ~ c o t  e - 26 u '  - 26 T 2 

av 
t f v '  6 

[ V i  ae + 6u' - avl t 6 f u '  - avl 
a t  (1  + 

u -  
i aE 

1 t U,V' + 6ViU' + 6 f U ' V '  

2 s i n  e 
d2 3 au' - t - (sin e s) + 24 T s i n  e de 
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where 

m 
V 

vaD = - 'RRl Re = - 
vR v '  

and 

r 1 

The shear stress condition (eq. (7)) becomes 

The mechanical energy condition (eq. (12)) becomes 

(-eT)ARl 6' - 
t fvl) g] sin e de 

VVR g =O 

1; 

sin e de d g  

Three conditions are needed to determlne the unknowns 6, f, and V R .  
These are described below 

(1) Inertia and viscous forces are of the same order of magnitude in the 

boundary layer. Hence ui av 1 1 1 - 5 
(1 + a t )  

(2) The left-hand side of the mechanical energy condition (eq. (21)) 
represents the rate of work due to surface tension forces. 
the right-hand side represents the energy dissipated in the boundary layer 
(since 
the energy diFsipated by the potential flow and an additional boundary layer 

The first term on 

curl V = 0 outside the boundary layer) and the second term represents 
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contribution (note that the flow considered here is potential because it is 
irrotational and not because It is inviscid; hence the potential flow does 
dissipate energy). We expect f - O(1) or less and 6 << 1. Hence f2/6 
represents the largest portions of the energy dissipated in the boundary layer. 
Hence 

(-eT)AR1 - larger of [g and I] . 
VVR 

(3) Similarly, from the shear stress condition, 

It is assumed that (aT/ae),,l - 1. 
perature between the two stagnation points on the bubble surface is of order 
AR1. Solving these three conditions for 6, f, and VR,  we find that there 
are two possibilities 

Physically, this means that the tem- 

Since 6 must be small compared to one, Re >> 1. 

Again, 6 << 1 * Re >> 1. 

one. Hence all the work that is done by the surface tension forces is dissi- 
pated by the potential flow, with negligible amounts dissipated in the boundary 
layer. 
inant dissipation of energy occurs within the boundary layer, with negligible 
amounts dissipated outside it by the potential flow. Also, according to the 
first possibility, the correction velocity within the boundary layer is small 
compared to the potential flow velocity, whereas, according to the second pos- 
sibility, the two are comparable. Crespo and Manuel assumed that possibility I 
is correct, as they neglected energy dissipation in the boundary layer, refer- 
ring to arguments by Levich (ref. 8, Ch 7, § 82) for justification. The velo- 
city scale in the second possibility is the one frequently used in literature 
for thermocapillary flows with large Re and was first obtained by Ostrach 
(ref. 11). 

For the first possibility, f2/6 = l/& which is small compared to 

For the second possibility, the converse is true and hence the predom- 

So far, the author has not been able to produce an argument which tells a 
priori which of the two possibilities is the one that is physically correct and 
is chosen by nature. Therefore, both possibilities were pursued. It was found 
that the second possibility, analyzed by a boundary layer Integral method slmi- 
lar to the Karman-Pohlhausen method, was never able to predict any terminal 
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velocity. 
work done by the surface tension forces could be dissipated within the boundary 
layer, calculations by the integral method revealed that for any terminal velo- 
city, the boundary layer dissipation was always less than (and hence could 
never equal) the rate of work done by the surface tension forces. 
bility I1 was redected. Therefore, In what follows, possibility I is chosen 
to be physically correct and will be pursued in the remainder of this work. 

While the scaling analysis for possibility I1 revealed that all the 

Thus possi- 

Using equation (22) in the energy equation (eq. (18)) and the mechanical 
energy condition (eq. (21)), we may neglect terms containing u i  and v i ,  for 
large R,. The following simplified problem for T and v, is then 
obtalned 

where 

= o  - aT 
ar At r = 1, 

As r + m, T + r cos e 

l r  -[ (vi $) sin e de = 2 1  (vi) sin e de 
r=l r= l  

= -v, cos e (1 - $)and v, = v, sin e 

Sol ut i on 

The above equation for T, equation (24), though linear, is not easy to 
solve. Crespo and Manuel (ref. 7) neglected the right-hand side of 
equation (24) for large Ma, yielding 

V aT 1 aT - - + - - -  
"OD "I ar r ae 

Evaluating this equation at r = 1, they obtained 

(Vi g) r-1 = -v, 

Using this in equation (27), the terminal velocity v, is obtained as 

(31) 
1 - -  

"OD - 3 

Thus, they were able to calculate the terminal velocity without solving for the 
temperature field. However, equation (29) is not strictly valid as it cannot 
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satisfy equation (25) at the bubble surface. 
layer must be present near the bubble surface. Also equation (30) is incor- 
rect, especially at the stagnation points, where the left-hand side is zero. 
We will solve equation (24) by an approximate integral method. Equation (24) 
may be integrated wlth respect to r to yield 

Therefore, a thermal boundary 

2 2 Val 3 [r(v, t 6v’)T sin e - vmr cos e sin e]  d r  + - (cos e - C1) 3 

a -  Aa kife - t[ (sin e t r sin 

Evaluating this equation at e = 0 and assuming that the integrals are zero, 
C1 = 1. However, at 8 = w ,  the second term is nonvanishing. Hence, one 
of the integrals must be finite at e = a. Physically, there is a thermal 
wake behind the bubble, for, as the bubble moves into warmer regions, it dis- 
places the warmer fluid. The displaced energy has to be convected downstream 
in a thermal wake. The integral in the left-hand side of equation (32) must 
be nonzero at 9 = w, to account for the energy In the wake. 

The following temperature distribution is assumed 

1 COS e 1 1 cos e] T(r,e) = r cos e - -- ’ 3 ( A  - 3) r2 r 
r 1 

(33)  
-A( e) ( r-1 ) 3) 1; cos e - 3Ts(e)  e 1 t 

( A  - 
where Ts(e) P T(1.e) is the transformed steady temperature at the bubble 
surface. Ts and A are unknowns to be determined. The assumed temperature 
distribution satisfies the boundary conditions (eqs. (25) and (26)) and makes 
the integrals i n  equation (32) finite. The exponential function represents a 
thermal boundary layer ( A  is the inverse of the boundary layer thickness) and 
also accommodates the energy In the wake. 
represent the temperature distribution outside the boundary layer. 

The remaining terms In equation (33) 

Equations (32) and (24) evaluated at r = 1 are used to determine Ts 
and A .  

COS e 
( A ”) ( 5  COS e - 3Ts) 2 

9 
8 ( A  - 3) A ( A  - 3) 

3 
(34)  

11 - Ae EI(AL)l - 1 jcos e - 1 )  A 

2 sin e 3TS 2(A - 3) t(i cos e - 
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cos e] 3 1 (-3 cos e t v, t - V, s i n  e T; = 2 

] + T" + c o t  8 T i }  ( 3 5 )  3TS S 
+ ( A  ALL - 3) [ t  cos e - 

T i ( 0 )  = T;(a) = 0 from symmetry cond i t i ons .  

where T; = dTs/de and TS = d2Ts/de2. 1/Ha terms I n  equat ion (34) have been 
neglected. 
i s  s i n g u l a r  a t  8 = 0 and w. This system i s  s t i l l  n o t  easy t o  solve. Hence, 
we w i l l  ge t  a s o l u t i o n  by s a t i s f y i n g  t h e  equations on ly  a t  e = 0 and w/2. 
It i s  d i f f i c u l t  t o  Sa t i s f y  t h e  equations a t  e = w ,  as T i  i s  steep t h e r e  
and w i l l  n o t  be attempted. 

They a re  re ta ined  i n  equation (35), as w i t h o u t  them, t h e  equat ion 

Ts i s  chosen t o  be 

Ts(e) = a t b (:)2 + c (:)3 

This s a t i s f i e s  t h e  c o n d i t i o n  T;(O) = 0. The s i x  unknowns a, b, c, A ( O ) ,  
A ( u / ~ )  and v, a r e  solved from equations (34) and (35) evaluated a t  e = 0 
and w/2, t h e  c o n d i t i o n  T;(u) = 0 and t h e  mechanical energy c o n d i t i o n  
(eq. (27)) .  

The s o l u t i o n  f o r  l a r g e  Ma i s  

55 TS(0) = a = - 54 I 
3c 13 

3 b = - -  
2 = - -  

A ( 0 )  = 0.53 Ma 

A 0) = 0.009 Ma 

ATS = TS(0) - T&u) = 1.44 

RESULTS AND DISCUSSION 

(37) 

I 
The r e s u l t s  f o r  t he  terminal  ve loc i t y ,  v i z ,  V, = 0.235 ( - u T ) A R ~ / ~  1 s  

lower than t h a t  obtained by Crespo and Manuel, v i z ,  V, = 1/3((-q)AR1/p).  
ever, even though t h e i r  approach I s  not  f u l l y  j u s t i f i e d ,  bo th  r e s u l t s  a r e  o f  
t h e  same order of magnitude and only  d i f f e r  i n  t h e  m u l t i p l i c a t i v e  constant i n  
t h e  expression f o r  V,. The main d i f f e rence  i s  t h a t  i n  t h e  present  study, t h e  
thermal boundary l a y e r  has been t rea ted  more completely i n  a r r i v i n g  a t  t h e  

How- 
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result for the terminal velocity. For large Ma, v, 1s independent of the 
Marangoni number. The result for va also supports the scaling analysis that 
has been performed, as the estimate for 
constant that i s  only of unit order of magnitude. 
bubble surface at the front stagnation point 1s 
slightly different from the temperature of the free stream (T = 1 )  at the same 
axial location. The thickness of the thermal boundary layer varies as l/Ma. 
The boundary layer has a small thickness (1.89/Ma) at e = 0, is about 58 times 
thicker at e = r/2 and is Infinitely thick (from eq. (34)) at e = U .  An 
interesting conclusion that is supported by the present analysis is the fact 
that Ma is a singular perturbation parameter for this problem, which has been 
recognized and considered by Subramanian (ref. 5). For Ma = 0, the solution 
to T Is (ref. 6) 

va is modified by a multiplicative 
The temperature on the 

Ts(0) = 1.01 and is only 

1 COS e T(r,e) = r cos e + - - 
r2 

(39) 

Comparing this to T(r,e) in equation (33), we see that the sign of the second 
term is reversed. The coefficient -1/2 for this term in equation (33) was 
determined by requiring that the integral in the left-hand side of equation (32) 
be finite, i.e., that the motion o f  the bubble does not create an infinite flux 
of convected energy. Hence, the coefficient of this term must be -1/2 for 
any nonzero Ma, as otherwise, the flux of energy convected would be infinite. 
Since the coefficient is +1/2 for Ma = 0, we conclude that this problem is 
singular with respect to perturbations i n  Ma (i.e., the inclusion of energy 
convection terms), as the presence of convection drastically changes the nature 
of the temperature distribution as r + -. 

For small Harangoni, Weber, and Capillary numbers and small Adu, the 
shape of the bubble was obtained in reference 6 to be 

2 
n(e) = - - 15 - 'aRIP ( 3  COS 2 e - 1 )  

64 do 

where the bubble surface is located at r = 1 t n. The shape of the bubble 
represented by equation (40) is a spheroid with its minor axis in the flow 
direction. R, 
and Ma that I s  being considered in the present study for small Wb, Ca, and 
A d u ,  
changes to the velocity and pressure fields, compared to these fields in poten- 
tial flow. Since potential flow fields were used in reference 6 to obtain 
equation (40), the shape of the bubble for the two cases must be the same. 
This result is not expected to be valid in the vicinity of the rear stagnation 
point of the bubble, as we expect the boundary layer thickness to be infinite 
there. 

The same result is also expected to be valid for the large 

because the flow boundary layer is thin and introduces only small 
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