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THERMOCAPILLARY BUBBLE MIGRATION FOR LARGE MARANGONI NUMBERS

R. Balasubramaniam
Case Western Reserve University
Cleveland, Ohio 44106

SUMMARY

The thermocapillary motion of spherical bubbles present in an unbounded
1iquid with a 1inear temperature distribution is analyzed, when the Reynolds
number and the Marangoni number are large. Previous calculations of the ter-
minal velocity performed for this parametric range did not take into complete
consideration the thermal boundary layer present near the surface of the bub-
ble. In the present study, a scaling analysis is presented for this problem.
The thermal boundary layer is analyzed by an integral method. The resulting
terminal velocity is lower than the one previously calculated, though it is of
the same order of magnitude.

INTRODUCTION

In the absence of gravity, bubbles present in a host fluid with a tempera-
ture gradient will move towards the hotter portion of the fluid. This 1is due
to the shear stress at the interface that i1s generated by the temperature
induced surface tension gradient. Many studies, both theoretical and experi-
mental, have been performed on this phenomenon (refs. 1 to 7) where the objec-
tive is to determine the terminal velocity of migration and the shape of the
bubble.

Two of the most important parameters that influence the fliow and the heat
transfer in this problem are the Reynolds number R, and the Marangoni number
Ma. The Marangoni number 1s really a Peclet number. Other parameters (Weber
number, Capillary number, etc.) control the shape of the bubble (ref. 6). Most
analyses are restricted to small and unit order R, and Ma as they use the
creeping flow equations or perturbations to i1t. In reference 6, a solution was
found for any Ry, so long as Ma 4is small. Crespo and Manuel (ref. 7) have
calculated the terminal velocity for large Ma, where no restriction is stated
on R, explicitly. However, a large R, is impliied as a thin flow boundary
layer is assumed. The authors in reference 7 use a mechanical energy argument,
first used by Levich (ref. 8) in his analysis of the rise of bubbles in a
1iquid in a gravitational field, for large Reynold's numbers. In reference 7,
the temperature field is not analyzed at all and the work of the surface ten-
sion forces at the interface that was calculated i1s suspect, especially at the
front and rear stagnation points. In the present study, the analysis in
reference 7 is extended and the temperature field is analyzed by an integral
method. This results in a decrease in the calculated terminal velocity com-
pared to the value reported in reference 7.

NOMENCLATURE
A temperature gradient far away from the bubble

Ca Capillary number, uVp/c



Ma

Pr

p,P

u,y

v,V

i<

Wb

reference quantity for the ratio V'/Vy

Marangoni number, (-aT)ARf/(pa)

Prandtl number, v/a

dimensionless and dimensional pressure

bubble radius

Reynolds number, VRRy/v

surface tension Reynolds number, (—dT)ARf/(uv)
dimensionless and dimensional radial coordinate
temperature

dimensionless transformed temperature

bubble surface temperature

time

dimensionless and dimensional radial velocity
dimensionless and dimensional tangential velocity
velocity vector

Weber number, pV§R1/6

thermal diffusivity

reference quantity for the boundary layer thickness
tangential coordinate

inverse of the boundary layer thickness at any o
viscosity

kinematic viscosity

stretched radial coordinate

density

surface tension

temperature coefficient of surface tension
viscous stress

azimuthal coordinate




Superscripts

! correction fields in the boundary layer

Subscripts
] inviscid fields

R reference values

@ values far from the bubblie

Formulation

As the bubble moves through the fiuid at its terminal velocity, 1t is con-
venient to choose a coordinate system on the bubble with the origin at its
center of mass. In this system, the bubble is stationary and the fluid outside
approaches the bubble at the terminal velocity. The velocity field is steady.
The temperature field is not steady, as the bubble constantly moves to a warmer
region. However, the gradient of the temperature field is steady and 1t 1is
easy to transform to another temperature that is steady (ref. 5).

The flow is considered to be incompressible and laminar. A11 physical
properties other than the surface tension are taken to be independent of tem-
perature and are hence spatially constant. The bubbie is assumed to retain its
spherical shape. From the geometry and the boundary conditions, the problem
is symmetric about the flow direction. It is assumed that the viscosity and
thermal conductivity of the gas inside the bubble are negligible compared to
those in the 1iquid outside it. Hence, the flow and the heat transfer within
the bubble is not analyzed. The coordinate system is R,0,4 with the origin
at the center of the bubble (fig. 1). © 1s measured counterclockwise from the
point of incidence of the flow. The basic equations and boundary conditions
describing the flow are the same as in reference 6 and are reproduced below in
equations (1) to (10).
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where Ry 1s the radius of the bubble, A 1s the temperature gradient in the
1iquid far away from the bubble, Vg = (-o7)ARy/u, 1s a reference velocity
determined from the shear stress condition at the interface, T' 1is the
dimensionless transformed temperature which is steady. _In what follows,
unless otherwise mentioned, T will be used to denote T', for convenience.
or = do/dT 1is the rate of change in surface tension with temperature and 1is
taken to be a constant. It is usually negative. Vo, 1s the terminal velo-
city. The basic equations are
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where R4 = VRR1/v = (-o7)AR$/(uv) 1s the surface-tension Reynolds number,
Ma = Pr Ry 1s the Marangoni number, and Ve = Vo/VR.

The boundary conditions are

At r='l,
u=0 (6)
3 (v} _al
ar(r)'ae (n
at _
ar -~ 0 (8)
AS r » o,
PQ
u - -v_cos e, v 2 vms1n 0, P>, T=>rcos o (9)
PVR

In addition to the above conditions, we have another condition resulting
from the fact that the total force acting on the bubble is zero, as the bubble
is moving at a constant velocity. This condition is used to determine v,
the dimensionless terminal velocity.

w
2
f [rResm @ - TppC0s © sin e]R . de = 0 (10)
0 =

a_ (v aU
where (1,.) = u[é o (—)] and (t,q) = Zu(-—) - P(R,,0).
Re R=R] 3R \R R=R] RR R=R] aR R=R] 1

As an alternative to the net force condition, Crespo and Manuel (ref. 7),
following Levich (ref. 8), have used a condition arising from the conservation
of mechanical energy. In a reference frame in which the bubble is stationary,
conservation of mechanical energy implies that the rate of energy dissipated
in the 1iquid by viscous forces must equal the rate of work done by the surface
tension forces at the interface. Hence, this condition may be written as
(refs. 7 to 9).
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oy (V %) ds = y| ¢ d? =y [cuﬂ V o+ curd V] d¢
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S

Simplifying and using U = 0 at R=R] this becomes

v Tpo 2
R.Ian ( g%) s1nede=pff [%(RV)-%] sin © dR de
o R=R oR,

1
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- z)]ds (1)

n
2
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where [3/3R(RV) - aU/ae] lcurl V| = the square of the magnitude of the
vorticity and T 1is the d1mens1ona1 transformed temperature.

While in typical boundary layer problems (1ike flow over a flat plate),
using an energy method such as the one above to determine the drag is more
difficult than directly integrating the surface stresses, it appears that in
problems with spherical bubbles, the energy method is easier to apply. Levich
(ref. 8) and Moore (ref. 10) have used such a method to predict the terminal
velocity of rise of bubbles in a gravitational field, when the Reynolds number
is large.

Analysis

The boundary value problem that has been formulated is very difficult to
solve. In the introduction, the various conditions have been mentioned under
which solutions have been obtained. In the present study, our interest is to
predict the terminal velocity for large R, and Ma. As a first step, an
estimate for the terminal velocity, 1.e., Vg 1s determined for large R4 'and
Ma. The previous estimate VR = (-o7)ARy1/u (ref. 6) is valid only for small
Ma, as the shear stress was assumed to be of order wVR/Ry, which excludes the
presence of sharp gradients, 1.e., the presence of boundary layers. We will
determine VR by scaling analysis. For large Ry, and Ma, we expect a
boundary layer to be present near the bubble surface. We will represent the
velocity field V as the sum of the inviscid velocity field V1 and a boun-
dary layer correction velocity field V‘ i.e.,

+ V! (13)

The order of magnitude of V4 1is denoted to be VR and that of V' to
be fVR. The correction field V' 1s nonzero within the boundary layer and is
zero outside it. & denotes thickness of the boundary layer. VR, f, and &
are all unknown and must be determined. These are determined below by appro-
priate balance of terms in the equations and boundary conditions.

5



Nondimensional quantities are defined as follows

g = L R] r-R u, = El Vy = !1
GR] R.l i VR 1 R
(14)
- P
B L Il
6fVR VR fPVs

where U4, V4, and Py
the pressure and U'

layer.
are obtained

and V!

are the dimensional inviscid velocity components and
are the correction velocities in the boundary
Using equation (14) in equations (2) to (5), the following equations

1 E) 2 1 3
——— 55 [(1 + 8g) u'] + — (v' sine) =0 (15)
(1 + 65)2 13 (1 + &%) sin o a6
au au
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.- la 1 ! {g_ [(1 + 6E)2 QQL] + 82 2. (sin o le)
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- 2824 - 26 % - 28v'cot e} (16)
oV v
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u1 SE_ + &u 2t + §fu Y + O+ 35) [v1 20 +V 30 + fv 20
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where

V.R v
Re = R 1 ’ v, = Vg
v R
and
dv_cos @
U (5.0) = - —=—— [3F + 388" + §%5°]
(1 + &%)
(19)
1
v,(E,0) =v_sine || + —
L ® 201 + §§)°
The shear stress condition (eq. (7)) becomes
(-o.)AR
fa [_v: RSN Rhian By 1 §
&Y (1 " 6E)E 0" W, 2 + IV, sIn e (20)

The mechanical energy condition (eq. (12)) becomes

(-a.)AR, ("
———%———l - [(v1 v V') %%] sin o de
uiR £=0

i

2 ("™ 5!
=-§—IL ’-g-g[(]+ag)v']-a%— sin o de dg
0

w
+ 2[ [vf + 2fv1v‘ + fzv' ] sin e de (21)
0 g=0

Three conditions are needed to determine the unknowns &, f, and VgR.
These are described below

(1) Inertia and viscous forces are of the same order of magnitude in the

av' 1 1 a_ 2 av'
boundary layer. Hence uy 2t~ 3Re a . 65)2 at [(1 + &%) aE ].

Since uy ~ § for £ ~1, & ~ Re 24§ ~ \rﬁE

(2) The left-hand side of the mechanical energy condition (eq. (21))
represents the rate of work due to surface tension forces. The first term on
the right-hand side represents the energy dissipated in the boundary layer
(since curl V = 0 outside the boundary layer) and the second term represents
the energy dissipated by the potential flow and an additional boundary layer
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contribution (note that the flow considered here is potential because 1t is
irrotational and not because 1t is inviscid; hence the potential flow does
dissipate energy). We expect f ~ 0(1) or less and & << 1. Hence f2/§
represents the largest portions of the energy dissipated in the boundary layer.
Hence

2
(-or)ARy . qarger of [%— and 1] .
W

(3) Similarly, from the shear stress condition,

(—a.'.)AR1
~ larger of |——— and 1

On |~h

uVR

It is assumed that (3T/36),_.7 ~ 1. Physically, this means that the tem-
perature between the two stagnation points on the bubble surface is of order
ARy. Solving these three conditions for &, f, and Vg, we find that there
are two possibilities

(-a.l.)AR.|
(I) 6=f~v—R;, VR~_IJ—- (22)

Since & must be small compared to one, Rd > 1.

1/3
: (-op) 2A%R, v
(II) 6~R17, f~1, VR~ — (23)

- u

Again, & << 1 =Ry >> 1.

For the first possibility, f2/8 = 1/"“;; which is small compared to
one. Hence all the work that is done by the surface tension forces 1s dissi-
pated by the potential flow, with negligible amounts dissipated in the boundary
layer. For the second possibility, the converse is true and hence the predom-
inant dissipation of energy occurs within the boundary layer, with negligible
amounts dissipated outside it by the potential flow. Also, according to the
first possibility, the correction velocity within the boundary layer is small
compared to the potential flow velocity, whereas, according to the second pos-
sibi1i1ty, the two are comparable. Crespo and Manuel assumed that possibility I
is correct, as they neglected energy dissipation in the boundary layer, refer-
ring to arguments by Levich (ref. 8, Ch 7, § 82) for justification. The velo-
city scale in the second possibility is the one frequently used in 1iterature
for thermocapillary flows with large R, and was first obtained by Ostrach
(ref. 11).

So far, the author has not been able to produce an argument which tells a
priori which of the two possibilities is the one that is physically correct and
1s chosen by nature. Therefore, both possibilities were pursued. It was found
that the second possibility, analyzed by a boundary layer integral method simi-
lar to the Karman-Pohlhausen method, was never able to predict any terminal

8




velocity. While the scaling analysis for possibiiity II revealed that all the
work done by the surface tension forces could be dissipated within the boundary
layer, calculations by the integral method revealed that for any terminal velo-
city, the boundary layer dissipation was always less than (and hence could
never equal) the rate of work done by the surface tension forces. Thus possi-
bi11ty II was rejected. Therefore, in what follows, possibility I 1s chosen

to be physically correct and will be pursued in the remainder of this work.

Using equation (22) in the energy equation (eq. (18)) and the mechanical
energy condition (eq. (21)), we may neglect terms containing u' and v', for
large R,. The following simplified problem for T and v, 1is then

obtained

L. 2a L e (24)

At r = ], 'a'F =0 (25)
As r - o, T»rcos e (26)
w w
-J (v1 -g%) sin & do = 2f (v})  sin e de (27)
0 r=1 0 r=1
where
| 1
u, = -v_ cos ;) (1 - 3)and vy =V, sin o (1 + 3) (28)
r 2r
Sotution

The above equation for T, equation (24), though linear, is not easy to
solve. Crespo and Manuel (ref. 7) neglected the right-hand side of
equation (24) for large Ma, yielding

v
al % aT _
Vo *Uiar * ¥ 20 =0 (29)

Evaluating this equation at r = 1, they obtained

(1 %«Ia)m = Ve (30)

Using this in equation (27), the terminal velocity v, is obtained as

(31)

Thus, they were able to calculate the terminal velocity without solving for the
temperature field. However, equation (29) is not strictly valid as it cannot
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satisfy equation (25) at the bubble surface. Therefore, a thermal boundary
layer must be present near the bubble surface. Also equation (30) is incor-
rect, especially at the stagnation points, where the left-hand side is zero.
We will solve equation (24) by an approximate integral method. Equation (24)
may be integrated with respect to r to yieid

2 Voo
cos © sin“e] dr + 3 (cos

-
2 .
1 sin”e aT 2 |
oy [———2 +J (s1n 6 3g*trsin e)dr:l! (32)
1

Evaluating this equation at o = 0 and assuming that the integrals are zero,
Cy = 1. However, at © = v, the second term s nonvanishing. Hence, one

of the integrals must be finite at o = «. Physically, there is a thermal
wake behind the bubble, for, as the bubble moves into warmer regions, it dis-
places the warmer fluid. The displaced energy has to be convected downstream
in a thermal wake. The integral in the left-hand side of equation (32) must
be nonzero at 6 = v, to account for the energy in the wake.

o
.f [r(v1 + &v')T sin 6 - vmr2 30 - c])
1

The following temperature distribution i1s assumed

lcose 1 1 (A + 4)
T(r,8) = r cos 6 - 9 r2 + r3 o~ - 3) [sz(e) - 2 cos e]

e [% cos 6 - 3Ts(e{]e'*(°)‘r‘]) (33)

where Tg(6) = T(1,0) 1s the transformed steady temperature at the bubble
surface. Tg and A\ are unknowns to be determined. The assumed temperature
distribution satisfies the boundary conditions (eqs. (25) and (26)) and makes
the integrals in equation (32) finite. The exponential function represents a
thermal boundary layer (A 1s the inverse of the boundary layer thickness) and
also accommodates the energy in the wake. The remaining terms in equation (33)
represent the temperature distribution outside the boundary layer.

Equations (32) and (24) evaluated at r =1 are used to determine T
and .

2 [}Ts - (A +4) cos e] _cos @ + (A ¢+ 1) (% cos © - 3Ts)

8(x - 3) 2 12 xz(x _ 3)
(7 [1 - XekE1(x11 ) (cosae - 1)
*\g cos © - 3Ts 2(r - 3) t3 s1n20 =0 (34)
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3 A 12 A+ 4)
Vo t > Ve sin © TS = Ma {-3 cos O + ™ - 3) [LTS - 2 cos e]
11
= - ] 1
+ ™ - 3) [2 cos © 3TS] + Ts + cot o TS } (35)
T;(O) = T;(«) = 0 from symmetry conditions. (36)

where T¢ = dTg/de and Tg = d2Tg/de2. 1/Ma terms in equation (34) have been
neglected. They are retained in equation (35), as without them, the equation
is singular at © =0 and w«. This system is still not easy to solve. Hence,
we will get a solution by satisfying the equations only at e = 0 and /2.

It is difficult to satisfy the equations at © = », as T¢ 1s steep there

and will not be attempted.

Tg¢ 1s chosen to be

2 3
T(0) =a+b (g) +c (g) (37)

This satisfies the condition T;(O) = 0. The six unknowns a, b, c, A(0),
A(w/2) and Ve, are so]ved|from equations (34) and (35) evaluated at o = 0
and w«/2, the condition Tg(«) = 0 and the mechanical energy condition

(eq. (27)).

The solution for large Ma is

55
Ts(o) =2 =5
3¢ _ 13
b=-5%=-3
A(0) = 0.53 Ma
v
N (5) - 0.009 Ma (38)
2
v_ = 13(x : 3) _ 0.235
12«

AT =T (0) - T (v) = 1.44

RESULTS AND DISCUSSION

The results for the terminal velocity, viz, Vo, = 0.235 (-o7)ARy/u is
lower than that obtained by Crespo and Manuel, viz, Vo = 1/3((-o7)ARy/u). How-
ever, even though their approach is not fully justified, both results are of
the same order of magnitude and only differ in the multiplicative constant in
the expression for V,. The main difference is that in the present study, the
thermal boundary layer has been treated more completely in arriving at the

1



result for the terminal velocity. For large Ma, v, 1s independent of the
Marangoni number. The result for v, also supports the scaling analysis that
has been performed, as the estimate for ve 1s modified by a multipliicative
constant that is only of unit order of magnitude. The temperature on the
bubble surface at the front stagnation point is Tg(0) = 1.01 and 1s only
s1ightly different from the temperature of the free stream (T = 1) at the same
axial location. The thickness of the thermal boundary layer varies as 1/Ma.
The boundary layer has a small thickness (1.89/Ma) at o6 = 0, is about 58 times
thicker at © = «/2 and is infinitely thick (from eq. (34)) at © = «. An
interesting conclusion that is supported by the present analysis is the fact
that Ma 1is a singular perturbation parameter for this problem, which has been
recognized and considered by Subramanian (ref. 5). For Ma = 0, the solution
to T 1s (ref. 6)

1 cos ©

2 r2

T(r,®) = r cos o + (39)

Comparing this to T(r,e) in equation (33), we see that the sign of the second
term 1s reversed. The coefficient -1/2 for this term in equation (33) was
determined by requiring that the integral in the left-hand side of equation (32)
be finite, i.e., that the motion of the bubble does not create an infinite flux
of convected energy. Hence, the coefficient of this term must be -1/2 for
any nonzero Ma, as otherwise, the flux of energy convected would be infinite.
Since the coefficient is +1/2 for Ma = 0, we conclude that this problem is
singular with respect to perturbations in Ma (1.e., the inclusion of energy
convection terms), as the presence of convection drast1ca11y changes the nature
of the temperature distribution as r = =,

for small Marangoni, Weber, and Capillary numbers and small Aoc/g, the
shape of the bubble was obtained in reference 6 to be

2
15 Vo1 P 2
n(0) =—a—(3 cos 6 - 1) (40)

%
where the bubble surface is located at r =1 + n. The shape of the bubble
represented by equation (40) is a spheroid with its minor axis in the flow
direction. The same result is also expected to be valid for the large R,
and Ma that is being considered in the present study for small Wb, Ca, and
Ac/a, because the flow boundary layer is thin and introduces only small
changes to the velocity and pressure fields, compared to these fields in poten-
tial flow. Since potential flow fields were used in reference 6 to obtain
equation (40), the shape of the bubble for the two cases must be the same.
This result 1s not expected to be valid in the vicinity of the rear stagnation
point of the bubble, as we expect the boundary layer thickness to be infinite
there.
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