@ https://ntrs.nasa.gov/search.jsp?R=19870013757 2020-03-20T10:38:32+00:00Z

N87-23190

{NASA-TM-8S375) CGENEBAL CEJECI-CRIENTED
(NASR2) <7 p Avail:

SCFT%ZRE CEVELCEREDMNT
201; single ccies
Unclas

P11IS EC AGS/NMF
available frce MASA/GSEC, Ccde £52,
7 CscL 09B 63,61 . 0076828

Grecenielt, Ed. 2C771
| I

SOFTWARE ENGINEERING LABORATORY SERIES SEL-86-002

GENERAL OBJECT-ORIENTED
SOFTWARE DEVELOPMENT

AUGUST 1986

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Adaministra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (l) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, ana models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En--
gineering Laboratory Series, a continuing series of reports

that includes this document.
The primary contributors to this document are

Ed Seidewitz (Goddard Space Flight Center)
Mike Stark (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to
Frank k. McGarry
Code 552

NASA/GSFC
Greenbelt, Maryland 20771

ii

0252

ABSTRACT

Object-oriented design techniques are gaining increasing
pooularity for use with the Ada programming lanquage. This
report describes a general approach to object-oriented de-
sign which synthesizes the principles of previous object-
oriented methods into a unified framework. Further, this
"approach fits into the overall software life-cycle, provid-
ina transitions from specification to design and from desian
to code. It therefore provides the hasis for a general

object-oriented development methodology.

|
iii |

0252

TABLE OF CONTENTS

Section 1 - Introduction. . . .

Section 2 - Procedures and Objects.

2.1 Procedures . . o o o o o o
2.2 Objects. . ¢« ¢« ¢« ¢« & & o .

Section 3 - Object Diagrams . .

3.1 Notation . . ¢« « ¢« ¢« « « .
Decomposition of Objects .
Actor ObjectsS. « « o« o« o &

w W w
e ®
=W

Section 4 - Object-Oriented Design.

Translating Object Diagrams Into

4,1 Principles for Designing Objects
4.2 Principles for Designing Systems

Section 5 - Abstraction Analysis.

5.1 1Identifying Central Entities and

faces. . . ¢« ¢ 4 4 e o W
5.2 1Identifying Objects. . . .
5.3

5.3.1 Generating Object Contents Tables . .
5.3.2 Using the Recast Data Flow Diaaram With
Object Boundaries . . . « « « « .+
5.3.3 Identifyving Operations. . . « . + «
5.3.4 Generating Child Object Diagrams. . .
5.3.5 Tasking ConsiderationsS. « « « o « o &

Section 6 - Conclusion.

References

Virtual

Design Using Abstraction Analysis. . . .

Standard Bibliography of SEL Literature

iv

0252

wwww
1
= oy

(SN o

g5
[
ot
~
o

wWWwwdpn
[N T B | [I N N |
WNH® whD -

B b B BB W W W W
i
SO N W YW

ooty onprovn
|
WU W

5-13
5-14
5-15
5-16
5-17
5-18

0252

LIST OF ILLUSTRATIONS

Procedure Data Flow. e s e s e s
A Procedure Call, With Data Flows. e o e e e
A Procedure Call, Without Data Flows
An Object. ¢ o« ¢ ¢ o o o o o o o o o o o o o
Schedule Organizer Object Diagram.
Concurrent Objects . ¢« ¢« ¢« o o« o o o o o o o
Schedule Organizer External Entitites
Diagram. « o« « o« o o s o s o o o » o o o o
Address Book Decomposition . . . « « ¢ + «
Semaphore ACtOr. « ¢ « & o o o o o o s + o o
Use of a Semaphore . + « ¢ ¢« ¢« o o ¢ o o o &
Data Protector ACEOr . & ¢ o ¢ o« o o o o o«
Parent-Child Hierarchy . . « ¢ ¢ « o o o o
Seniority Hierarchv. . ¢« ¢ ¢ « ¢ o« ¢« o « o &
Virtual Machine Graph. . ¢« ¢« ¢ ¢ &+ ¢ o &« o &
Top-Level Object Diagram . e s s s s s e e
Input/Process/Output Vlrtual Machine
A Better Virtual Machine Decomposition . . .
An Automated Manufacturinag Plant Simulation
Svstem + o« ¢ ¢« o o o s ¢ o o o e s o+ e s+ =
Plant Simulator With Junior-Level Connec-
LiONSe &« o ¢ o o o o o o o o o o o o o s
Plant Simulator, Homologous Design
Aircraft Monitoring System ¢« . .« .+ .
Aircraft Monitoring System With Seniority
Hierarchy. . . . =« e e s & & o e o & » .
GRODY Level 0 Data Flow Diagram. . . « « + =
1. Simulate GRO Spacecraft. . . . « « « « &
Support of Central Entity. « « « .
First Level of EBntities. « .+ « ¢« .
DFD With Added ProcessesS . « o« o o o s o o =
Next Level of Entities . . « &« ¢« «+ + ¢« « « .
Recast GRODY Data Flow Diagram . . . « . . .
GRODY Entity Graph . . « +« « o« o o o o o «
Entity Graph With Control Flows. . o .
Recast GRODY DFD With Object Boundarles
ShOWN. « . & & o o o o o o s o o o o o o
Initial Object Diagram« « « « « o« & =
More Centralized GRODY Design. « « « o« « «
Less Centralized GRODY Design. . . « « o« o =«
GRODY Object Diagram . . « « « « o o o .o =+ =
Object Contents Table for GRODY. . . . « . &
1.2 Model SeNSOLS « « o o s o s o o o o o
Truth Model Object Description
Updated Object Contents Table for GRODY., . .

B DD DWW W W W W Wk DN
[T T T S T N N B |)
W 1L Ul == O~ AW N
NSNS N)

Grumutuuy it e
|

w = o

|
HHEHWOMNO & WH

wn
[

—

w

5-17
5-18
5-19
5-21
5-23
5-25
5-26
5-27

Fiqure

5-19
5-20
5-21
5-22
5-23

0252

LIST OF ILLUSTRATIONS

(Cont'd)

User Interface Data Flow Diagram

Truth Model Data Flow Diagram.
1.1 Model Dvnamics and Environment.

Truth Model Entity Graph . .
Truth Model Object Diagram .

vi

5-29
5-30
5-32
5-33
5-34

SECTION 1 - INTRODUCTION

An "object" is an abstract software model of a problem domain
entity. Objects are bé&kaqes of both data and operations on
that data [Goldberg 83, Booch 83]. The Adal package con-
struct is representative of this general notion of an object.
"Object-oriented design" is the technique of using objects
as the basic unit of modularity in system design. The Soft-
ware Engineering Laboratory at the Goddard Space Flight Cen-
ter is currently involved in a pilot project to develop a
satellite dynamics simulator in Ada (approximately

40,000 statements) using object-oriented methods [Agresti 86,
Nelson 86]. Several authors have applied object-oriented
concepts to Ada (e.g., [Booch 83, Cherrv 85b]). These meth-
ods are useful, but limited when considered as a general
approach to developing large software systems [Nelson 86].

As a result we have synthesized a more general approach which
allows a designer to apply powerful, object-oriented prin-
ciples to a wide range of applications and at all stages of
software development. This report describes our approach

and considers how object-oriented design fits into the over-

all software life-cycle.

The present report supercedes and expands our earlier work
on this topic [Seidewitz 85a, Seidewitz 85b, Seidewitz 86,
Stark 86]. However, our work is still in progress and future
versions of this document will include material on object-

oriented specification and testing.

lapda is a trademark of the U.S. Government (Ada Joint Pro-
gram Office).

0252

SECTION 2 - PROCEDURES AND OBJECTS

In object-oriented desian, the basic unit of modularity is
the object rather than the procedure. While a procedure
defines a specific operation, an object defines a "state
machine" with internal memory and multiple operations on
that memory. This section discusses the concepts of objects
and procedures and shows the relationship between them.

2.1 PROCEDURES

We begin with the more familiar concept of-a brocedure. We
can model a procedure as a mathematical function. Figure 2-1
shows one possible diagqram for representinag such a function.
In this diagram, the arrows represent data flows into and

out of the procedure. However, in a computer program, there
is a flow of control as well as data. Thus, when a proce-
dure is called, we can say that control "flows into" the
procedure. When the procedure is complete, control returns
to the caller.

ARGUMENTS RESULTS

PROCEDURE

GLOBAL DATA GLOBAL UPDATES >

Fiqure 2-1, Procedure Data Flow

The diagram in Figqure 2-2 shows both the data flow and the
control flow. The arrow from CALLER into PROCEDURE indicates
that CALLER transfers control to PROCEDURE. Note that the
return of control to CALLER is not explicitly shown, but is
assumed to happen when PROCEDURE is finished. The smaller
arrows along the larger control flow arrows show the data

flows (similar to [Yourdon 79]), which may go in either

0252

direction along a control path, Also notice that in Fig-
ure 2-2 we have added an explicit symbol for the GLOBAL DATA.
Although control never really flows into data, we show
access to such data symbols by arrows always directed toward
the data. This indicates that the data is always passive

and never initiates any action.

CALLER
Updatesl N9 s
\ Results
JPROCEDURE
,/ Updates
Data
T / Data
Y
GLOBAL DATA

Figure 2-2. A Procedure Call, With Data Flows

When there are several control paths on a diagram, each with
several data flows, showing all data flows can become cumber-
some. Therefore, instead of explicitly showing the data

flow on the diagrams, we include the data flow in a separate
"operation definition" which describes the operation provided
by the procedure. Fiqure 2-3 shows the diagram of Fiqure 2-2

2-2

0252

redrawn without the datd flow arrows. The operation defini-

tion for the procedure in Figqure 2-3 would be:

PROCEDURE (ARGUMENTS) RESULTS

CALLER

IPROCEDURE

y
GLOBAL DATA

Figure 2-3. A Procedure Call, Without Data Flows

In the operation definition, the parenthesized data flows
with the control flow, while the unparenthesized data flows
against the control flow. A qgeneral operation thus includes
two data flows. However, some operations have only one data
flow, which may be in either direction relative to the con-
trol flow. In fact, some operations simply signal an action

with no data flow at all. Such operations have definitions

of the form:

RESET ()

0252

The parentheses are included even when they are empty. For
data symbols sucn as GLOBAL DATA in Fiqure 2-3, the control
arrows implicitly define the appropriate data flows with no

need for operation definitions.
2.2 OBJECTS

Whatever the notation, we still model a procedure as a math-
ematical function. That is, given a certain set of inputs
(arguments and global data), a procedure always produces the

same set of outputs (results and global updates). A proce-

dure, for example, cannot directly model an address book,
because an address book has memory (a set of addresses) which
can be accessed and updated. Normally, the solution to this
is to place this memory in global variables, leaving it ex-

posed to illicit modification.

An object, on the other hand, packages some memory along
with all allowable operations on it. We can moael an object
as a mathematical "state machine" with some internal state
which can be accessed and moaified by a limited number of
mathematical functions. We thus implement an object as a
packaged set of procedures and internal data, as shown in
Figure 2-4. For an address book object, the internal memory
would be a set of addresses, and the allowable operations
would be accessing an address by name, adding a new address,

etc,

Internally, the procedures in an object are functions of
both arguments and the internal memory. Externally, how-
ever, an object appears as a "black box" with operations on
certain arguments producing certain results. Now, though,
the same arguments may produce different results at dit-

ferent times, dependina on the hidden internal state. An

0252

"object description" includes a list of definitions for each

of the operations provided by the object. For example:
ADDRESS-BOOK
Provides:

ADD (NAME + ADDRESS)
CHANGE (NAME + ADDRESS)
LOOKUP (NAME) ADDRESS
REMOVE (NAME)

OBJECT OPERATIONS .

el N

7 N

PROC 1 PROC 2 PROC3| o o o

y

INTERNAL
STATE DATA

Figure 2-4. An Object

0252

An object can also represent a "type manager." A "type" is
basically a template for a set of objects which all allow

the same operations. The "type manager" object combines in

its own state one complete state for each object of the type.

Each type operation is then augmented with a data item which
selects the specific object (state) to be operated on. For
example, we could define a type manager which would allow
creation of an arbitrary number of address books. The new
object definition would be:

ADDRESS-BOOK-MANAGER
Provides:

ADD (ADDRESS-BOOK + ADDRESS + NAME)
CHANGE (ADDRESS-BOOK + ADDRESS + NAME)
LOOKUP (ADDRESS-BOOK + NAME) ADDRESS
REMOVE (ADDRESS-BOOK + NAME)

CREATE () ADDRESS-BOOK

The new data item ADDRESS-BOOK must be specified for each
address book operation, and the new operation CREATE returns
a new, empty ADDRESS-BOOK.

0252

SECTION 3 - OBJECT DIAGRAMS

In this section we will connect objects into "object dia-
grams" which represent system designs. Operations must take
place between two objects, with control flowina from one to
the other. Such a connection of two objects is called a
"communication." In a communication, control flows out of
one object to "invoke" an operation. The object which re-
ceives the flow of control then "services" this operation.

The point of an object diagram is to show all possible com-

munications in a system.

3.1 NOTATION

As an example, consider a simple schedule organizer that
consists of three objects: a USER INTERFACE, an ADDRESS
BOOK ana a DATL BOOK. Figure 3-1 shows a possible object
diagram for this system. The round-cornered squares in Fig-
ure 3-1 represent objects. The arrows between objects rep-
resent communications. Note, however, that each arrow can

represent a call on one or more operations provided by the

object to which it points. For each arrow leaving an ob-

ject, we add to that object's description a list of opera-
tions used from the other object. For example, the object
descriptions for the objects in Figure 3-1 are:

USER-INTERFACE
Provides:
RUN ()
Uses:

TERMINAL
GET
PUT

0252

ADDRESS-BOOK
ADD
CHANGE
LOOKUP
REMOVE

DATE-BOOK
GET-APPOINTMENT
MAKE-APPOINTMENT
CANCEL-APPOINTMENT

ADDRESS
BOOK

Figure 3-1. Schedule Ordganizer Object Diagram

3-2

0252

DATE-BOOK
Provides:

GET~-APPOINTMENT (DATE + TIME) NAME + ADDKESS
MAKE-APPOINTMENT (DATE + TIME + NAME)
CANCEL-APPOINTMENT (DATE + TIME)

Uses:

ADDRESS-BOOK
LOOKUP

ADDRESS~-BOOK
Provides:

ADD (NAME + ADDRESS)
CHANGE (NAME + ADDRESS)
LOOKUP (NAME) ADDRESS
REMOVE (NAME)

The user communicates with this system through the USER
INTERFACE object. The system allows the user to store and
retrieve aadresses in ADDRESS BOOK. The user can also
schedule appointments in his DATE BOOK with people he knows.
When the user requests to see what appointment is schneduled
at a certain time, DATE BOOK also automatically retrieves

the address of the person to be met. The object diagram
shows all the communications necessary to perform these func-
tions. It thus defines the objects needed in tne system and

all the interactions between these objects.

In the above example, it is fairly easy to seé that the "main
control" object is USER INTERFACE. The only operation serv-
iced by USER INTERFACE is the operation RUN. This operation
1s used to invoke the system, passing control into USER
INTERFACE. USER INTERFACE then passes control to the other
objects as necessary to perform the functions of the system.
Thus all the other control flows are out of USER INTERFACE.

3-3

0252

By convention, the arrow representing the initial flow of
control into a system is labeled "RUN" on an obiject diagram,

as shown in Figure 3-1.

So far we have been thinking of operations and communications
as modeling the traditional procedure call/return mechanism.
Communications can, however, represent more then just simple
procedure calls. They may also model an Ada entry call and
rendezvous. In this case, it may not be so obvious which
way control should flow. Consider the example shown in Fig-

ure 3-2(a), with the following object descriptions:
DATA-ACCUMULATOR
Provides:
RUN ()
Uses:

SOURCE
GET

PACKET-TRANSMITTER
SEND

PACKET-TRANSMITTER
Provides:

RUN ()
SEND (DATA-PACKET)

Uses:

DATA-LINE
TRANSMIT

The control flow of the RUN communication branches and flows
into both of the objects in Fiqure 3-2(a). This means that
there is a thread of control in both objects at the same

time. That is, they run concurrently. In this example,
the DATA ACCUMULATOR gathers real-time data from some ongoina

3-4

0252

experiment into fixed size packets. These packets are then
transmitted along a data line to a remote laboratory by
PACKET TRANSMITTER., Fiqure 3-2(a) shows that when the DATA
ACCUMULATOR has accumulated enough data to form a packet, it
initiates a communication with PACKET TRANSMITTER to hand
over the packet to be transmitted. Note that in the case of
concurrent objects, one object may have to wait before an
operation it invokes is serviced. Section 3.3 will consider
this further. An alternative desian is shown in Fig-

ure 3-2(b). The new object descriptions are:
DATA-ACCUMULATOR
Provides:

RUN ()
GET-PACKET () DATA-PACKET

Uses:

SOURCE
GET -

PACKET-TRANSMITTER
Provides:
RUN ()
Uses:

DATA-ACCUMULATOR
GET-PACKET

DATA-LINE
TRANSMIT

Because control resides simultaneously in both objects,

either object can initiate communications. 1In Fig-
ure 3-2(b), when the PACKET TRANSMITTER is ready to transmit

a new packet, it initiates a communication with the DATA

0252

ACCUMULATOR. When the DATA ACCUMULATOR services this opera-
tion, a DATA-PACKET is passed to the PACKET TRANSMITTER. In
this example, both designs are equally good. In more com-
plicated concurrent systems, there are various reasons for
choosing one direction of control flow over the other. 1In
any case, to change the design in this way requires a change
in the direction of an arrow on the object diagram and the

modification of the appropriate object definitions.

RUN

DATA PACKET

(a)

RUN

DATA PACKET

(b)

Figure 3-2. Concurrent Objects

3.2 DECOMPOSITION OF OBJECTS

At its top level, any complete system may be represented by
a single object. For example, Figure 3-3 shows a diagram of
the complete SCHEDULE ORGANIZER of the last section. The

3-6

0252

box labeled "USER" is an "external entity." An external
entity is an object which is not included in the system, but
which communicates with the top level system object. 1In
this case terminal input/output operations are "serviced" by
the USER. Note that this is a design diagram and thus shows
the physical communications and data flows, not the higher
level meaning that the data might have. Thus a user at a
terminal sends and receives "TEXT" through the terminal

operations.

SCHEDULE

Figure 3-3. Schedule Organizer External Entities Diagram

A system level object may communicate with several external
entities. A diagram such as Figure 3-3 showing these com-
munications is an "external entities diagram." Communica-
tions with external entities are usually initiated by the
system. In fact, external entities are often much like
passive data objects, all of whose operations have a one
directional data flow. A direct access or indexed file
might be an exception to this, with a read operation taking
an index as an argument and producing a record as the re-
sult. Another exception is that some external object must
start the system. That is, initially control resides some-
where outside the system, and it must flow into the system
for execution to begin. 1In Figure 3-3, the User invokes the
SCHEDULE ORGANIZER using the RUN operation. A final example
of control flowing into a system would be an asyhchronous

interrupt. This could be modeled by the interrupting entity

3-7

0252

invoking an operation in the concurrently running systemn.

Servicing the operation would then model servicing the in-

terrupt.

The object SCHEDULE ORGANIZER in Figure 3-3 represents a
packaging of the complete object diagram of Figure 3-1.
Working in the other direction, Figure 3-1 is a "decomposi-
tion" of the object SCHEDULE ORGANIZER. This can be expanded
into the idea of stepwise refinement for objects and object
diagrams. Beginning at the system level, each object can be
refined into a lower level object diagram. The result is a
leveled set of object diagrams which completely describe the

structure of a system down to the procedural level.

For example, Figure 3-4 shows the decomposition of ADDRESS
BOOk, which would be the beginning of the next level decom-
position of Fiqure 3-1. The object descriptions for this

diagram are:
ADD
Provides:
ADD (NAME + ADDRESS)

Uses:
FIND-ADDRESS
ADDRESSES

CHANGE

Provides:
CHANGE (NAME + ADDRESS)

Uses:
FIND-ADDRESS
ADDRESSES

LOOKUP

Provides:
LOOKUP (NAME) ADDRESS

3-8

0252

0252

ADD REMOVE
FIND
DDRESS
4
ADDRESSES
Figure 3-4.

Uses:

FIND-ADDRESS

ADDRESSES
REMOVE
Provides:
REMOVE (NAME)
Uses:

FIND-ADDRESS
ADDRESSES

LOOKUP

Address Book Decomposition

FIND-ADDRESS

Provides:
FIND-ADDRESS (NAME) INDEX

Uses:
ADDRESSES

ADDRESSES

Contains:
ADDRESS-LIST: {NAME + ADDRESS}

All operations that lead "off the edges" of Figure 3-4 cor-
respond to communications with the higher level ADDRESS BOOK
object of Figure 3-1. This idea of "balance" is similar to
that in leveled data flow diagramming. All operations pro-
vided by an object must appear in its decomposition diagram,
and all communications "to the outside world" on the lower
level diagram must be reflected in communications with the

higher level object.

In Figure 3-4, the object ADDRESS BOOK has been completely
decomposed into procedures. There is one procedure for each
basic ADDRESS BOUK operation, and one additional procedure
which is only used internally. Besides the procedures in
Fiqure 3-4, there is also the object ADDRESSES. As in pre-
vious diagrams, an object such as this represents a store of
data. Since it represents the internal state data ot the
higher level object, it is called a "state object." Proce-
dures and states are really degenerate objects. Procedures
are objects which have no internal state data and only serv-
ice one operation. State objects contain data and only
service operations to retrieve and update that data. All

operations to a state object implicitly have one data flow

into or out of the object. Note that the object description
ot ADDRESSES above indicates the this state object contains

a list of names and their associated addresses.

0252

Thus, using procedure and state objects, we have exposed the
guts of ADDRESS BOOK as a state machine in the sense of Fig-
ure 2-4. At this low level we have defined exactly what
state information and procedures are in ADDRESS BOOK. If
necessary, it is now possible to further decompose the pro-
cedures by more traditional means. As a rule, procedures
should not contain full objects or states. If they do, they
should be considered as full objects themselves, even if

they perform only one operation.

The main point of the above discussion is that any system
can be represented as a single top-level object which can be
successively decomposed, until at the lowest level we reach
"degenerate objects." There are three types of degenerate
objects. We have presented two types already: procedures
and states. The third type is the "actor" object. Like a
procedure, an actor has no state data. However, an actor
does have state, in a sense, having to do with how it handles
the flow of control. An actor object can control the serv-
icing of its operations. This is primarily important in the

P R N N Ry e el R el Y O S P
Cuewoon Cournicurrent VD jecCisd.

mmitn g A
CCnuuunlJ.\.a

3.3 ACTOR OBJECTS

When a procedure operation is invoked, tne procedure services
it immediately. If more than one object concurrently invokes
the operation at the same time, then they are serviced con-
currently. Thus, an object which is made up of just proce-
dures and states has no control of the servicing of its
operations. If several operations are invoked concurrently,
they will be serviced concurrently, without any coordination
between them. This can cause undefined simultaneous altera-
tion to internal state data and other unpleasant results.

The basic problem is that multiple flows of control enter

the object and proceed through it independently of each other.

This problem can be solved with the use of actor objects.

W
1

11

0252

An actor object can dynamically decide when to service one
of its operations. An object which invokes an actor opera-
tion must wait first for the actor to decide to service the
operation, and then for the servicing to be completed. Only
one invocation of a specific operation is serviced at a time,
in a first come, first serve order for each operation. If,
while servicing one operation, an actor decides to service
another, then the servicing of the first operation is effec-
' tively suspended until the servicing of the second one is
finished. Thus, several control flows can enter an actor,

but only one can be active at any one time.

As a simple example, an actor object can be used to represent
a version of the classical semaphore (see Figure 3-5):

SEMAPHORE
Provides:

WAIT ()
SIGNAL ()

READY

Figure 3-5. Semaphore Actor

0252

READY
Contains:

READY : BOOLEAN -

At any one time, the SEMAPHORE will service either the WAIT
operation or the SIGNAL operation, but not both. It decides
which operation to service by usinag a READY flag. 1If the
SEMAPHORE is not READY, then it will accept only SIGNAL op-
erations, and any objects invokina the WAIT overation will
indeed have to wait. When the SEMAPHORE services a SIGNAL
operation, it becomes READY. While the SEMAPHORE is READY,
it will also service WAIT operations, of which there already
may be some invocations pending. When it services a (single)
WAIT operation, the SEMAPHORE once again becomes not READY
until the next SIGNAL operation. We assume that initially
the SEMAPHORE is READY. Note that there is no way to decom-
pose SEMAPHORE into procedures, because the availability of

its operations changes over time.

A semavhore can, for example, be used to ensure safe access
to data common to concurrent objects. Figqure 3-6 shows such
a use. When either of the two procedures wants to access
the common data, it invokes the SEMAPHORE WAIT operation.
When this operation is serviced, the procedure can safely
access or update the data, and all other accesses will be
held up until the SEMAPHORE is SIGNALed. Alternatively,
this same effect could be achieved by defining a new actor
object (see Fiqure 3-7): |

DATA-PROTECTOR
Provides:

READ () DATA
WRITE (DATA)

0252

0252

e —— e ——
READ DATA DATA

Figure 3-6.

- A

READY

WRITE DATA

DATA
PROTECTOR

Figure 3-7.

COMMON
DATA

Use of a Semaphore

Data Protector Actor

3-14

The DATA PROTECTOR actor would only service one READ or WRITE
operation at a time, thus protecting COMMON-DATA from simul-
taneous access. Either Figure 3-6 or 3-7 could be the de-
composition of a "PROTECTED COMMON DATA" object which would
provide READ and WRITE operations like the DATA PROTECTOR.
However, in the composite object both the lower level use of

actors and the internal state would be hidden.

3.4 TRANSLATING OBJECT DIAGRAMS INTO ADA

Using the object diagram notation, we can build a set of
diagrams which completely describe the design structure of a
system. Once this is done, the next step is to translate
the design diagrams into code which provides a skeletal
structure in which the remaining pieces ot the system can be
implemented. Though object diagrams provide a fairly gen-
eral method for describing object-oriented designs, this
translation step is most direct into Ada or similar lan-
guages. The correspondence between our object notation and

Ada is straightforward:

Object Diagram . Ada

Object Package

Procedure Procedure/Function

State Package/Task Variables

Actor Entries/Accepts

Communication Procedure/Function/Entry Call

To demonstrate the translation process, we return to the

SCHEDULE ORGANIZER example. The first decomposition of this
object was into three objects: USER INTERFACE, ADDRESS BOOK
and DATE BOOK. We can now create package specifications for

these objects based on the first level decomposition diagram

0252

(Figure 3-1). Operations are defined in the packaage which

services them. The resulting specifications are:

package USER_INTERFACE is
procedure RUN;

end USER_INTERFACE;

package ADDRESS BOOK is
type ADDRESS is

record
STREET :+ STRING(1l..30);
CITY ¢+ STRING(1l..20);
STATE : STRING(1l..2);
71P ¢ STRING(1l..5);
end;

procedure ADD
(NAME: in STRING;
ENTRY: in ADDRESS);
procedure REMOVE
(NAME: in STRING) ;
procedure CHANGE
(NAME: in STRING;
ENTRY: in ADDRESS);
function LOOKUP
(NAME: in STRING)
return ADDRESS;

end ADDRESS BOOK;
package DATE BOOK is
type DATE is

record
YEAR : INTEGER range 00 .. 99;
MONTH : INTEGER range 1 .. 12;
DAY : INTEGER range 1 .. 31;

end record;
type TIME is INTEGER range 0 .. 23;

procedure GET APPOINTMENT

(DAY: in DATE;

HOUR: in TIME;

NAME: out STRING;

PLACE: out ADDRESS_BOOK.ADDRESS);
procedure MAKE APPOINTMENT

(DAY: in DATE;

HOUR: in TIME;

NAME: in STRING) ;

0252

procedure CANCEL APPOINTMENT

(DAY: in DATE;
HOUR: in TIME);

end DATE BOOK:;
The main program would then have the form:

procedure SCHEDULE ORGANIZER is
-- global type definitions

-- package specifications

package body USER_INTERFACE is separate;
package body ADDRESS BOOK is separate;
package body DATE_BOOK is separate;

begin
USER_INTERFACE. RUN;

end SCHEDULE ORGANIZER;
The system RUN operation in Fiqure 3-3 represents the invo-
cation of the SCHEDULE ORGANIZER main procedure by the user.
This in turn causes the call of USER_INTERFACE.RUN, passina
the flow of control to the USER_INTERFACE. Note that pack- -
ade USER_INTERFACF has only the one RUN procedure. Since 1t
has only this one operation and since it is active for the
entire time the system is running, it would be acceptable to
implement USER_INTERFACE as a procedure. The main program
would then be just the call "USER_INTERFACE". Note that
this would not change the status of USER INTERFACE as an
object on the object diagram (Fiqure 3-1). At the next
level, we could now code the declarative part of the bodies
of the above three vackaades. As an example, consider the
ADDRESS_BOOK package. From the decomposition object diagram

W
|

17

0252

tor object ADDRESS BOOK (Figure 3-4), we can construct the
following body:

separate (SCHEDULE ORGANIZER)
package body ADDRESS BOOK is

-- type definitions
type ADDRESS RECORD is

record
NAME : STRING;
ENTRY : ADDRESS;
end record;
BOOK_SIZE : constant := 100;

type ADDRESS LIST TYPE is
array (l..BOOK_SIZE) of ADDRESS_RECORD;

-- internal state
ADDRESSES_LIST : ADDRESS_LIST_TYPE;

procedure ADD (NAME: in STRING; ENTRY: in ADDRESS) is
separate;

procedure REMOVE (NAME: in STRING) is separate;
procedure CHANGE (NAME: in STRING; ENTRY: in ADDRESS)
is separate;

function LOOKUP (NAME: in STRING) return ADDRESS is
separate;

end ADDRESS BOOK;

To complete the system, we could implement the remaining pro-

cedures using more traditional functional desian methods.

The only applicable Ada unit not used in the above example
is the task. 1In Ada, for the flow of control to actually
reside in two units at the same time, these units must be
tasks. Therefore, if there are concurrent objects in an
object diagram, then at least some part of them must be
translated into tasks. Actually, higher level concurrent
objects'whlch are decomposed into other objects generally
can still be translated as just packages. At the lowest
level, however, at least some of the degenerate objects com-
posing the higher level object must be tasks. The degenerate
object that usually signals the use of an Ada task is the

actor.

An actor represents quite closely the rendezvous mechanism
of an Ada task body. An Ada task can, however, have
internal state data, while an actor cannot. Thus an actor
would translate into a task without a declarative part, and
any state data would be contained in a surrounding package.
It is common to combine the surrounding package with the
task to create a composite Ada object which represents the
actor and the data that it alone uses. For example, the
SEMAPHORE actor of Figure 3-5 could be translated into:

task SEMAPHORE is

entry SIGNAL;

entry WAIT;
end SEMAPHORE;

task body SEMAPHORE is

READY : BOOLEAN := TRUE; -=- state object READY
begin
loop -- begin actor SEMAPHORE
select

when READY =>
accept WAIT;
READY := FALSE;
or
accept SIGNAL;
READY := TRUE;
else
terminate;
end select;
end loop; -- end of actor
end SEMAPHORE;
Note how the READY flag is included in the task, and how the
actor object represents the executable part of the task body.
A rendezvous with the task corresponds to a communication
with the actor object and acceptina an entry corresponds to

servicing an operation.

Now, if we used SEMAPHORE to implement a PROTECTED COMMON
DATA object with the decomposition shown in Figqure 3-6, we
could translate the object as a package even though it would

be concurrent with other objects. It would, however, contain

0252

the SEMAPHOKE task as the translation of part of its decom~

position. The higher level package translation might be:

package PROTECTED_COMMON_DATA is
procedure READ(X: out DATA) ;
procedure WRITE(X: in DATA);
end PROTECTED_ COMMON_DATA;

package body PROTECTED_COMMON _DATA is
COMMON_DATA : DATA; --

task SEMAPHORE is
entry SIGNAL;
entry WAIT;

end SEMAPHORE;

task body SEMAPHORE is separate;

procedure READ (X: out DATA) is
begin
SEMAPHORE.WAIT;
X := COMMON DATA;
SEMAPHORE.SIGNAL;
end READ;

procedure WRITE(X: in DATA) is
begin
SEMAPHORE.WAIT;
COMMON_DATA := X;
SEMAPHORE.SIGNAL;
end WRITE;

end PROTECTED_COMMON_DATA;

w
!

20

0252

internal state

The design of Figure 3-7 would actually be a better use ot
Ada tasking. In this case, PROTECTED COMMON DATA could be
translated into a single task:

task PROTECTED_COMMON_DATA is
entry READ (X: out DATA);
entry WRITE (X: in DATA);

end PROTECTED_COMMON_DATA;

task body PROTECTED COMMON DATA is
COMMON_DATA : DATA; -- internal state

begin
loop -- begin actor DATA-PROTECTOR
select
accept READ (X: out DATA) do
X := COMMON_DATA;
end READ;
or
accept WRITE (X: in DATA) do
COMMON_DATA := X;
end WRITE;
or
terminate;
end select;
end loop; -- ena of actor
end PROTECTED_COMMON_DATA;

0252

SECTION 4 - OBJBLCT-ORIENTED DESIGN

Using the concepts ana notation of object diagrams, this
section deals with two main questions:

° What makes a good object?

] How are designs constructed from objects?

While we cannot provide all-encompassing answers to these
questions, we do provide principles to guide the design
process. They are heuristics, not laws, but they do provide
a powerful means for constructing and comparing alternative
designs. They are thus tools to aid the software desianer

in his (or her) engineering art.

4.1 PRINCIPLES FOR DESIGNING OBJECTS

The intent of an object is to represent a problem-domain
entity. The concept of "abstraction" deals with how an
object presents this representation to other objects
[Dijkstra 68, Liskov 74, Ledgard 77, Booch 83]. As software
models, objects should also act as black boxes to allow easy
debugging and maintenance. The concept of "information hid-
ing" deals with what an object keeps secret from other ob-
jects [(Parnas 72]. These two concepts provide the main
guides for assessing an object. A "good" object thus repre-
sents a problem domain entity and hides closely-related in-
formation that is likely to change if the implementation of

the object changes.

There 1is a spectrum of abstraction, from objects which
closely model problem domain entities to objects which
really have no reason for existence. The following are some

points on that scale:

Entity Abstraction Best
Action Abstraction
Virtual Machine Abstraction

Coincidental "Abstraction" worst

4-1

Each kind of abstraction in this scale is a subset of the
kind below it.

An "entity abstraction" is an object which represents a use-
ful model of a problem domain entity. The entity could be
as concrete as a nardware sensing device or more abstract,
such as a compiler symbol table. We include "data abstrac-
tion" under entity abstraction as denoting objects which

define type managers.

"Action abstraction" moves from abstracting the properties
of things to abstractina the properties of actions. An ac-
tion abstraction is an object which providés a generalized
set of operations which all perform the same kind of action.
A general "input handler" or a "math processor" would be
action abstractions. Procedures are generally action ab-

stractions.

"Virtual machine abstractions" are objects which group
together operations which are all used by some superior
level of control or all use some junior level set of opera-
tions. Wwhile the concept of a "virtual machine" will be
useful later on, it is not a very good criterion for con-
structing objects. Such objects aroup together unrelated
actions on the basis of their being at about the same "level

of control."

Finally, "coincidental abstraction" is really no abstraction
at all. A coincidentally abstract object packages a set of
opverations which have no relation to each other in any
substantial way and probably do not even get along well
together.

Information hiding is complementary to abstraction. The
stronger the abstraction of an object, the more details are
suppressed by the abstract concept. The principle of intor-

mation hiding states that such details should be kept secret

4-2 |
0252

from other objects [Parnas 72, Booch 83]. While good ab-
straction promotes information hiding, and often vice versa,
it is possible to construct objects which have high abstrac-
tion, but provide ways to expose their contents. Conversely,
it is possible to hide information well without constructing
good abstractions. The best objects should thus be con-
structed to provide operations on abstract entities and to

carefully hide internal representations and related secrets.

4.2 PRINCIPLES FOR DESIGNING SYSTEMS

Following [Rajlich 85}, we will consider two basic orthogonal
hierarchies in software system designs. The "parent-child
hierarchy" deals with the decomposition of larger objects
into smaller component objects (as discussed in Section 3.2).
The "seniority hierarchy” deals with the organization of a
set of objects into "layers." Each layer defines a "virtual
machine” [Dijkstra 68] which provides a set of services to

senior layers.

The object diagram notation can distinctly represent these
hierarchies. The leveling of object diagrams directly ex-
presses the parent-child hierarchy (see Figure 4-1). On the
other hand, the topology of connections on a single object
diagram shows the seniority hierarchy (see Figure 4-2).
(Note the quite literal orthogonality of these two hier-
archies in Figure 4-1!) Any layer in a seniority hierarchy
can call on any operations in junior layers, but never any
operation in a senior layer. Thus, if we group objects into
virtual machine layers, these layers are always related by a

directed, acyclic graph. From Figure 4-2 we would get the

graph shown in Figure 4-3. All cyclic relationships between

objects must be contained within a virtual machine layer.

0252

CHILDREN

Figure 4-1. Parent-Child Hierarchy

0252

0252

VIRTUAL

MACHINE
INTERFACE 1

VIRTUAL
MACHINE

INTERFACE 2

Figure 4-2, Seniority Hierarchy

VIRTUAL MACHINE LAYER 0

VIRTUAL MACHINE LAYER 1

VIRTUAL MACHINE LAYER 2

Figure 4-3. Virtual Machine Graph

4-5

The general structure of an object-oriented design as pre-
sented here 1s a seniority hierarchy of virtual machines,
each of whose components is decomposed into children objects.
The children of each objeét are themselves organized in sen-
iority hierarchies, and so on. Figure 4-4 shows a stylized
overview of the top level object diagram of such a system.
Figure 4-4 uses the words "afferent" and "efferent" in the
input/output sense of [Yourdon 79]. Thus the virtual ma-
chines provide operations for THE SYSTEM to input, process
and output data. Lower level object diagrams will also have
a structure similar to Figure 4-4, However, instead of a
single most-senior object, they will generally have a set of
senior level objects which implement the operations of the
parent object. These senior objects use the junior virtual

machine operations to do this.

Note that we have not made the virtual machine layers in
Figure 4-4 into objects themselves. Such objects would gen-
erally have only (surprise!) virtual machine abstraction.
Each virtual machine layer should therefore be composed of
objects with higher abstraction. Figure 4-5 shows one ap-
proach, reminiscent of structured design [Yourdon 79]. These
virtual machine components would have, at best, action ab-
straction. A better approach is to identify appropriate
problem domain entities and create entity abstractions which
package afferent, transform and efferent operations for each
entity (see Figure 4-6). The parent-child decomposition of
the most-senior object THE SYSTEM might still be a struc-
tured design style afferent-transform-efferent hierarchy.
But now it could be designed as if the virtual machine oper-
ations where "primitive operations" in an extended language.
These "junior level" (in a control sense) operations are
themselves defined within objects which represent the spe-

cific entities with which the operations deal.

0252

0252

RUN

SYSTEM

VIRTUAL MACHINE LAYER 2

Figure 4-4. Top-Level Object Diagram

RUN

T™HE
SYSTEM
. Sumammman SV,
”
PROCESSOR
HANDLER
..,

UTILITY OPERATIONS

Figure 4-5. Input/Process/Output Virtual Machine

025z

Figure 4-6.

UTILITY OPERATIONS

A Better Virtual Machine Decomposition

The seniority hiérarchy deals mainly with control: tne
senior levels control the operation of the junior levels,

To varying degrees, senior levels can also control the data
tlow and interaction between components of junior layers.
Consider the automated manufacturing plant simulation system
diagrammed in Figure 4-7. Note that the junior components
do not interact directly. As part of its use of the virtual
machine operations, the PLANT SIMULATOR must control the
flow of data between the three virtual machine components.
This has the advantage that none of the junior components
needs to know anything about any of the other components.
However, the senior object has to do a lot of work simply

passing data from one junior object to another.

RUN
PLANT » TERMINAL
SIMULATOR INPUT/QUTPUT

Fiqure 4-7. An Automated Manufacturing Plant Simulation
System

Suppose we remove the data flow control from the senior

object and let the junior objects pass data directly (see

4-10

0252

Figure 4-8). This type of design was, in fact, used for
part of our pilot project simulator. The senior object has
been reduced to simply activating various operations in the
virtual machine. These operations can then use other
operations internal to the virtual machine to pass data and
commands between component objects. This means that some
objects must have knowledge of some other objects within the
virtual machine layer, limiting any possible future uses of
the components apart from this virtual machine. An aaded
complication is the possible need for buffering of incoming
data as state information in some objects, until the next

control activation from the senior object.

Figure 4-8. Plant Simulator With Junior-Level Connections

We can even remove the senior object completely by distrib-

uting control among the junior objects. By making the

4-11

0252

remaining objects concurrent and passing data through syn-
chronizing rendezvous, we can also often eliminate the above
need for buffering. Fiqure 4-9 shows an example of such a
design. The seniority hierarchy has collapsed, leavina a
"homologous" or non-hierarchical design [Yourdon 79] (non-
seniority-hierarchical, that is; the parent-child hierarchy
still remains). A design which is homologous at all parent-
child levels is very similar to what would be produced by
George Cherry's PAMELAl methodology for real-time applica-
tions [Cherrvy 85a, Cherry 85b].

RUN

AUTOMATION AUTOMATION PLANT

SYNCHRONIZATION & SYNCHRONIZATION &
DATA TRANSFER DATA TRANSFER
OPERATIONS OPERATIONS
vo 10 0

Figure 4-9. Plant Simulator, Homologous Design

It is sometimes possible to recover a seniority hierarchy
from a seemingly homologous design. Figure 4-10 shows a
simplified real-time aircraft on-board monitorinag system.
The system is highly concurrent without centralized control.
Note the representation of interrupts ("SMOKE ALARM" and
"KEYSTROKE") as ovperations originating outside the system.
Due to the real-time nature of the system, actions of the

svstem are caused by outside events, with control flowing,

lpAMELA is a trademark of George W. Cherry.

4-12

0252

roughly, from the left in Figure 4-10 to the right, where
results are displayed for the pilot. Thus, by turning Fig-
ure 4-10 on its side, the objects become organized in a
seniority hierarchy (see Fiaure 4-11). The diagram has been
reorganized according to calling directions. Since action
is initiated by external stimulus, the input interfaces are
at the top of the seniority hierarchy as two concurrent,
most senior objects. The system is input driven in a very

literal sense: the senior-level, controlling objects are
the ones closest to the input. The junior-level, controlled
objects produce the output. This is a quite natural organi-

zation for such an embedded, real-time system.

’UN

DISPLAY

G RECORDING - HANDLER DISALAY

FLIGHT KEYSTROKE
RECORDER

Figure 4-10, Aircraft Monitoring System

4-13

0252

ALARM SENSORS KEYSTROKE

FLIGHT DISPLAY

Figure 4-11. Aircraft Monitoring System With Seniority
Hierarchy

The main advantage of a seniority hierarchical design is
that it reduces the "coupling" (in the sense of [Yourdon 79]
of the virtual machine components. This is because each
virtual machine layer needs to know nothina about its sen-
iors. It is possible to completely replace senior-level
controllers without affecting the junior levels at all. 1In
the stronger version where the senior levels also control

data flow, the virtual machine component objects are even

4-14

0252

decoupled from each other. Tnis means that they are parti-
cularly adaptable to future use, and that they are less
likely to propagate or be affected by changes in the system.

The centralization of the procedural and data flow control
can make the system easier to understand and modify. On the
other hand, this very centralization can cause a messy
bottleneck in the data flow between objects. Even if this
is eliminated, complicated scheduling can sometimes result
in a similar control bottleneck. 1In addition, if the con-
trol and scheduling of junior objects depends heavily on
information internal to them, then centalizing control could
reduce their levei of information hiding and abstraction.

In this case a more homologous design would be appropriate.
In large real-time systems with low level external stimuli,
it can be particularly useful to eliminate the senior level
data and control bottleneck and take advantage of distrib-
uted, concurrent control [Cherry 85al. Even in this case it
is sometimes possible, as discussed above, to recast a con-
current, homologous design in the form of a seniority hier-
archy without the usual disadvantages. In general, however,
the best design will be between the extremes of use of the

seniority hierarchy.

0252

SECTION 5 - ABSTRACTION ANALYSIS

Object diagrams and the obJject-oriented design concepts dis-
cussed in the previous sections can be used as part of an
object-oriented life cycle. Section 3.4 described how ob-
ject diagrams can be translated into Ada. However, we must
also be able to create an initial object-oriented design
from a system specification. We use structured analysis to
develop the specification [DeMarco 79]. The data flow dia-
grams of a structured specification provide a leveled,
araphical notation containing the information needed to rep-
resent abstract entities, but in a form emphasizing data
flow and data transformation. "Abstraction analysis” is the
process of making the transition from a structured specifi-

cation to to an object-oriented design [Stark 86].

The main idea in producing an initial design is to identify
objects, map them back to the requirements, and then identify
the operations. Abstraction analysis transforms a structured
specification into an object-oriented design by first iden-
tifying abstract entities and a tentative control hierarchy,
and then identifying objects, operations, and a hierarchy ot
virtual machines. As an intermediate step between data flow
diagrams and the control-flow oriented object diagrams we
create an "entity graph". This graph shows the interconnec-
tions of the abstract entities in the problem domain from a
control point of view, where the data flow diaarams give a
data exchange point of view. Since the direction of control
and design complexity are also considered in creating an
object diagram, the best objects and the best abstract enti-

ties are not necessarily the same.

Operations are identified from processes and data stores con-
tained by an object, and by the data flow between objects.
Fortunately, data flow diagrams are analogous to object dia-

grams in that they are developed from a higher level of

5-1

0252)

abstraction to a more detailed view. Our approach can gen-
erate leveled object diagrams because of this property. We
will first aiscuss the ideas used in performing abstraction
analysis and how they are used to identify objects. we will
then discuss the entire process of designing from a struc-

tured specification.

Section 4 discussed the tradeoff between the loose coupling
generated by a strong seniority hierarchy and the real time
pertormance of a homologous design. Here we will describe
the nature of apstraction and control issues that have to be
facea. The procedure used to produce an object diagram first
entails identifying central entities and virtual intertaces,
secondly identifying objects, and then using the results ot

these two steps to produce an object diagram.

We will illustrate this process with a version ot the Gamma
Ray Observatory (GRO) Attitude Dynamics Simulator (GRODY)
pilot project [Agresti 86]. Analysts use an attitude dy-
namics simulator to verify the correctness of a spacecraft's
attitude control laws. Such a system must simulate the
spacecratt control system, model the spacecraft's response

to control and provide simulated input to the control system.
Figures 5-1 and 5-2 are the two highest level data flow dia-

grams used in this example.

5.1 IDENTIFYING CENTRAL ENTITIES AND VIRTUAL INTERFACES

A "central entity" in abstraction analysis is nearly identi-
cal to a central transform in structured design. 1In struc-
tured design [Yourdon 79] input and output data flows are
examined and followed inwards until they reach the highest
level of abstraction. The processes between the inputs and
the outputs form the central transform. 1In abstraction
analysis a designer does the same, but also examines the

central transform to determine which processes and states

0252

wexrbetq mOTJ4d ®IRQ Q TSAST ACQOYD

*1-g @anbtd

Yi%d JNOOYO

13
=

9,

3sugull

IsYauliva
ONNOYUD £Q4 |
2F
W
€ &
-
. O
< &
mmnu
m m SpUTPWOD
m] puno.®
S &
IY0LS Yivd
) & £0g

BpuTrewod
pUNoLG

vivd
NOLIYINMNIES

Yivd S1WIS3IN
NOILYUTWIHIS

SNOI 14O
BNI1SS3II04d
S1 s3Iy

S1NS3IY NOILY WIS

=0

_ nz:oao_l

SNOILdO 3SYEYIUd ANNOUD

ejep Gojeiwd wls

SHIALINGYYd NOLAVWYWIS ﬁ

asvaviva
HIL NI

34018 WYUYd .
~NOLLVINIS | ZOG

109

J

Yivd ¥ILINVYYS

SYILIWIMYY NOTIY WIS
L¥043y

13

SHYILIHYY NOILY IS

SNOI LdO
ISYEVLIVE ¥ILINBHVUD

¢ M0V ULVT O 13ATTY AQOYD sem

3SUaY1IUd YILSHUNYd

CRIGINAL FAGE IS
OF POOR QUALITY

1jeadeords QYD @3eTnWIS T °g-G 2Inbrg

£0a
TEEE
~ \F\WLEEFQEUQ
3 $5q U} PP} DI IPUGTWORD
v)
4 %
P SAHAN0D HOLWNLOY SHOLUN IbU0 [0AUOD y -
SNLYLS JYUMANUH | Y 13a0% 3 SISATTONY SITHWUNAG
L £°7 J S3ITONU UNNILNY T AUHHY

3

TIUBICE W Ue_ [3Ium

s puTwwo> ~ ¥ -
[) , .H T_
FOM LMD INFNO SIP | AIWIYID
L 1AM AN PiAswayd

~(

(wmmw.nu.mme ~ sa(odip sSww 30 aBjuD SITUUNA
AW 0)
. (7]
b1 Y1Ud YOSHIS cpeads ‘
»aym _
r
pnytIe

AIIDOIPA ¥ [NGUE

SN0
Ad134313L
9 SHI) ANV
: , SOTHUNAG
ﬁ saNwwwod wosnzs L ‘
d o i . YiYE INIFYIJIZY HOSNHIS
fand ' L4
SHOSWIS
—’ Yiud HOSN3S £ _.luwmo.“..r g A
2 {
SUILINUUYD HOSHIS AN

[
|
- B

\
/(\ wiEp GolwIEd _wis

MY 1I9HIATVLS 0Y9 ILVWUIIS T s

represent the best abstract model of what the system does.
For example, it is clear from Fiqure 5-1 that SIMULATE GRO
SPACECRAFT is the central transform for GRODY. Examining
Figure 5-2 we can argue that SIMULATE SPACECRAFT CONTROL is
the central entity, as the purpose of a dynamics simulator
is to test the control laws. We could continue to design
using either assumption. We choose to make SIMULATE
SPACECRAFT CONTROL the central entity.

After identifyina the central entity we identify what ab-
stract entities are supporting it. The idea is to follow
the afferent and efferent data flows away from the central
entity and to group related processes and states along these

data flows, forming abstract entities.

In creating the level 0 object diagram for GRODY we will
build a recast data flow diagram step by step as we identify
abstract entities. Figure 5-3 shows the process SIMULATE
SPACECRAFT CONTROL and the adjacent processes and data flows.
We look at the data flows in and out of the central entity
and identify entities supporting these data flows. Thié is
done by grouping these processes and states into entities
with high abstraction. With GRODY, each process and state
in Fiqgure 5-3 maps to an entity. This is due to the speci-
fication beina highly abstract at the top level, rather than
to any rule mapping data flow diagram processes directly
into entities. Later examples show how related processes
are grouped into a single entity. Grouping related proc-
esses may require examining lower level data flow diagrams,

although in this case it does not.

To ensure that we start with a strona seniority hierarchy we
use the concept of virtual machine layers discussed in Sec-
tion 4.2, We start by assuming the existence of a "most-
senior" object that calls on a virtual machine consisting of
the central entity and the entities that directly support
the central entity. Fiqure 5-4 is an entity graph for

5-5

0252

ORIGINAL FAGE IS
OF POOR QUALITY

GRODY that contains only the highest virtual machine level.
Squares represent entities, with the identifying numbers of
processes or states from the data flow diagram written in
the squares to show the mapping between requirements and
entities. Arrows show the flow of control between GRODY and
the virtual machine entities, and lines with no indication

of direction represent potential communications between

entities.
D03 Simulation Datastore
Telemetry
Downlink
Acwator
Analysis
Data
Actuator commands
Haroware
& Whesl Speeds 1.3
Model
Actuators
Figure 5-3. Support of Central Entity
GRODY
upoa 003 14 12 L3
38 te Sirmulation Stmulate Model Model
Ground Parameter Actuators
Database Datastore Control Sensors '

7

Fiqure 5-4. First Level of Entities

5-6

0252

At this point the onlv control flow we want to see is the
"most senior" object controlling the first group of entities
identified. We add other control flows later, first in
response to system requirements not captured on data flow
diagrams, and secondly to optimize our virtual machine hier-
archy. We have not made any determination about how data
are passed between the entities. The options are to pass
data directly between entities or to pass it through the

most-senior entity.

The next group of entities is again identified by examinina
data flows, processes and states; this time the ones that
are one step further removed from the central entity. For
example, Figure 5-2 shows that the processes MODEL SENSORS
and MODEL ACTUATORS are both supported by 1.1 MODEL DYNAMICS
& ENVIRONMENT and the data store D02 SIMULATION PARAMETER
STORE, and by D03 SIMULATION DATASTORE. MODEL SENSORS 1is
also supported by the external entity STAR CATALOG. Simi-
larly, Figure 5-1_shows that UPDATE GROUND DATABASE is sup-
ported by the user, and that the SIMULATION DATASTORE is
supported by PREPARE SIMULATION RESULTS which is supported
by the user. We then draw a data flow diagram (Fiqure 5-5)
reflecting these relationships. To make identifyina objects
easier, we leave the names of processes and data stores on
the diagram, but use shorthand labels for data flows when
needed. In Figure 5-5 we have used shorthand labels in

areas where the interactions are more complex.

Identifying entities is almost as straightfoward for this
part of GRODY as it was for the first set of entities. The
user is already an external entity. PREPARE SIMULATION
RESULTS and MODEL DYNAMICS & ENVIRONMENT also map directly
into entities. By examining the data flows coming from the
datastore SIMULATION PARAMETER STORE we can determine that

0252

CRIGIMAL FLGE IS
OF POCR QUALITY

E2
Star E1 USER
Catalog
| K
H 3 \
\/4.0\
Prepare
Simulation
Results
Simulation
Results
Data

D03 Simulation Datastore

D2 Simulation Parameter Store

Dataflow labels

Sensor Reference Data e Attitude e Angular Velocity
Center of Mass ¢ Geomagnetic Field in BCS
wheel Angular Momenta < Array & Antenna Angles
sensor Commands

Hardeare Status

Actuator Commands

wvheel Speeds « Torquer Dipole

6round Database Options

G6round Database Report

Results Processing Options

Simulation Results

T

X U HI OGQTMTMOOOD >

.

Figure 5-5, DFD With Added Processes

0252

this data store can be separated into parts supporting proc-
esses 1.1, 1.2, and 1.3. Thus the initial conditions for
these three processes are associated with the appropriate
entity, rather than having a separate entity acting as a
global data area. Figure 5-6 shows the entity araph with

the newly identified entities added.

GROOY
om L4 12 L3
0 Update
30 Slmulation Simulate Mogel Model
Ground Parametar Spacecraft
Database Datastore Control Sensars Actuators
4.0 Prepare EZ Star 1.1 Moadel
E1 USER Stmulation Dynamics
Catalog & Environ-
Results mant
Doa
Ground
Database

Fiaure 5-6. Next Level of Entities

This process continues until the ends of the afferent and
efferent data flows are reached, Fiqure 5-7 is a recast'
data flow diagram for GRODY. This diagram is a releveling
of the original data flow diagrams to reflect support of the
central entity. As before, we have used the shorthand

5-9

0252

labels for the data flows. This diagram will later be used

in identifying objects.

3 (4
Epheserides Star - E1 USER
File Catalog Ground Database
\ M
Star Catalog data Iy S\ M \

1.4
Simulate)

Spacecraft
\ Control / Telemetry

D02 Simulstion Parameter Store

D02 Parameter Database

Dataflow Labels

Sensor Reference Data » Attitude < Angular Velocity
Center of Hass e« Geomagnetlic Fleld in BCS
wheel Angular Momenta » Array & Antenna Angles
Sensor Commands

Hardeware Status

Actuator Commanas

¥heel Speeds +« Torquer Dipole

Ground Database Options

Ground Database Report

Parameter Database Options

Parameter Database Report

Results Processing Options

Simulation Results

I MR OLUHH I OMTMOOO>

Figure 5-7. Recast GRODY Data Flow Diagram

5-10

nN292

Figure 5-8 is an initial entity graph for GRODY. In Fig-
ure 5-8 we show the RUN operation flowing from the user to
the most senior entity GRODY. This signal would come from
outside the entity graph if GRODY were started by the opera-
tor or by the system when it is powered up. The RUN signal
and the control flowing from GRODY are the only edges on the
entity graph that now have direction. Assignment of direc-

tion to the other edges is discussed in the next subsection.

RUN GRODY
| 3
3.0 Upaate oo3 L 12 3
Groung Simulation Stmulate Model Mocel
\ 4.0 Prepare E2 Star 1.1 Mode}
E1 USER Stmulation ca :M‘m“
Results ment
Oaa 2.0 Upoate
Ground Parameter
erides
Flle
001
Parameter
Database

Figure 5-8. GRODY Entity Graph

5-11

0252

What we have shown so far is for illustration. An actual

" design would be derived in fewer steps. A complete recast

data flow diagram could be drawn after the central entity is
identified, and then the initial entity graph can be drawn
using the "inside out" method described above. In the ex-
ample shown this far, the initial entity graph will be ex-
tensively modified before the final objects are found. When
a recast data flow diagram is drawn before identifying enti-
ties the relationships between processes and states are
easier to see. This should make the entities identified
closely related to the final objects. In some cases it is
possible to identify objects directly from a recast data

flow diagram.

5.2 IDENTIFYING OBJECTS

The first step in identifying objects from an entity graph
is to add directions of control where the problem determines
the control flow. Figure 5-9 is the GRODY entity graph with
these modifications. The database entities and external
entities are "passive," so they all have control flowing
into them. The idea of the USER being "controlled" runs
against the intuitive idea of a user controllinag software,
but in the sense of control flow what happens is that a
software system will call an operation such as TkXT IO.GET

to find out what the user wants to do.

SIMULATE SPACECRAFT CONTROL is required to give simulated
control commands. This implies that MODEL SENSORS and MODEL
ACTUATORS are junior to SIMULATE SPACECRAFT CONTROL., UPDATE
PARAMETER DATABASE is made senior to 1.1, 1.2, and 1.3 so
that the user can control the state of these entities. We
have not added the corresponding control flow between UPDATE
GROUND DATABASE and 1.4 SPACECRAFT CONTROL because we have
not determined whether ground commands will be requested by
1.4 or whether they will be provided from outside. No

5-12

0252

direction of control is identified between MODEL SENSORS,
MODEL ACTUATORS, and MODEL DYNAMICS & ENVIRONMENT. Nothing
in the problem domain determines direction of control among
these three entities. We will be able to choose these di-
rections of control later based on virtual machine hierarchy

considerations.

R RUN GRODY
3.0 Upcate om 14 12 3
Grouna Simulation Simulate Model Modet
Oatabase Datastore %:ﬁﬁl sensors Actuators

| ANy

E \\~ . 4.0 Prepare £2 Star 1.1 Mogel
E1 USER Strutation &Dm
‘ Results 9 ment
E
|
:)
Ooa 2.0 Upoate
Ground Parameter ,
Database Database E3 Ephem-
erides
File
)
Do1
Parameter
Database

Figure 5-9. Entity Graph With Control Flows

The next step is to identify objects and to place them in a

strong seniority hierarchy. We want to balance the level of

5-13

0252

abstraction of each object, the desire for a good seniority
hierarchy, and the complexity of relationships between ob-

jects.

In our GRODY example, we can see from Figure 5-9 that 2.0,
3.0, and 4.0 are all senior to the user, and that USER,
GRODY, and 3.0 form a cyclic graph. This means that these
five entities are all on the same virtual machine level.
Entities 2.0, 3.0, and 4.0 all control databases, with the
first two having sole control of the PARAMETER DATABASE and
GROUND DATABASE, respectively. Since they all interact with
the user, we create a USER INTERFACE by combining 2.0, 3.0,
4.0, D01, and DO4. Combining the user and database interac-
tions into a single object provides good entity abstraction.
We will see later that D03 is not contained in USER INTERFACE
due to virtual machine hierarchy considerations. The proc-
esses and datastores in USER INTERFACE are circled on the

recast data flow diagram (see Figure 5-10).,

We chose the process 1.4 SIMULATE SPACECRAFT CONTROL as the
central entity because it contains the control laws being
tested by the simulator. This same consideration dictates
the use of a separate SPACECRAFT CONTROL object. Process
bubble 1.4 on the recast data flow diagram is circled to
reflect this decision (see Figure 5-10 again). We still
have not chosen whether USER INTERFACE or SPACECRAFT CONTROL
will be a senior object, nor do we want to until all the

objects are identified.

Entities 1.1, 1.2 and 1.3 pose a slightly more difficult
problem. One alternative is to combine 1.2 MODEL SENSORS

and 1.3 MODEL ACTUATORS into an ATTITUDE HARDWARE object.

We can then make 1.1 a junior object so that 1.4 controls
ATTITUDE HARDWARE which in turn controls 1.1 MODEL DYNAMICS

& ENVIRONMENT. - This hierarchy is one way of producing layers
of virtual machines. Another alternative is to combine 1.1,

5-14

0252

ORIGINAL FLGE 18

OF POOR QUALITY
1.2 and 1.3 into a single object. Wwe will call this object
TRUTH MODEL because it provides "true" responses to control
commands. In this case deciding the flow of control between
entities 1.1, 1.2 and 1.3 is defered until the child object
diagram for TRUTH MODEL is generated. The first alternative
yields objects with higher abstraction, but the second will
give a simpler design. The TRUTH MODEL object has abstrac-
tion somewhere between entity (model true spacecraft re-
sponse) and action (model the related actions of sensors,
actuators, dynamics and environment) abstraction. Thus we
choose the second alternative as "abstract enough" and as
part of a good virtual machine hierarchy. Again, the proc-
esses and datastores contained by the object are circled on

the recast data flow diagram (Figure 5-10).

[] E2
Epheserices
| Flle

Ephemerides

Sensar
Parameters

on
tor ﬁmhﬂm
ﬁmmwus = Database

002 Sinulation Parameter Store

Tnah ok

Figure 5-10. Recast GRODY DfD With Object Boundaries Shown

5-15

0252

The data store D03 SIMULATION DATASTORE has not yet been
associated with an object. It could be placed within the
USER INTERFACE, but that would result in USER INTERFACE both
calling TRUTH MODEL to initialize simulation parameters and
being called by TRUTH MODEL to store results data. This is
not necessarily bad, but we would like to avoid this situa-
tion if it is possible to do so. To preserve our virtual
machine hierarchy we define a SIMULATION RESULTS DATABASE
that is junior to everybody. We have lost some of the ab-
straction by splitting this object from USER INTERFACE, but
both objects are still good abstractions, and we have gained
a better control hierarchy. Figure 5-10 is now completed by
circling the D03 SIMULATION DATASTORE.

Figure 5-11 is the object diagram resulting from the above
analysis. We have chosen to make the USER INTERFACE senior
to SPACECRAFT CONTROL, but the arrow between these two ob-
jects could be reversed and we would still have a‘virtual
machine hierarchy. The decision to make USER INTERFACE the
senior object was based on the neea to have the user control
a simulation. The USER INTERFACE object "controls" the user
by calling a read operation to get data or user options, and
then calls on the other simulator components to perform the
operation requested. The important concept here is that the
decision was not made on the basis of the design rules dis-
cussed above, but rather on what would be a more desirable

way to meet the specification.

Figure 5-11 shows a clear seniority hierarchy, but decisions
still need to be made about how strong this hierarchy will
be. Any changes can be made to Figure 5-11 that leave paths
available for data to flow from a source to its correct des-
tination. We can eliminate the communications among USER
INTERFACE, SIMULATE SPACECRAFT CONTROL and TRUTH MODEL to

get the design shown in Figure 5-12, which is loosely coupled

and highly structured at its senior level. Alternétively,

5-16

0252

El

Figure 5-11.

RUN

GROOY
User
Interface
Simulate
Spacecraft
Control
)
Truth
Hocdel
Simulation
Results
Database
E3 Ephem-
E2 Star
erices
Catalog File

Initial Object Diagram

E1l RUN

Simulation
Results
Database

erides
Catalog File

Figure 5-12. More Centralized GRODY Design

0252

we can combine GRODY and USER INTERFACE to give a design

with more decentralizea control, as in Figure 5-13. A third
choice is to keep GRODY as an entity that performs scheduling
but that does not exchange data with junior virtual machine
levels. Then Figure 5-11 would stand as the final object
diagram. We choose the decentralized configuration of Fig-
ure 5-13 because we want to eliminate the bottlenecks that
can be caused by a complex central control entity. The sen-
iority hierarchy is still strong, but all data "fly non-stop"

from their source to the destination.

Simulation
Results
Database

E2 Star e &
erides
Catalog Flle

Figure 5-13. Less Centralized GRODY Design

5-19

nN?892

The entities on the initial object diagram are now either
objects or external entities, and we have fully considered
flow of control issues. Betore we can go on and identify
operations and complete the object diagram we must consider
objects that are required but not visible from the analysis
of a data flow diagram. For GRODY the only major require-
ment we have not handled is scheduling and keeping track of
simulated time. Two alternatives are to design from Fig-
ure 5-13 and to have the "most senior" object GRODY handle
the scheduling and the timing; or to create a timer object
junior to SPACECRAFT CONTROL which will update the simulated
time. 1In the second case the scheduling is implicit in the
response of junior objects to requests and commands from
SPACECRAFT CONTROL. Figure 5-14 is the object diagram gen-
erated by using this option. We choose the secona option as

a more decentralized design.

5.3 DESIGN USING ABSTRACTION ANALYSIS

Considering required objects completes the process of object
identification. The next step is to formally map the speci-
fications to objects and then to identify operations.
Experienced designers can actually shorten the object iden-
tification process from what is shown above by skipping the
explicit use of entity graphs. The steps that are then

taken are as follows:

1. Identify central entity.

2. Draw a recast data flow diagram.
3. Identify objects and draw boundaries on recast DFD.
4. Draw an object diagram with a hierarchy that best

balances requirements for loosely coupled objects
and for the elimination of data and control bottle-

necks.

0252

El

1.0 User
Interface ,

ag sumxauon\;

Star Results !
Catalog Database

Figure 5-14. GRODY Object Diagram
If entity graphs are used they are drawn as an intermediate
stage between steps 2 and 3.

After drawing the object diagram the design process consists
of the following:

1. Generate an object contents table.

2. Identify operations.

3. Label concurrent objects by adding simultaneous
control.

4. Generate data flow diagram for each object on the

object diagram.

w
'

21

0252

To make this a recursive process, the part of the recast
data flow diagram describing each object is used, along with
the associated lower level data flow diagrams, as a starting
point for the identification of child objects. The object's
operations provide central entities which the designer uses
as a starting point for drawing an entity graph for the ob-
ject. This graph is then used to identify child objects,

and then the four steps above are taken to complete a child
object diagram. Later we will construct the child object

diagram for the TRUTH MODEL object on the GRODY level 0 ob-
ject diagram (Figure 5-14, object 3.0). The steps listed

above are described in more detail in the following subsec-

tions.
5.3.1 GENERATING OBJECT CONTENTS TABLES

The object contents table lists the objects on a diagram,
the processes that each object will implement, the states
hidden by each object on the diagram, and system considera-
tions that are not captured by the data flow diagrams.
Figure 5-15 shows the object contents table for the GRODY
level 0 object diagram. The processes are listed to the
level of detail needed to show the boundaries between ob-
jects. The states and system considerations are also shown
at an appropriate level. 1In Figure 5-14 the TRUTH MODEL
object contains processes 1.1, 1.2, and 1.3 and SIMULATE
SPACECRAFT CONTROL contains 1.4. Thus we have to break up
process 1.0 when we write the object contents table. 1In
Figure 5-15 the states hidden are all data stores, but they
can also be data elements or data records that are a subset
of a data store. It is necessary to show a hidden state on

the object contents table only when it is visible on a data

flow diagram showing the interior of an object. For example,

the object SPACECRAFT CONTROL certainly has internal state,
but this state is not visible at this level.

5-22
0252

User Interface
Processes:
2.0 Update Parameter Database
3.0 Update Ground Database
4.0 Prepare Simulation Results
States:
D01 Parameter Database
D04 Ground Database
spacecraft Coptrol
Processes;
1.4 Spacecraft Control

System Consjiderations
required as object to test control laws
I nh nod
Procegses
1.1 Hodel Dynamics & Environment
1.2 Hodel Sensors
1.3 Model Actuators

states
D02 Simulation Parameter Store

slmulatlon Resuylts Database
state
003 Simulation Datastore
Tlmg[
sSystem Considerations
Simulator is required to keep a simulated time

Figure 5-15. Object Contents Table for GRODY

5.3.2 USING THE RECAST DATA FLOW DIAGRAM WITH OBJECT
BOUNDARIES
Figure 5-10 shows the diagram for GRODY with the object
boundaries drawn on top. In most cases object boundaries
can be drawn around processes and data stores on the recast
data flow diagram. If this is not possible, the child data
flow diagrams or the data dictionary must be examined, and
the parent process or data store must be divided among the
appropriate objects. This kind of adjustment will be demon-
strated in more detail as we break down the TRUTH MODEL.

5.3.3 IDENTIFYING OPERATIONS

Identi1fying operations is a continuation of the direction-
of-control analysis done for the entity graph. We use the

direction of control that has been established, the data

5-23

0252

flows across object boundaries, and the processes and states
(data stores) connected by these data flows. Child data
flow diagrams and data dictionary entries are used to gain
more details on the processes and data involved.

For example, Figure 5-10 shows the data exchanged between
SPACECRAFT CONTROL and TRUTH MODEL. These data are generated
by operations modeling sensor and actuator behavior. These
operations are provided by TRUTH MODEL and used by SPACECRAFT
CONTROL. Figure 5-10 shows that 1.2 MODEL SENSORS and 1.4
SIMULATE SPACECRAFT CONTROL communicate using the data flows
"Sensor Data" and "Sensor Commands". Examining the child
data flow diagram for 1.2 reveals the exact sensors used and
the related data and commands. FExamining data flow diagram
1.2 (Figure 5-16) shows the details of what sensor processes
exist. The operations break down into categories of gettina
sensor data and (in the case of gyros and FHST) processing
sensor commands. Similarly the interface between 1.3 MODEL
ACTUATORS and 1.4 SIMULATE SPACECRAFT CONTROL can be charac-
terized by operations that command actuators. Using these
data flow interfaces we can begin to construct operation
definitions for the TRUTH MODEL operations used by SPACECRAFT
CONTROL. The operations provided by the other objects are
derived in the same way as the TRUTH MODEL operations.

These can then be combined into complete object descriptions.
Figqure 5-17 shows the complete object description for TRUTH
MODEL. Note that we have also described the purpose of the
TRUTH MODEL in Fiqure 5-17 to further document the object

description.

Adjustments can be made to objects and operations even at
this late stage. For example we see on Figure 5-10 that the
data flows "Ground Commands” and "Simulation Parameters"
enter the SIMULATION RESULTS DATABASE from the USER
INTERFACE. These data are also returned to the USER
INTERFACE as part of "Simulation Results Data." We can move

5-24

0252

SIOSUSS [9POW 2°1

*9T-G 2anbrg

—3

K10 w2

S AP JPIWWIwS ww)

we)

33 [odIp 4903

Jepow.

»pn3tIe
°1

soq
"\

4939
wiep yowy

woysey
193ym

Uy PIPY$ D 3suGewoss

12pow

&1/

[
Spedds [asym AHWHV \m
s ivjsweed yoey /Aw

puUTWWIOD 3184}

snje3s 3Isyy ks

®IWP BOUDIBIDA ISy

¥I¥0 334y

2F
E.
95
G, O
il s <
%
ey

(&

€5
O

ejep 60 (wIWD wis

wywp s8>

sJ»jdweaed 883

TITD SS4

FIEP BOUSIDLDJ SS4

»pnyjiye

PUTWWOD 1.4 OB

!
A31D0 [BA Jw INGUE

£0Q° vt %
ss4
A(.VA SNIT1L as4 .‘—c.v- w
Q' v TITR_QU40 _w_
OAN
Afc\ya‘ ANJEIs CukS fisviocd
\1'z1)

s.ipjaweied O.tAQ

% SHOSNIS T13AOMW

™
N4

T°T mm

5-25

TRUTH-MODEL

0252

Purpose:

This object simulates the "true response" of the space-
craft to attitude control commands. It processes actua-
tor commands, generates simulated sensor output and
integrates the spacecraft attitude dynamics equations.
It includes models of environmental perturbations and
sensor measurement noise.

Provides:

RESET ()
INITIALIZE-PARAMETERS (TRUTH-MODEL-PARAMETERS)

GET-GYRO-DATA () GYRO-STATUS + GYRO-DATA
GET-FSS-DATA () FSS-STATUS + FSS-DATA
GET-CSS-DATA () CSS-DATA

GET-FHST-DATA () FHST-STATUS + FHST-DATA
GET-TACH-DATA () TACH-DATA

GeT-TAM-DATA () TAM-DATA

COMMAND-GYRO (GYRO-RATE-COMMAND)
COMMAND-FHST (FHST-COMMAND)

COMMAND-THRUSTERS (THRUSTER-COMMAND)
COMMAND-REACTION-WHEELS (WHEEL-COMMAND)
COMMAND-TORQUERS (TORQUER-COMMAND)

Uses:

E2 STAR-CATALOG
GET-STAR-DATA

E3 EPHEMERIDES-FILE
GET-EPHEMERIDES

4.0 SIMULATION-PARAMETERS-DATABASE
PUT-RESULTS-DATA

5.0 SIMULATICN-TIMER
GET-TIME

Figure 5-17. Truth Model Object Description

the appropriate parts of the data store D03 SIMULATION
DATASTORE into the USER INTERFACE by updating the object
contents table. The states OUTPUT SIMULATION PARAMETERS and
OUTPUT GROUND COMMANDS are added to USER INTERFACE, and the
contents of SIMULATION RESULTS DATABASE are updated to re-
tlect the removal of these data. The data dictionary is
used to maintain consistency in defining states contained by
an object, in the same way that the different levels of data
flow diagram are used to define what processes are contained
by an object. The actual change to data flow diagrams can
be made when we start decomposing our objects. Figure 5-18§

shows the updated object contents table.

user Interface

Processes;
2.0 Update Parameter Database
3.0 Upgate Ground Database
4.0 Prepare Simulation Results

States:
D01 Parameter Database
004 Ground Database
Output Simulation parameters < Qutput Ground Commands

Spacecraft Control
Processes;
1.4 Spacecraft Control
Systes Consigerations

required as object to test control laws

Truth N
Processes
1.1 Hodel Dynamics & Environment
1.2 Model Sensors
1.3 Hodel Actuators
states

002 Simulation Parameter Store

$imulation Resylts Database
Sensor Data e Telemetry Downlink -«
Dynamics Analysis Data < Actuator Analysis Data

Timer
System Consideratjons

Simulator is requireo to keep a simulated time

Figure 5-18. Updated Object Contents Table for GRODY

5-27

0252

The last step in generating an object diagram is to produce
separate data flow diagrams for each object. These are used
when the child object diagrams are created. Fiqures 5-19
and 5-20 show these diagrams for USER INTERFACE and TRUTH
MODEL, respectively. Note that these diagrams are not
merely the segments circled in Figure 5-10, but that they
reflect the up-to-date object contents, as shown in Fig-

ure 5-17. The object SPACECRAFT CONTROL contains only
process 1.4 SIMULATE SPACECRAFT CONTROL, which leaves the
child data flow diagram for process 1.4 as the starting
point for object identification. SIMULATION RESULTS DATABASE
is a state that has no child object diagram, thus no data
flow diagram is necessary for this object. 1If an object
encapsulates a state, the data dictionary will give the de-
tails needed to complete the design. If the data store on a
data flow diagram represents a more sophisticated data
structure (such as a queue) a child object diagram will have
to be generated to show how the data structure is to be

implemented and what operations can be performed.

The TIMER object was generated from a non-functional re-
quirement. As in the example of a data store representing a
queue, we have to use the operations identified to generate
a child object diagram. TIMER is simple enough to generate
a child object diagram directly from the knowledge of what
the operations are supposed to do. For a more complex ob-
ject we would consider generating a specification for that
object using data flow diagrams before attempting a more

detailed design.
5.3.4 GENERATING CHILD OBJECT DIAGRAMS

The production of the TRUTH MODEL object diagram will show
how an object's operations provide a starting point for the

next level of design. Figure 5-20 shows the processes and

wn
|

28

0252

ORIGINAL 3

~3E I8

OF POOR QuALITY

Results Processmgw;
4.
Simulation Results Data Prepare Sisulation Results

0
Similation
Data
Ground Datsbase Reports
30 bl
Update
Ground Ground Database
Ground Commands
Parameter Database !//
Reports 2.0 Output Ground Commands
o) Parareter pre——v———
Parameter Datapase \Database o
options

Output Simulation Parameters

D01 Parameter Database

Figure 5-19. User Interface Data Flow Diagram

5-29
0252

Ephemer ides Hooel
ﬁ\oynuics &
Environment
S Parameters Slmqlatim
Parameters
: /

D02 Simulation Parameter Store

Actuator Parameters

Sensor
‘/"“‘”” ’
Star Catalog Data _f togel Wheel Spesd <
Sensors Tm oipole
M
- \ Status
Sensor Sensor Actuator
Data Commands

TN N

A: Center of Mass e Geomagnetic field
in 8CS
B: Wheel Angular HMomentum

Control Torgue « Array and Antenna
Angles

Figure 5-20. Truth Model Data Flow Diagram

30

w
1

0252

states contained by TRUTH MODEL. Since the sensors and ac-
tuators (1.2 and 1.3) directly support the operations pro-
vided to SPACECRAFT CONTROL by TRUTH MODEL the first step is
to make these into entities and to make them the most senior
entities within TRUTH MODEL. The orocess 1.1 MODEL DYNAMICS
AND ENVIRONMENT clearly contains at least two entities, one
to model the dynamics and one to model the environment.

Thus we examine the child data flow diagram (Fiqure 5-21) to
see what the next level provides in the way of entities.
Process 1.1.2 COMPUTE ENVIRONMENTAL TORQUES is a process
which models the effect of the spacecraft environment on
attitude dynamics, and 1.1.4 MODEL INTERNAL MOTION models
the effect of moving spacecraft parts on the attitude dy-
namics. Thus combining 1.1.2, 1.1.3, and 1.1.4 into a single
ATTITUDE DYNAMICS entity is a reasonable abstraction. 1.1.1
COMPUTE EPHEM DEPENDENT PARAMETERS then becomes the
SPACECRAFT ENVIRONMENT entity.

To finish the entity araph we only need to decide whether
the data store SIMULATION PARAMETER STORE should be divided
among the already identified entities, or whether it should
become an entitv itself. We choose the latter and draw an
entity graph (Figure 5-22). This choice is opposite to what
we did for D02 SIMULATION PARAMETER STORE when we generated
the level 0 entity graph. Designers will make such changes
in their approach as more details of the problem become

apparent.

In Fiqure 5-22, control flow is shown for the external enti-
ties and the SIMULATION PARAMETER STORE entity. These enti-
ties must show control flowing towards them since they
contain data but no processing. In addition, the parent
object diagram shows that SENSORS and ACTUATORS provide data
as they are requested by the SPACECRAFT CONTROL. Thus, the
SENSORS and ACTUATORS in turn need to request data to com-

plete the actions required. Again, this is determined not
5-31

0252

ORIGIMAL PACGE IS
OF POOR QUALITY

JUSWUOITAUT pue sOTWRUAQ T9POW T°'T °12-S =2aInbtd

\
19pOw wsuE IDEI.NS
SITLYIJONS SSUH
d j3asul 40 Juswow to4
NOI 10W
TUNHILNT
SINDYOL “WANIMNMONIANT
$ 11
I wnjuswow
cwuwmﬂ.—.: Y € IROUE [PULID JUT
TUNNILN
Z0d {7 B
Q vy u.urﬁ...%aoq $3N0N¥0L TINIWNONIANI
=
\\ H H 403343 !
ey 13doM S 14IUINGI
®3eys (@IITUY

SIsSA (PUT S dwayd®

od
TP
S1SA [PUE UOTE633UY

|
L

£3
TWLINIHNOYIANT

SIP | I0BYdP M u
~—

of ~
33 UT P9I D IBUGTROIO Q
»PNITIIv Ovsm-a,uﬂ 14q Lmn

M LNIUNONIANT GNY SITWUNAL 13A0M F°T sene Yiud 3IOINIYIIIY HYOSNIS V

YiNg FONIN3LIY
b0} 1043UOD IF €t

CJUBBOW T [NEUE [BIYM
A3IDO0 |34 Jw (N6

pnITIIe

)

ﬂ LCURARELEREL Y |

by the tovology of the entity graph but by an overall desiqn.
strategy. This leaves only the direction of control between
SENSORS and ACTUATORS and between ATTITUDE DYNAMICS and
SPACECRAFT ENVIRONMENT to be determined. 1In the latter case
we make the SPACECRAFT ENVIRONMENT a junior object. This is
because the dynamics modeling is likely to change from mis-
sion to mission, while the environment does not change.

This will allow SPACECRAFT ENVIRONMENT to be implemented as

a library unit and to be reused for subsequent missions.

The SENSORS and ACTUATORS are combined into a single ATTITUDE
HARDWARE object. This is a good abstraction, and it allows
us to simplify the TRUTH MODEL design and to defer consider-
ation of the sensor/actuator interactions to the next level
of detail. Fiqure 5-23 is the TRUTH MODEL object diagram.

| l

(1.2) (1‘3)

“Sensors Actuators
y y
Attitude
;Eztar) ‘ Spececraft Oynanics l
Environment (1.1.2,1.1.3,
Catalog I(LLI) 1.1.8)
(002)
Simulation
Parameters
(E3)
EPHEN

File

Fiqgure 5-22. Truth Model Entitv Graph

5-33

0252

2.0 Spacecraft Control

3.1
Attituce
Harqware

5.0 Timer

E2 Star Catalog
4.0 Simulatlon

Resuits Database

3.2

Attitude
Dynamics

5.0 Timer

4.0 Simulation
Results Database

3.3

Spacecraft
Environment

1.0 User
Interface

3.4
Similation

Parameter
Database

Flle

Figure 5-23. Truth Model Object Diagram

The object contents table and operations dictionary entries
are generated in exactly the same way as for the level 0
object diagram. The only difference is in how to start
identifying the objects from a data flow diagram.

5.3.5 TASKING CONSIDERATIONS

In Section 3 we showed concurrency on an object diagram by
having a single operation (e.g., RUN) flow into two or more
objects. The same notation can be used on entity graphs.

We thus have a means of representing concurrency on entity

0252

graphs, but at this point we have .not yét developed gquide-
lines for concurrency within our methodology. Cherry's
[Cherry 85a)] criteria for determining when an entity is con-
current can also be used within the abstraction analysis
model. In short, we have not imposed any rigorous guidelines
about determining when objects are concurrent, but have a
notation that is flexible enough to represent concurrency

throughout the transition between specification and design.

0252

SECTION 6 - CONCLUSION

Object diagrams, abstraction analysis and associated prin-
ciples provide a unified framework which encompasses con-
cepts from several other methodologies [Yourdon 79, Booch 83,
Cherry 85b]J. The use of object diagrams and abstraction
analysis provides the following:

° A general object-oriented approach which handles
system design from the top level, through object-
oriented decomposition, down to a completely func-

tional level.

® A method of tracing how a design meets the specifi-
cation.
® A design notation that maps into Ada, thus provid-

ing a composite mapping from a specification to Ada

software.

° A design notation flexible enough to represent both
traditional structured designs and non-hierarchical

designs such as those produced using PAMELA.

' Criteria for partitioning a software system into

modules and for choosing direction of control.

) Support for walkthroughs and iterative refinement
of a design through the use of graphical notation

for both the specification and the design.

The concepts discussed in this report form an integral part
of an object-oriented software development life cycle. We
are currently studying how object-oriented concepts can be
used in other phases of the life cycle, such as specification
and testing. When complete, this synthesis should produce a

truly general object-oriented development methodology.

0252

[Agresti 86]

{Booch 83]

[Cherry 85a]

[Cherry 85Db]

[DeMarco 74}

[Dijkstra 68]

[Goldberg 83}

|[Ledgard 77]

[Liskov 74]

[Nelson 86]

[Parnas 72]

0252

REFERENCES

W. W. Agresti, V. E. Church, D. N. Card
and P. L. Lo. "Designing with Ada for
Satellite Simulation: A Case Study",
Proc. of the lst Intl. Conf. on Ada Ap-
plications for the Space Station, June
1986.

Grady Booch. Software Engineering with
Ada, Menlo Park: Benjamin/Cummings, 1983.

George W. Cherry. PAMELA: Process Ab-
straction Method for Embedded Larae Ap-
plications, Course notes, Thought**Tools,
January 1985,

George W. Cherry and Bard S. Crawford.
The PAMELA (tm) Methodology, November
1985.

Tom DeMarco. Structured Analysis and
System Specification, Prentice-Hall, New
York, 1978.

Edsgar W. Dijkstra. "The Structure of
the 'THE' Multiprogramming System," Comm.
of the ACM, May 1968.

Adele Goldberg and David Robson. Small-
talk 80: the Language and Its Implemen-
tation, Adaison-Wesley, 1983.

Henry F. Ledgard and Robert Ww. Taylor. i
"f'wo Views of Data Abstraction," Comm. of
the ACM, June 1977. |

Barbara H. Liskov and S. N. Zilles.
"Programming with Abstract Data Types,"
Proc. of the ACM Symp. on Very High Level
Languages, SIGPLAN Notices, April 1974.

Robert W. Nelson. "NASA Ada Experiment--
Attitude Dynamic Simulator,” Proc. of the
Washington Ada Symposium, March 1986.

David L. Parnas. "On the Criteria to be
Useda in Decomposing Systems into Modules,"
Comm. of the ACM, December 1972.

R-1

|[Rajlich 85}

[Seidewitz 85a]

[Seidewitz 85Db]

[Seidewitz 86]

[Stark 86]

[Yourdon 79]

0252

Vaclav Rajlich. "Paradigms for Design
and Implementation in Ada," Comm. of the
ACM, July 1985,

Ed Seidewitz. Object Diagrams, unpub-
lished GSFC report, May 1985.

Ed Seidewitz. Some Principles of Object-
Oriented Design, unpublished GSFC report,
August 1985.

Ed Seidewitz and Mike Stark. "Towards a
General Object-Oriented Software Develop-
ment Methodology," Proc. of the lst Intl.
Conf. on Ada Applications for the Space
Station, "June 1986.

Mike Stark. Abstraction Analysis: From
Structured Specification to Object-
Oriented Design, unpublished GSFC report,
April 1986.

Edward Yourdon and Larry L. Constantine.
Structured Design: Fundamentals of a
Discipline of Computer Program and Sys-
tems Design, Prentice-Hall, 1979.

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The tecnnical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering wWorkshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceeaings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. waligora, ana
C. E. Goorevich, February 1978

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

B-1

0252

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and
W. A. Taylor, July 1986

SEL-79~001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: -Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979 '

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A, L. Green, and W. J. Decker, September
1979

SEL-79~-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A, L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C, E. Goorevich, May 1980

SEL-60-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M, Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. DecKker and
W. Taylor, December 1982

0252

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guidge to Data Collection, V. E., Church,
D, N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Sortware Engineering Laboratory (SEL) Compendium
ot Tools, W. J. Decker, W. A, Taylor, and E. J. Smith,
February 1982

S5EL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. B. McGarry, G. Page, S. Eslinger, et al., April 1983

0252

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision 1), W. A. Taylor ana
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-306, Annotated Bibliography ot Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, ana
F. E. McGarry, November 1985

SkL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-83-104, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,
W. J. Decker, P. Lo, and W. Miller, August 1984

0252

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Configuration Management and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers:
Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dvnamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

Agresti, W. W,, Tutorial: New Paradigms for Software
Development. New York: IEEE Computer Society Press,
July 1986

B-5

0252

Agresti, wW. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for
the NASA Space Station, June 1986

2Agresti, W. W., F. E., McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

lBasili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
Wwith Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

1Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceeaings of the International Computer Software and Applica-
tions Conference, October 1985

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

0252

3Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

lsasili, V. R, and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

23asili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1963

lBasili, V. R., and R. W. Selby, Jr., "Calculation ana Use
of an Environments's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-
ware Engineering, August 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-
ness of Software Testing Strategies, University of Maryland
Technical Report, TR-1501, May 1985

Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experi-
mentation in Software Engineering," IEEE Transactions on
Software Engineering, July 1986

2Basili, V.R., and D. M. Weiss, A Methodology for Collect-
ing Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

lBasili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Enagineering, November 1984

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., ana M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

0252

3Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-

ware Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: ILEE
Computer Society Press, 1978

lcard, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica, October
1985

Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices," IEEE Transactions on
Software Engineering, February 1986

lcard, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineering, August 1985

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies,"” Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
tor NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

lMcGarry, F. E., J. Valett, énd D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedings of the Hawaiian Inter-

national Conference on System Sciences, January 1985

lPage, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

0252

lRamsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-
national Conference on Software Engineering, August 1985

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

lWeiss, D. M., and V. R. Basili, “Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985 -

3zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects ot
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

lThis article also appears in SEL-85-003, Collected Soft-
ware Engineering Papers: Volume III, November 1985.

2This article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers: Volume II, November 1983.

3This article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Volume I, July 1982.

sz ENYD DBZ\TE RUG. 4,187

