
https://ntrs.nasa.gov/search.jsp?R=19870013758 2020-03-20T10:38:22+00:00Z

SOFlWARE ENGlNEERlNG LAlBORATORY SERIES SEL-87-002

ADA'STYLE GUIDE
(Version 1 .I)

MAY 1987

ADA IS A REGISTERED TRADEMARK OF M E US.
GOVERNMENT, ADA JOINT PROGRAM OFFICE

National Aeronaurics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

I

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administration/
Goddard Space Flight Center (NASA/GSFC) and created for the
purpose of investigating the effectiveness of software engi-
neering technologies when applied to the development of
plications software. The SEL was created in 1977 and has
three primary organizational members:

ap-

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of re-
ports that includes this document. This document was pre-
pared as a joint effort of representatives of the GSFC Ada
User's Group. The principal author is

Edwin V. Seidewitz (GSFC)

Additional contributors to this document include
William Agresti (Computer Sciences Corporation (CSC)),
Daniel Ferry (CSC), David LaVallee (Ford), Paul Maresca
(Adasoft), Robert Nelson (GSFC), Kelvin Quimby (CSC),
Jacob Rosenberg (GSFC), Daniel Roy (Century Computing),
Allyn Shell (CSC), and J. T. Thompson (Ford).

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 2 0 7 7 1

PRECEDING PAGE DLANK NOT FILMED

iii

ABSTRACT

Ada is a programming language of considerable
expressive power. The Ada Language Reference
Manual provides a thorough definition of the
language. However, it does not offer sufficient
guidance on the appropriate use of Ada's powerful
features. For this reason, the Goddard Space
Flight Center Ada User's Group has produced this
style guide which addresses such "program style"
issues. The guide covers three areas of Ada
program style: the structual decomposition of a
program, the coding and use of specific Ada
features, and the textual formatting of a
program.

V
L

CONTENTS

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1

2.2

I

CHAPTER 3

3.1

3.2

3.3

CHAPTER 4

4.1

INTRODUCTION

SCOPE OF THE GUIDELINES 1-1
STRUCTURE OF THE DOCUMENT 1-1
GOALS . 1-2

LEXICAL ELEMENTS

CODING . 2-1
2C1 The Package Standard 2-1
2C2 Comments 2-1

FORMAT . 2-1
2F1 Indentation 2-1
2F2 Character Set 2-1
2F3 upper / Lower Case 2-1
2F4 Identifiers 2-2
2F5 Spaces 2-2
2F6 Blank Lines 2-2
2F7 Continuations 2-3
2F8 Comments 2-3

DECLARATIONS AND TYPES

CODING . 3-1
3C1 Constants 3-1
3C2 Types 3-2
3C3 Enumeration Types 3-2
3C4 Floating Types 3-3
3C5 Record Types 3-3
3C6 Access Types 3-4
3C7 Object Declarations 3-4

FORMAT . 3-5
3F1 Commenting 3-5
3F2 Indentation 3-5
3F3 Type Definitions 3-5
3F4 Object Declarations 3-6

EXAMPLES . 3-7
Example 3x1 3-7
Example 3x2 3-7
Example 3x3 3-7

NAMES AND EXPRESSIONS

CODING . 4-1
4C1 Aggregates 4-1
4C2 Static Expressions 4-1
4C3 Short-circuit Control 4-1
4C4 Type Qualification 4-2

v i i
.

4.2

CHAPTER 5

5 . 1

5.2

5.3

CHAPTER 6

6.1

6.2

6.3

6.4

FORMAT . 4-2
4FlNames 4-2
4F2 Parentheses 4-3
4F3 Aggregates 4-3
4F4 Continuation 4-4

STATEMENTS

CODING .
5C1 Slice Statements
5C2 If Statements
5C3 Case Statements
5C4 Block Statements
5C5 Exit Statements
5C6 Return Statements
5C7 Goto Statements

FORMAT .
5F1 Statement Sequences
5F2 If Statements
5F3 Case Statements
5F4 Loop Statements
5F5 Block Statements

EXAMPLES .
Example 5x1
Example 5x2

. Example 5x3
Example 5x4

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-5
5-5
5-5
5-5
5 - 6

SUBPROGRAMS

STRUCTURE . 6-1
6S1 Cohesion 6-1

CODING . 6-1
6C1 Parameters 6-1
6C2 Recursion 6-1
6C3 Functions 6-2
6C4 Overloading 6-2

FORMAT . 6-2
6F1 Subprogram Names 6-3
6F2 Subprogram Header 6-3
6F3 Subprogram Declarations 6-3
6F4 Subprogram Bodies And Stubs 6-4
6F5 Named Parameter Association 6-6
Example 6x1 6-7
Example 6x2 6 - 8
Example 6x3 6-9
Example 6x4 6-9
Example 6x5 6-10

EXAMPLES . 6-7

viii

I CHAPTER
PACKAGES

7.1 i .
7.2 1
7.3

I 8.1

8.2

~ CHAPTER 9

I 9.1

. . I

. 9.2 i I
I

I
I

~ 9.3

9.4

STRUCTURE . 7-1
7 S l U s e . 7-1
7S2 Nesting 7-2

CODING . 7-3
7c1 Initialization 7-3
7C2 Visible Variables 7-3

FORMAT . 7-3
7F1 Package Names 7-3
7F2 Package Header 7-4
7F3 Package Specifications 7-4
7F4 Package Bodies And Stubs 7-5

EXAMPLES . 7-7
Example 7x1 7-7
Example 7x2 7-9
Example 7x3 7-11

VISIBILITY

STRUCTURE . 8-1
8S1 Scope 8-1
8S2 The Package Standard 8-1

CODING . 8-1
8C1 The Use Clause 8-1
8C2 Renaming Declarations 8-2
8C3 Redefinition 8-2

TASKS

STRUCTURE . 9-1
9 S l U s e . 9-1
9S2 Nesting 9-1
9S3 Visibility 9-2

CODING . 9-2
9C1 Task Types 9-2
9C2 Task Termination 9-2
9C3 Entries And Accept Statements 9-3
9C4 Delay Statement 9-3
9C5 Task Synchronization 9-4
9C6 Priorities 9-4
9C7 Abort Statements 9-5
9C8 Shared Variables 9-5
9C9 Local Exception Handling 9-5

FORMAT . 9-5
9F1 Task And Entry Names 9-5
9F2 Task And Entry Headers 9-6
9F3 Task Specifications 9-6
9F4 Task Bodies And Stubs 9-7
9F5 Accept Statements 9-7
9F7 Pragma Priority 9-9 9F6 Select Statements 9-8

EXAMPLES . 9-10

ix

CHAPTER 10

10.1

10.2

CHAPTER 11

11.1

11.2

11.3

11.4

CHAPTER 12

12.1

12.2

12.3

12.4

CHAPTER 13

13.1

Example 9x1 9-10
Example 9x2 9-12
Example 9x3 9-14
Example 9x4 9-17

PROGRAM STRUCTURE AND COMPILATION ISSUES

STRUCTURE 10-1
lOSl Program Units 10-1
10S2 With Clauses 10-1
10S3 Program Unit Dependencies 10-2

FORMAT . 10-2
1OFl Compilation Units 10-2

EXCEPTIONS

STRUCTURE
CODING .

llClUse
llC3 Raise Statements

llSl Exception Propagation

llC2 Exception Handlers
llC4 Exception Propagation
llC5 Suppressing Checks
llF1 Exception Declarations FORMAT .

EXAMPLES .

GENERIC UNITS

STRUCTURE
12S1 Use
12S2 Generic Library Units
12S3 Generic Instantiation

CODING .
12C1 Generic Formal Subprograms
12C2 Use Of Attributes

FORMAT .
12F1 Generic Declarations
12F2 Generic Instantiations

EXAMPLES .
Example 12x1
Example 12x2
Example 12x3
Example 12x4

11-1
11-1
11-1
11-1
11-2
11-2
11-3
11-3
11-3 *

11-3
11-4

12-1
12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-3
12-4
12-4
1 2 - 5
12-6
12-8

REPRESENTATION CLAUSES AND IMPLEMENTATION-DEPENDENT
FEATURES

STRUCTURE 13-1
13S1 Encapsulation 13-1

.. A

1 3 . 2 CODING . 1 3 - 1
1 3 C l U s e 1 3 - 1
13C2 Interrupts 1 3 - 1

1 3 F 1 Representaion Clauses 1 3 - 2
1 3 . 3 FORMAT . 1 3 - 2

CHAPTER 1 4 INPUT-OUTPUT

1 4 . 1 STRUCTURE
1 4 S 1 Encapsulation .

1 4 . 2 CODING
14C1 Text Formatting
14C2 Low-Level Input-
14C3 Form Parameter

1 4 . 3 EXAMPLES
Example 1 4 x 1
Example 1 4 x 2

. 1 4 - 1 1 4 - 1 1 4 - 1 1 4 - 1
-Output 1 4 - 1 1 4 - 2 1 4 - 3 1 4 - 3 1 4 - 4

REFERENCES

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

xi

.

CHAPTER 1

INTRODUCTION

Ada is a programming language of considerable expressive power. The
Ada Language Reference Manual [RM] provides a thorough definition of
the language. However, it does not offer sufficient guidance on the
appropriate use of Ada's powerful features. For this reason., the
Goddard Space Flight Center Ada User's Group has produced this style
guide which addresses such "program style" issues.

1.1 SCOPE OF THE GUIDELINES

Program source code serves two functions: to specify an algorithm to
be performed on a computer, and to communicate this algorithmic
design to other human readers. Program style relates to how well a
program meets the second function. It is a consistent manner of
using the features of a programming language to promote the
readability and understandability of a program. This is a matter of
the form of the final, delivered program source code, as opposed to
the process of developing the code.

The guidelines in this document cover three areas of Ada program
style:

- STRUCTURE: the structural decomposition of a program

- CODING: the coding and use of specific Ada features

- FORMAT: the textual formatting of a program which does not
effect the meaning of the program

The guidelines are also classified as standards or recommendations.
A conforming Ada program obeys all the standards in this document.
Generally, recommendations should also be followed unless there is a
good reason to do otherwise.

1.2 STRUCTURE OF THE DOCUMENT

This guide contains fourteen chapters corresponding to the fourteen
chapters of the Ada LRM. This provides a standard frame of reference
for the discussion of Ada features. Each chapter is subdivided into
sections on STRUCTURE, CODING and FORMAT guidelines. Note that some
chapters do not include all three of these subsections. Standards

1-1

INTRODUCTION

are marked with a star (*) , while recommendations are unmarked.
Where appropriate, the guide includes examples, justifications and
references for various guidelines. Some chapters have an EXAMPLES
section giving additional longer examples for the chapter.

1.3 GOALS

While some of what constitutes "good style" is subjective and
somewhat arbitrary, it is important that the style of a program be
consistent throughout the program. The primary goal of this guide is
to promote such consistent use of good style across a large number of
Ada programs. The whole intent of "good style" is to increase the
readability of these programs. Therefore, the guidelines under each
of the areas of structure, coding and format follow from general
principles of program readability and understandability discussed
below.

In the structure area, a program should model the structure of the
problem to be solved. The program should reflect the natural levels
of abstraction in the problem domain, so that the reader can
reasonably comprehend each level individually.

In the coding area, there are several features in Ada which are
unfamiliar to many programmers. There is thus a tendency to either
underuse these features or to use them inappropriately. A feature of
Ada should generally not be ignored, but neither should it be used in
excess. The coding guidelines highlight the proper use of Ada
features.

Finally, the textual format of a program should be pleasing to the
eye and promote the readability and understandability of the program.
The format should highlight the structure of a program and the role
of a program as a model of the problem domain. Just as the careful
layout of a book can enhance written communication, the careful
layout of a program can enhance the communication of algorithmic
design to another human. The consistent use of formating style is
especially important, because it allows readers to become accustomed
to the familiar layout of program constructs. An automated formating
program is particularly helpful, but even in the absence of such a
tool, much can be gained from a common format style.

1-2

CHAPTER 2

LEXICAL ELEMENTS

2.1 CODING

2C1 The Package Standard

(a)* Language words with predefined meanings in package Standard
should not be redefined.

2C2 Comments

(a)* Comments should be used to add information for the reader or to
highlight sections of code, and should not merely paraphrase the
code.

2.2 FORMAT

2F1 Indentation

(a)* The standard indentation is two spaces.

2F2 Character Set

(a)* Full use should be made of the IS0 character set where
available. Alternate character replacements should only be used when
the corresponding graphical symbols are not available.

2F3 Upper / Lower Case

(a)* Reserved words and attributes should appear in lower case.

(b)* All identifiers except type, enumeration value and attribute
identifiers should be in mixed upper and lower case. The first
letter of each word in the identifier should be in upper case with
other characters in lower case, unless a word is normally written in
all upper case (eq. acronyms).

Display Device
Number of User - Names
Get FHST Data
PacEaqe - Name

2-1

LEXICAL ELEMENTS

(c)* Type and enumeration value identifiers should appear in all
upper case.

LONG INTEGER
AUTHBRI TY - LEVEL
(RED, GREEN, BLUE)
(ARMY, AIR - FORCE, NAVY, MARINES)

2F4 Identifiers

(a)* Identifier names should be meaningful and easily distinguishable
from each other, except possibly for loop parameters, array indices
and common mathematical variables, which may be as short as only one
character.

(b)* Distinct words in identifiers should always be separated by
underscores.

(c)* The use of abbreviations in identifiers should be avoided. When
used, an abbreviation should be significantly shorter than the word
it abbreviates, and its meaning should be clear. The same
abbreviations should be used consistently throughout a proj'ect.
[ACGE I

2F5 Spaces

(a)* Single spaces should be used consistently between lexical
elements to enhance readability.

2F6 Blank Lines

(a)* Blank lines should be used to group logically related lines of
text.

A careful use of blank lines can greatly enhance readability by
making the logical structure of a sequence of lines more
textually obvious. However, the overuse of blank lines (e.g.,
"double spacing") defeats the very purpose of grouping and can
actually reduce readability. Blank lines should thus always be
used with grouping in mind and not just to increase white space.

(b)* A blank line should always follow a construct whose last line is
not a the same indentation level as its first line.

type COMPLEX is
record
Real : FLOAT;
Imaginary : FLOAT;

end record;

-- Followed by a blank line

2-2

LEXICAL ELEMENTS

2F7 Continuations

(a)* Statements extending over multiple lines should always be broken
BEFORE reserved words, operator symbols or one of the following
symbols:

but they should be broken AFTER a comma (" , ") . Unless otherwise
specified in later guidelines, all the continuation lines should be
indented at least two levels with respect to the original line they
continue.

: I r> .. :=

Corrected Value := (1 + Sensor Scale) * Raw Value
+ Dis-fortion Factor * Distortion Value Sensor Bias;

(b)* Long strings extending over more than one line should be broken
up at natural boundaries, appropriate to the meaning of the contents
of the string, if any.

- - -

"This is a rather long string, so it is likely that 'I

& "it will extend over more than one line"

2F8 Comments

(a)* Comments should begin with the 'I--'' aligned with the indentation
level of the code that they describe, or to the right of the code,
aligned with other such comments.

-- Check if the user has special authorization
if Authority = SPECIAL then

else

end if;

Display - Special - Menu.; -- All operations are allowed

Display - Normal - Menu; -- Only normal operations allowed

2-3

CHAPTER 3

DECLARATIONS AND TYPES

3.1 CODING

3C1 Constants

(a)* An object should be declared constant if its value is intended
not to change. [Nwl

Declaring an object to be constant clearly signals both the human
reader and the compiler the intention that its value will not
change. This not only increases readability, it also increases
reliability because the compiler will detect any attempt to
tamper with the object. Also, it can result in some decrease in
executable size and better run time efficiency.

(b)* Defining a constant object is preferable to using a numeric
literal or expression with constant value, as long as the constant
object has an intrinsic conceptual meaning. [NW]

There is no use to defining a constant object when a numeric
literal is obviously more appropriate, for example using "One"
instead of I ' 1 " . However, the use of constant objects with
intrinsic meaning (such as "Buffer Size" o r "Field Of View") can
greatly increase the readability oT code. Further; tEe code is
more maintainable since a change in a value will be localized to
the constant declaration.

(c)* A named number (i.e., a constant object with type
universal-integer or universal-real) should be used only for values
that are truly "universal" and "typeless". Other numeric constants
should be declared with an explicit type. [MI

Such constants as "Pi" and cardinal integers (e.g., a "number of
things") should be named numbers. Note also that declaring a
constant in terms of a predefined numeric type (INTEGER, FLOAT,
etc.) has no advantage over a named number since these predefined
types provide only range and accuracy constraints and no
additional conceptual meaning. In fact, since the range and
accuracy of predefined numeric types is implementation-defined,
portability can be increased by using named numbers, in those
cases where a constant of a user-defined type is not more

3-1

DECLARATIONS AND TYPES

appropriate.

Number Of Sensors
: coiistant := 4 ;

-- This is a named number

Main - Sensor Number
: constanT SENSOR - INDEX := 2;

3C2 Types

(a)* Separate types should be used for values that belong to
logically independent sets, and for distinct concepts. [NW]

type X COORDINATE is
range 1 .. 640;

type Y COORDINATE is
range 1 .. 4 8 0 ;

type PIXEL - VALUE is
range 0 .. 255;

type IMAGE GRID is

A data type characterizes a set of values and a set of operations
applicable to objects of the type. In the above example, each
coordinate has a type because coordinates are independent
entities. Explicitly declaring these types makes t h e concepts
more obvious to a human reader and also allows the compiler to
detect mistakes such as:

array (X-COORDINATE, - Y - COORDINATE) of PIXEL - VALUE;

Image (Y, X) := Pixel; -- Should be "(X, Y)"
The drawback of this kind of typing is that the following
construct is illegal:

if X = Y then -- ILLEGAL since X and Y have different types ...
A type conversion must be used:

if X = X - COORDINATE(Y) then ...
Note that, depending on context (and compiler quality), there may
or may not be some run time penalty associated with type
conversion (e.g., testing of range constraints).

3C3 Enumeration Types

(a)* An enumeration type should always be used in preference to an
integer type, unless the logical nature of the concept to be modeled
demands the other. [NW]

3-2

DECLARATIONS AND TYPES

I
For example the type:

type DEVICE MODE is
(READ - ONLY, WRITE - ONLY, READ - WRITE);

is preferable to encoding DEVICE - MODE as an integer 0, 1 or 2.

3C4 Floating Types

(a) To enhance portability, the range and accuracy of a floating
point type should generally be specified.

The precision for the predefined floating types (FLOAT, etc.) is
implementation-dependent, though all implementations should
provide at least 6 decimal digits of accuracy. Explicitly
declaring floating point ranges can yield more reliable and more
efficient as well as more portable code.

3C5 Record Types

(a)* A record type should be used instead of an array type even when
all the record components have the same type, as long as each
component can be sensibly named and the components do not need to be
dynamically indexed. [NW]

For example, the definition:

type COMPLEX is
record
Real : FLOAT;
Imaginary : FLOAT;

end record;

is preferable to defining COMPLEX as an array of two FLOATS.

(b) Overcomplicated record structures should be avoided by grouping
related data into subrecord types. [N W I

type COORDINATE is
record
Row : FLOAT;
Column : FLOAT;

end record;

type WINDOW is
record
Top Left : COORDINATE;
Botzom Right : COORDINATE;

end record;

(c) Enumeration types should be used for discriminants of record
variants whenever possible. A discriminant should generally have a
default initialization only if the the discriminant value is intended
to change over the lifetime of an object.

3-3

DECLARATIONS AND TYPES

3C6 Access Types

(a) Generally, access types should not be used when static types and
stack allocation would be sufficient.

Generally access types should be used only when it is necessary
to have data structures with dynamic pointers or to dynamically
create objects. However, access types may be needed for static
objects if this leads to a more consistent programming style
(e.g., so that similar static and dynamic objects are treated
identically). For example, if linked lists are used in a
program, there may be some lists which are constant, but which
are still implemented as linked lists using access types. This
would allow, f o r example, passing these constant lists to
subprograms which also handle dynamic lists.

3C7 Object Declarations

(a)* Each object declaration should declare only one object.

For example, the following objects should be declared in separate
declarations even though they are all of the same type:

Table Size
: TABLE - RANGE;

Table Index
: TABLE - RANGE;

Current Entry
: T A B ~ E - RANGE;

(b)* An object should not be declared using an unnamed constrained
array definition.

The unnamed array definition is the only case in Ada where an
object can be declared to be of a type which does not have a
name. Instead, the array type should be named in an array
definition, and that name used in the object declaration, even if
there is only one object declared of that type.

type POOL TYPE is
array (FOOL - RANGE) of CHARACTER;

POOL
: POOL - TYPE;

(c) Objects should generally be initialized. Where possible, objects
should always be initialized by their declaration, rather than in
later code.

Is - Found
: BOOLEAN := FALSE;

3-4

DECLARATIONS AND TYPES

3.2 FORMAT

3F1 Commenting

(a)* Type declarations (or groups of declarations) should be
commented to indicate what is being defined, if that is not obvious
from the type declaration itself.

type VELOCITY is -- Inertial velocity relative to the Earth
array (1..3) of FLOAT;

(b)* Object declarations should be commented if the object definition
is unclear from the object and type identifiers alone. Note that
those properties of an object obtained from its type should not be
repeated in comments on the object declaration.

Spacecraft Velocity -- Spacecraft orbital velocity, assuming a
: VELOCITY; -- circular orbit

3F2 Indentation

(a)* All declarations in a single declaration part should begin at
the same indentation level.

3F3 Type Definitions

(a)* Array type definitions should have one of the following formats:

type <type name> is
array <index definition> of <subtype indication>;

type <type name> is
array <index definition>

of <subtype indication>;

(b)* Record type definitions should have one of the following
formats :

type <type name> is
record

<component declaration>
<component declaration>

end record;

3-5

DECLARATIONS AND TYPES

type <type name)
(<discriminant declaration>;

record
<discriminant declaration>) is

<component declaration>

case <discriminant name> is

<component declaration>
<component declaration>

when <choices> =>

end case;

end record;

All <component declarations> and <discriminant declarations> should
be formatted like object declarations (guideline 3F4).

(c)* Other type definitions should be formatted as follows:

type <type name> is
<type definition>;

subtype <type name> is
<subtype indication>;

Long enumeration type definitions should be formatted into easily
readable columns.

3F4 Object Declarations

(a)* Object declarations should have one of the following formats.
The preferred formats are:

<object name>
: <subtype indication> := <expression>;

<object name>
; <subtype indication>

:= <expression>;

Declarations containing short identifiers may also be formatted all
on one line:

<object name> : <subtype indication> := <expression>;

In this case, all such declarations textually grouped together o r
appearing as components in a single record definition o r in a single
parameter list should have their ":" and " - - I t .- symbols aligned.

3-6

DECLARATIONS AND TYPES

3.3 EXAMPLES

See also examples 6x5, 7x2, 9x3 and 14x1.

Example 3x1

type SENSOR ARRAY is
array (NATURAL range < > I of SENSOR;

UARS - Sensors -- Sensor configuration for the
: SENSOR ARRAY(1 .. Num Sensors); -- UARS control system - -

Example 3x2

type COMPLEX is
record
Real : FLOAT;
Imaginary : FLOAT;

end record;

Example 3x3

type DEVICE is
(PRINTER, DISK, DRUM);

type STATE is -- Operational state of a
(OPEN, CLOSED); -- device.

type PERIPHERAL
(Unit : DEVICE := DISK) is
record
Status

: STATE;

case Unit is
when PRINTER =>

Lines Per Page

when DISK I DRUM =>

: INTEGER range 1 .. Page Size; -

Cylinder

Track
: CYLINDER INDEX;

: TRACK NUMBER;

-

-

end case;

end record;

3-7

CHAPTER 4

NAMES AND EXPRESSIONS

4.1 CODING

4C1 Aggregates

(a)* Aggregates are preferable to individually setting all or most of
the components of an array or record.

(b) Named aggregates should be used where possible. [NW]

(c) The "others" choice should not be used within aggregates without
good reason. [NWI

4C2 Static Expressions

(a) Where possible, universal expressions are preferable to.static
(but not universal) expressions, which are in turn preferable to
dynamic expressions. [NWI

Since they do not depend on run time dynamics, static expressions
are easier for a human reader to understand. Also, universal
expressions maximize accuracy and portability, and static
expressions eliminate run time overhead.

4C3 Short-circuit Control

(a) Short-circuit control forms should generally be used only to
avoid evaluation of an undefined or illegal expression. Short
circuit operators should not be used to optimize execution.

(N /= 0) and then (Total/N > Limit)

(Index = 0) or else User(Index).Not - Available

The short-circuit control forms should be used to signal to a
human reader that the correctness of the second condition depends
on the results of the first. They should not be used for
micro-efficiency reasons, concerns better handled by an
optimizing compiler. If efficiency considerations are
substantially important, "if" statements should be used instead
of the short-circuit forms with functions used to avoid repeated

4-1

NAMES AND EXPRESSIONS

code, if necessary. [ACGE]

4C4 Type Qualification

(a)* An explicit type conversion should not be used if a type
qualified expression is meant. [NW]

Good: LONG FLOAT'(3.14159)
Bad: LONG-FLOAT - (3.14159)

A qualified expression is used to state explicitly the type, and
possibly subtype, of a value. A type conversion, however,
results in the dynamic conversion of a value to a target type.
Sometimes a type conversion can be used to serve the purpose of a
type qualification. However, if the operand is already of the
desired base type, a conversion is not really necessary and a
qualification should be used instead.

(b)* Situations where type qualification is necessary should be
avoided if possible. Other than where absolutely necessary, type
qualification may be justified only if it makes the program clearer
to a reader. [NW]

The main case to avoid is when the type of an enumeration literal
or aggregate is not known from context. For example:

type COLOR is
(BLACK, RED, GREEN, BLUE, WHITE);

type LIGHT is
(RED, YELLOW, GREEN) ;

procedure Set
(Color - Code : in COLOR 1 ;

(Color - Code : in LIGHT) ;
procedure Set

...
Set(COLOR'(RED)); -- Type qualification must be used here to
Set (LIGHT' (RED)) ; -- resolve the overloading of Set and RED

It would be better in this case to rename on of the Set
procedures, or to at least give them different parameter names so
the overloading could be resolved using named notation.

4 .2 FORMAT

4F1 Names

(a)* The name for a type should be a common noun indicating the class
of the objects it contains.

4-2

NAMES AND EXPRESSIONS

DEVICE
AUTHORITY LEVEL
USER NAME-
PHONE LIST -

A type name may also end with the suffix "TYPE".

EMPLOYEE TYPE
SCHEDULE-TABLE - TYPE
COLOR - TYFE

(a)* The names of non-BOOLEAN valued objects should be nouns,
preferably more precise than the names of types.

Cur rent User
: USER'NAME; -

Output Device
: DEVICE;

Schedule Table
: SCHEDULE - TABLE - TYPE;

New - Employee
: EMPLOYEE - TYPE;

BOOLEAN valued objects should have predicate-clause (e.g., "Is - Open")
or adjective names.

User Is Available
List-Empty
Done-
Not Ready
IS - Waiting

4F2 Parentheses

(a) Syntactically reGmGant parentheses should generally be used to
enhance the readability of expressions, especially by indicating the
order of evaluation. [NWI

For example:

Variance := (Roll - Error * * 2) + ((Yaw - Error * * 2) / 2);

4F3 Aggregates

(a) When longer than two or three components, o r whenever readability
is improved, named aggregates should be formatted as indicated below,
with one association per line and the " = > " arrows aligned.

4-3

NAMES AND EXPRESSIONS

Output Device :=
(Device => DISK,
Status => CLOSED,

Track => Startup-Track - Num) ;
Cy1 i nde r => 1,

(b) Aggregates for tabular data structures may instead be formatted
in a tabular fashion, so as to enhance readability.

4F4 Continuation

(a) When a long expression is broken over more than one line, it
should be broken near the end of the line before an operator symbol
with the lowest reasonable precedence.

Corrected Value := (1 + Sensor Scale) * Raw Value
+ DisFortion - Factor * Distortion - Value T Sensor - Bias;

4-4

CHAPTER 5

STATEMENTS

5.1 CODING

5C1 Slice Statements

(a)* Array slice assignments should be used rather than loops, to
copy all o r part of an array.

This is more readable and less error prone, especially in the
case of slices with overlapping ranges. [w]

Client - List (Last Client .. Number Of Clients)
:= New - Clients (1 .. Num - New - Ciients)

5C2 If Statements

(a)* An "if" statement should not be used to create the effect of a
"case" statement controlled by the value of an enumeration type other
than BOOLEAN. [NW]

5C3 Case Statements

(a)* A "case" statement should not be controlled by a BOOLEAN value.
[NWI

(b) When possible, the explicit listing of all choices on a "case"
statement is preferable to the use of an "others" clause.

This makes it easier for a human reader to see that the proper
actions are being taken in all cases. Further, if the
enumeration type of the control expression is modified, the
compiler will indicate overlooked alternatives. However, there
are cases when an "others" clause makes sense. For example, if
the control expression is of type character, then it is usually
best to use an "others" clause to handle the "undesired
characters" case.

5-1

STATEMENTS

5C4 Block Statements

(a)* Blocks should be used cautiously to introduce local declarations
or to define a local exception handler. [NWI

To some extent, a block can be thought of as a procedure which is
hard coded in-line. However, a procedure call contributes to
readability precisely by not having its source code in-line
(providing a "functional abstraction"). Therefore blocks should
always be used cautiously and only for specific purposes.
Thought should always be given to using a procedure call instead
of a block to improve readability.

(b)* Declarations of objects used only within a block should be
nested within the block. [NWI

5C5 Exit Statements

(a) "Exit" statements should be used cautiously, and only when they
significantly enhance the readability of the code.

It is often more readable to use "exit" than to try to add
BOOLEAN variables to a "while" l o o p condition to simulate exits
from the middle of a loop. However, it can be difficult to
understand a program where loops can be exited from multiple
places. It is best to limit the use of "exit" statements to one
per loop, if possible, and it is generally more readable to use
"exit when". Use "if.. .then.. .exit; end if" when "last wishes"
processing is needed.

5C6 Return Statements

(a) It is preferable to minimize the number of return points from a
subprogram, as long as this does not distract from the natural
structure or readability of the subprogram.

5C7 Goto Statements

(a)* Neither "goto" statements nor labels should ever be used.

Use of the "goto" makes the textual structure of code less
reflective of its logical structure. Possible uses of the ''goto"
statement can always be handled by other constructs in Ada.
Cases in Ada when the "goto" still seems appropriate almost
always indicate poorly designed code. It is better to redesign
the code than to use the "goto" statement.

5.2 FORMAT

5F1 Statement Sequences

(a)* Blank lines should be used liberally to break sequences of
statements into short, meaningful groups (see also guideline 2F6).

5-2

STATEMENTS

I Put - Line ("Welcome to the Electronic Message System") ;

Logon User(Current User);
User Eirectory.~ooTup I

I
(user Name => Current User,
Authority => User - AuThority 1;

~

if User Authority = SPECIAL then

end if;
Put Line (I r * * You have SPECIAL authorization * * ' I) ;

~ 5F2 If Statements

I (a)* "If" statements should have the following format:

if <condition> then
<statement>
<statement>

<statement>
< s fa t ement >

<statement>
<statement>

elsif <condition> then

else

end if;

(b) * Multiple conditions in an "if" clause should be grouped
together, placed on appropriate lines, and aligned so as to enhance
clarity. [Gardnerl

5F3 Case Statements

I (a)* "Case" statements should have the following format:

case '<expression> is
when <choices> =>

<statement>
<statement>

when others =>
<statement>
<statement>

end case;

SF4 Loop Statements

(a)* "Loop" statements should have one of the following formats:

5-3

STATEMENTS

<loop name>:
<iteration scheme> loop

< stat emen t >
<statement>

end loop < l o o p name>;

(iteration scheme> loop
< s tat e men t >
<statement>

end l o o p ;

(b) A loop should preferably have a l o o p identifier.

5F5 Block Statements

(a)* Block statements should have the following format:

<block name>:
declare

<declaration>
<declaration>

< stat emen t >
< stat emen t >

when <exceptions> =>

begin

exception

<statement>
<statement>

end <block name>;

(b)* Blocks should always have a block identifier.

5-4

STATEMENTS

5.3 EXAMPLES

See also examples 9x2, 9x3, 9x4, 14x1 and 14x2.

Example 5x1

if Security Level = 0 then
Message - ciassification := UNCLASSIFIED;

elsif Security-Level > User - Clearance then
Message - Classification := PROTECTED;

else
Message - Classification := Classification (Security - Level);

end if;

Example 5x2

case Sensor is
when ELEVATION =>'

when AZIMUTH =>

when DISTANCE =>

Record Elevation (Sensor - Value);

Record Azimuth (Sensor - Value);

Record - Distance (Sensor - Value);
end case;

Example 5x3

Read File:
loop-

Text IO.Get(File1, Next Record);
Store - Record(Next - Recora);

exit when Text - IO.End - - Of File(File1);

end loop Read - File;

Compute Total - Taxes:
while Next /= Head loop

Total - Taxes := Total Taxes + Next.Pay - Period - Deductions;
Next := Next.Successor;

end loop Compute - Total - Taxes;

5-5

STATEMENTS

Merge Files:
f o r N-in 1 .. Max - Num - Files loop
Get I tems :
for-J in 1 .. Max - Num - Items loop
Get New Item(New Item);
Merge - IFem(New - IFem, storage - File);

exit Merge - Files when New - Item = Terminal - Item;

end loop Get - Items;

end loop Merge - Files;

Example 5x4

Swap Integers:
de c lar e

Temp
: constant INTEGER := U;

begin -- Swap - Integers;
u := v;
V := Temp;

end Swap - Integers;

Check Entry:
begin-

Int IO.Get(Value);
Update(Va1ue);

~ exception

when Data Error =>
Text IOTNew Line;
Text-1O.Put-Line("Va1ue entry error.");
Entry - Error-Flag - := TRUE;

end Check - Entry;

5-6

CHAPTER 6

SUBPROGRAMS

6.1 STRUCTURE

6S1 Cohesion

(a)* A subprogram should perform a single, conceptual action (ie,
should be "functionally cohesive"). [Myers] [YC]

The use of a subprogram increases readability by hiding the
details of how an action is performed and giving it a descriptive
name. A subprogram should p e r f o r m only a single conceptual
action so that its use can be understood as independently as
possible from its implementation details and it can be given a
self-documenting name. Note that simply shortening a program by
placing "repeated code" into subprograms must be considered a
secondary goal. Thus it is quite acceptable to have subprograms
which are only called at one place, so lorrg as these programs
define cohesive actions.

6.2 CODING

6C1 Parameters

(a) Subprograms with equivalent parameters should generally declare
each parameter in the same position with the same identifier. [NW]

(b) Parameters with default expressions should usually be used only
when they have very well known default values and/or they are
defaulted most of the time and the default is only over-ridden in
special circumstances. [NW]

(c) Parameters with default expressions should generally be placed at
the end of the parameter list, so that they may be omitted if desired
in calls using positional notation.

6C2 Recursion

(a) A recursive subprogra'm should generally be used only if it is
conceptually simpler for a given problem than a corresponding
iterative subprogram.

6-1

SUBPROGRAMS

Many people have difficulty in understanding a program wich uses
recursion extensively. However, there are many cases where a
recursive solution is considerably simpler and clearer than an
iterative one. This is especially true, for example, for
traversing complicated data structures such as tree and graph
structures.

6C3 Functions

(a) A subprogram without side-effects returning a single value should
generally be written as a function. [NW]

Since functions can be called from within expressions, there is
more freedom in how a function can be used. For example, if a
function is to be called only once within some other subprogram,
it can be used to initialize a constant object.

procedure Process - Sensor - Data is

Main Sensor Data -
: constant SENSOR DATA

:= Read Sensor TMain Sensor Index); - - -
begin ...
However, if this sort of freedom is specifically not desired, or
if a subprogram has side effects, then use of a procedure should
be considered instead of a function, even if the subprogram
returns only a single value.

6C4 Overloading

(a)* Overloading of subprograms should not be used except in the
following cases:

- widely used utility subprograms which perform identical o r very
similar actions'on arguments of different types (eg, square-root of
integer and real arguments)

- overloading of operator symbols

Note that this is not meant to cover subprograms with identical
names in different packages, unless both subprograms are visible
through "use" clauses for their packages.

(b) * Operator symbols should be overloaded only when the new operator
definitions comply closely with the traditional meaning of the
operator (eg, "+" for vector addition).

For example "+I r might be used for vector addition, b u t should
- certainly not be used f o r vector dot product.

6-2

-

SUBPROGRAMS

6.3 FORMAT

6F1 Subprogram Names

(a)* Except as indicated below, a subprogram name should be an
imperative verb phrase describing its action.

Obtain Next Token
Increment Line Counter
Create - New - Groiip

Non-BOOLEAN valued function names may also be noun phrases.

Top Of Stack
x Component
sUc ce s so r
Sensor - Reading

BOOLEAN valued functions should have predicate-clause names.

Stack Is Empty
Last Item
Device - Not - Ready

6F2 Subprogram Header

(a)* Each subprogram specification, body or stub should be preceded
by a header comment block containing at least the subprogram name and
the indication SPEC, BODY, SPEC & BODY, STUB or SUBUNIT.

-- --
-- . Obtain - Next - Token SPEC
--
--

6F3 Subprogram Declarations

(a)* Procedure declarations should have the following format:

procedure (procedure identifier>
(<parameter specification>;
<parameter specification> 1 ;

- - I <documentary comments>

Each <parameter specification> should be formatted like an object
declaration (guideline 3F4). The documentary comments should follow
guideline (d) below.

(b)* Function declarations should have the following format:

6-3

SUBPROGRAMS

function <function designator>
(<parameter specification>;

return (type mark>;
<parameter specification>)

- - I <documentary comments>

Each <parameter specification> should be formatted like an object
declaration (guideline 3F4). The <documentary comments> should
follow guideline (d) below.

(c)* Parameter mode indications should always be used in procedure
specifications. In a function specification, mode indications should
either be used for all of the parameters or none of the parameters.

(d)* Subprogram declarations should be followed by AT LEAST the
following documentation:

- - I Purpose
- - I A description of the purpose and function of the subprogram.

- - I Exceptions
- - I A list of all exceptions which may propagate out of the
- - I subprogram, and a description of when each would be raised.

- - I Notes
- - I Additional comments on the use of the subprogram.

-- I

-- I

The "Exceptions" and "Notes" headings should be included even if
these sections are empty. An empty section may be indicated by
placing the annotation "(none)" after the appropriate header. only
in the case that the subprogram declaration is a compilation unit,
the following section should be added to the documentation:

- - I Modifications
. - - I A list of modifications made to the subprogram DECLARATION.

- - I Each entry in the list should include the date of the change,
- - I the name of the person-who made the change and a description
- - I of the modification. The first entry in the list should
--I always be the initial coding of the subprogram declaration.

6F4 Subprogram Bodies And Stubs

(a)* Subprogram bodies should have the following format:

6-4

SUB PROGRAMS

separate (<parent name>)
<subprogram specification> is

--I <documentary comments>

<declaration>
<declaration>

begin -- <subprogram name>
<statement>
<statement>

exception
when <exceptions> =>

<statement>

end <subprogram name>;

The <subprogram specification> should be formatted as in a subprogram
declaration (guideline 6F3). The <documentary comments> should
follow guideline (b) below. Note that the "end" of a subprogram
should always include the subprogram name.

(b)* Subprogram bodies should have AT LEAST the following
documentation placed immediately after the subprogram header:

- - I Notes
- - I Comments on the design, implementation and use of the
- - I subprogram.

,The : :Notes : : neading snouid be inciuded even if the section is empty.
An empty section may be indicated by the comment "Notes (none)".
Only in the case of a subprogram body which is a compilation unit,
the following section should be added to the documentation:

-- I
-- I -- I
-- I -- I
-- I
-- I
-- I

Modifications
A list of modifications made to the subprogram BODY. Each
entry in the list should include the date of the change,
the name of the person who made the change and a description
of the modification. The description should identify exactly
where in the comilation unit that the change was made. The
first entry in the list should always be the initial coding
of the subprogram body.

If there is no declaration or stub for a subprogram, then the
subprogram body should also include all the documentation required
for a subprogram declaration (guideline 6F3).

(c)* Subprogram stubs should have the following format:

<subprogram specification> is separate;

6 - 5

SUBPROGRAMS

where the <subprogram specification> is formatted as in a subprogram
declaration (guideline 6F3). If there is no previous declaration for
a separate subprogram, then the subprogram stub should be followed by
the same documentatary comments required f o r a subprogram declaration
(guideline 6F3 1 .

6F5 Named Parameter Association

(a) Named parameter association should generally be used f o r
procedure calls of more than a single parameter. positional
parameters are generally prefered for function calls.

(b) Named and positional parameter associations should generally not
be mixed in a single subprogram call.

(c) Named parameter associations should generally appear one to a
line with formal parameters, "=>" symbols and actual parameters
a1 i gned .

Obtain Next - Token
(Fiie => Current Source File,
Position => Current-Column7
Token - => Next Toxen 1 ;

6-6

I

I SUBPROGRAMS

6.4 EXAMPLES

, See also examples 7x3, 9x3, 12x1, 12x3, 14x1 and 14x2.

I
Example 6x1

1

............................ 1 1::
~ -- : Obtain - Next - Token SPEC --

--
I
I procedure Obtain Next Token - -

(File
: in out Parser - Types.FILE;

-- Sequential text file.

Token
: out Parser - Types.TOKEN - TYPE;

I

Position -- Column position of the
: in Parser - Types.COL - NUM - TYPE -- beginning of the next

:= 0); -- token I

- - I Purpose
- - I This procedure scans the current input line from the point at
- - I which it was last called and returns the next token.

- - I Exceptions
- -] Source File Not Open -- Raised if the input file is not open

- - I Notes (none)

-- I

-- I - - -

6-7

SUBPROGRAMS

Example 6x2

-- --
Decode Token SPEC - --

--
--
function Decode - Token

(File
: Parser - Types.FILE;

-- Sequential text file.

Token
: Parser - Types.TOKEN - TYPE)

return Parser - Types.TOKEN - TYPE;

- - I Purpose
- - I This function returns the ordinal value of the decoded token.
-- I

-- I
- - I Exceptions
- - I Illegal-Token -- raised if the token is not legal

- - I Notes
--I This function will later be changed to a procedure.

6-8

I
I

i

i
I
i

I
I
i

I
I

I
I
I

I

~ -~~

SUBPROGRAMS

Example 6x3

-- --
-- Obtain - Next-Token STUB
--
--
procedure Obtain - Next-Token

(File
: in out Parser - Types.FILE;

Token
: out Parser - Types.TOKEN - TYPE;

Position
: in Parser Types.COL - NUM - TYPE

:= o is-separate;

-- Sequential text file.

Example 6x4

--
--
-- Decode - Token STUB
--
--
function Decode - Token

(File
: Parser - Types.FILE;

Token
: Parser - Types.TOKEN - TYPE)

return Parser - Types.TOKEN - TYPE is separate;

-- Column position of the
-- beginning of the next -- token.

6-9

SUBPROGRAMS

Example 6x5

I
-- --
-- Obtain - Next - Token SUBUNIT
--
--
with Parser Types,

File - Handler;

separate (Lexical Analyzer)
procedure Obtain - Next - Token

(File
: in out Parser - Types.FILE;

-- Sequential text file.

Token

Position -- Column position of the
: out Parser-Types.TOKEN - TYPE;

: in Parser-Types.COL - NUM - TYPE
:= 0) is -- token. -- beginning of the next

- - I Notes (none)
- - I Modifications
- - I 7/4/85 Rebecca DeMornay Initial version of the subunit
- - I 9/6/85 R. DeMornay Added the local function
-- I "Increment - Line - Counter".

type LINE COUNT is -- A count of the number
-- of lines in a file. range 1-.. File - Handler.Max - Size;

Line - Counter
: LINE - COUNT := 1;

-- --
-- Increment - Line - Counter SPEC & BODY
--
--
function Increment - Line - Counter

(File
: Parser-Types.FILE;

-- Sequential text file.

Line
: LINE - COUNT)

return LINE - COUNT is

6-10

-- Line number in "File"
-- at the time of call

SUBPROGRAMS

-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I

Purpose
This function increments the line counter from the point at
which it was after the last call of this routine.

Exceptions
Source File Not - Open -- Raised if "File" is not open.
End Of-File- -- Raised if the function is called and

the end of the file has already been
reached.

- -

Notes (none)

-- Increment Line Counter - - begin

...
end Increment - Line - Counter;

-- Obtain Next Token begin - -
...

exception

when File - Handler.FILE ERROR =>
Token := Parser Types.NONE;
raise Source Fire Not Open; - - -

end Obtain Next Token; - -

6-11

CHAPTER 7

PACKAGES

7.1 STRUCTURE

7S1 Use

(a)* A package should fulfill one or more of the following:

- model an abstract entity (or data type) appropriate to the domain

- collect related type and object declarations which are used
of a problem. [NW] [Boochl

together (this kind of package should generally be used only to
provide a common set of declarations for two o r more library units)
[NW] [Boochl

- to group together program units for essential configuration control
or visibility reasons (packages fulfilling this role alone should
be used sparingly)

The roles above are listed in order of decreasing desirability.
The first role, modeling a problem domain entity, is the
strongest use of packages for structuring a program. It
corresponds to the requirement of functional cohesion for
subprograms (guideline 6.51) and contributes to the goal of making
the structure of a program reflect the structure of its problem
domain.

The second kind of package, a collection of related declarations,
should generally be used only to provide a common set of
declarations for two or more library units. Further, it is
better to minimize the declaration of variables in these
packages. Overuse of packages of variables results in a FORTRAN
COMMON block style program decomposition which defeats the
abstraction and information hiding properties of packages (see
also guideline 7C2).

Finally the last type of package, a grouping of units for
configuration reasons, should be used sparingly since it gives no
additional information to a human reader on the structure of the
program. This type of package might, for example, be used to
divide a large program at the top level into subsystems to be

7-1

PACKAGES

developed by separate teams. It would be best, however, if these
subsystem packages fufilled, in addition, one of the other two
roles.

(b)* Packages should NOT be designed based on the procedural
structure of the code which calls them.

For example, a group of procedures should not be packaged simply
because they are all called at system initialization, or because
they are always called in a certain sequence. Such a package is
closely coupled to the context in which it is used and is not
very understandable, reusable or maintainable as a unit.

(c)* A logical hierarchy of packages should be used to reflect o r
model levels of abstraction. [NWI

7S2 Nesting

(a)* Nested package bodies should be separate subunits.

(b) Subprogram bodies within a package should generally be separate
subunits (when this is possible).

(c) Packages should generally not be nested within subprograms,
except within the main procedure.

A possible exception to this recommendation is when a package has
objects of variable size which can be allocated when a procedure

Buffer package which implements a buffer area of a user-specified
size:

. is called. For example, suppose some data processing uses a

procedure Process - Data
(Buffer - Size : POSITIVE) is

...
package body Buffer is

type BUFFER TYPE is
array (INTEGER range < >) of DATUM;

Buffer Area : BUFFER TYPE (l..Buffer - Size); - -
...

end Buffer;

...
Note, however, that the nested package cannot be reused outside
the context of the procedure. An alternative would be to
allocate the buffer using an access type. This would require
careful handling of allocation and deallocation, but w-ould result
in a more self-contained package.

7 - 2

PACKAGES

(d) Nesting of a package specification inside another package
specification should generally be avoided.

When a package provides a good abstraction, it hides the details
of its implementation. Generally, nesting one package
specification inside another either exposes too much of the
internal details of the outer package, or indicates that the
outer package does not provide a good abstraction in the first
place. It is usually better to nest the package specification
within the body of the outer package. Certain of the inner
package operations can then be called on by outer package
operations which are at the approriate level of abstraction for
the outer package.

7.2 CODING

7C1 Initialization

(a) Calls from the initialization statements of a package to
subprograms outside the package should be avoided. [NW]

7C2 Visible Variables

(a) Variable declarations in package specifications should be
minimized.

The use of variables in a package specification generally reduces
the abstraction and information hiding properties of that
package. For example, a variable cannot provide protection
against being changed by units other than the package. Therefore
it is generally better to use a function r a t h e r thsr! a variable
to read data from a package. It is also generally better to use
a procedure rather than a variable to give data to a package,
since a variable cannot trigger any package operations and a
variable declaration often exposes some internal data
representation details of the package.

(a)* The private part of a package specification should only be used
to supply the full definitions of private types and deferred
constants; all other declarations should be put in the package body.
[NWI

(b) Objects of private type should be initialized by default, if
possible. [NW]

7.3 FORMAT

7F1 Package Names

(a)* A package name should be a noun phrase describing the abstract
entity modeled by the package, o r simply whatever is being packaged.

7 - 3

PACKAGES

Stack Handler
vehicle Controller
Terminai Operations
Parser Types
Utilities - Package

7F2 Package Header

(a)* Each package specification, body o r stub should be preceded by a
header comment block containing at least the package name and the
indication SPEC, BODY, STUB or SUBUNIT.

-- .
-- * *
-- * Lexical Analyzer * SPEC -- * *
-- .

-

7F3 Package Specifications

(a)* Package specifications should have the following format:

package <package identifier> is

- - I <documentary comments>

<declaration>
<declaration>

private -- <package identifier>
<declaration>
<declaration>

end <package identifier>;

The <documentary comments> should follow guideline (b) below. Note
that the <package identifier> should always be repeated at the "end"
of the package specifications.

(b)* A package specification should include AT LEAST the following
documentation immediately after the package header:

-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I

Purpose
A description of the purpose and function of the package.

Initialization Exceptions
A list of all exceptions which may propagate out of the
package INITIALIZATION PART and a description of when each
would be raised.

Notes
Additional comments on the use of the package.

7-4

PACKAGES

The "Initialization Exceptions" and "Notes" headers should be
included even if these sections are empty. An empty section may be
indicated by placing the annotation "(none)" after the appropriate
header. Only in the case of a package specification which is a
compilation unit, the following section should be added to the
documentation:

-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I

Modifications
A list of modifications made to the package SPECIFICATION.
Each entry in the list should include the date of the change,
the name of the person who made the change and a description
of the modification. The description should indicate exactly
where in the compilation unit that the change was made. The
first entry in the list should always be the initial coding
of the package specification.

(c) In a declarative part, all package specifications should appear
before any package or task bodies.

7F4 Package Bodies And Stubs

(a)* Package bodies should have the following format:

separate (<parent name>)
package body <package identifier> is

- - I <documentary comments>

<declaration>
<declaration>

begin -- <package identifier>
<statement>
< s t a t emen t >

exception
when <exceptions> =>

<statement>

end <package identifier>;

The <documentary comments> should follow guideline (b) below. Note
that the <package identifier> should always be repeated at the "end"
of the package body.

(b)* A package body should have at least the following documentation
placed immediately after the package header:

7 - 5

PACKAGES

- - I Notes
--I Comments on the design, implementation and use of the
- - I package.

The "Notes" header should be included even if the section is empty.
An empty section may be indicated by the comment "Notes (none)".
Only in the case of a package specification which is a compilation
unit, the following section should be added to the documentation:

-- I
-- I
-- I
-- I
-- I
-- I
-- I
-- I

Modi f i cations
A list of modifications made to the package BODY. Each
entry in the list should include the date of the change,
the name of the person who made the change and a
description of the modification. The description should
indicate exactly where in the compilation unit that the
change was made. The first entry in the list should always
be the initial coding of the package body.

(b)* Package stubs should have the following format:

package body <package identifier> is separate;

7-6

PACKAGES

7.4 EXAMPLES

See also example 12x3.

Example 7x1

-- .
-- * *
-- * Lexical - Analyzer * SPEC -- * *
-- .

with Basic Types,
Parser - Types;

package Lexical Analyzer is

Purpose
The routines in this package read the source program, one
character at a time, to generate a stream of tokens. As each
token is produced it is passed to the package "Parser". The
legal tokens are defined in the Language Reference Manual.

Initialization Exceptions
Diana - File - Non - Existent -- Raised if the file "DIANA.ADA"

does not exist

Notes
Tokens are limited to 32 characters in length. Also, only
sequential text files can be operated on by the parser.

Modifications
6/14/85 Rebecca DeMornay Initial version of spec.
8/26/85 C. Royale Added "Decode - Token" function.

Diana File Non Existent -
: exception;

Source File Not - Open
: exception;

Illegal Token
: exception;

7-7

PACKAGES

-- --
SPEC Obtain Next Token - - --

-- . --
procedure Obtain - Next - Token

...
-- --

Decode - Token SPEC --
--
--
function Decode Token -

return Parser Types.TOKEN VALUE TYPE; - - -

...
end Lexical - Analyzer;

7-8

PACKAGES

Example 7x2

I

-- .
-- * *
-- * Lexical Analyzer * BODY -- * *
-- .

with Text IO,
File-Handler; -

package body Lexical - Analyzer is
- - I Notes
- - I The package "Lexical Analyzer" will later be changed to a task,
- - I so that the "Parser"-task (now a package) can make an entry
- - I call to "Lexical - Analyazer" when it needs the next token.

- - I Modifications
- - I 6/14/85 Charity Royale Initial version of body.
- - I 8/26/85 C. Royale Added "Decode Token" function.
-- I

-- I

Added instantiation of "Enumeration - IO".

-- ** * * * * * * * * * * * * * * * *
-- * *
-- * Char IO * SPEC - -- * *
-- ** * * * * * * * * * * * * * * * *

package Char IO is
new Text - 1s.Enurneration - IO (Enum => Character);

- - I Purpose
- - I .Used to read the input text file character by character.
-- I
- - I Initialization Exceptions (none)
- - I Notes (none)

-- --
-- Obtain - Next - Token STUB
--
--
procedure Obtain - Next - Token

. . .
) is separate;

7-9

- 1

PACKAGES

-- --
-- Decode-Token --
--

STUB

function Decode - Token

return Parser - Types.TOKEN - VALUE - TYPE is separate;

...
begin -- Lexical - Analyzer

...
exception

when File Handler.File Error =>
raise DTana - File - Non-Existent -

end Lexical - Analyzer;

7-10

PACKAGES

Example 7x3

-- .
-- * *
-- * Disk * SPEC -- * *
-- .

generic

type SPECIFIC - DATA - TYPE is -- The type of data to be
(< > 1 ; -- stored on disk

package Disk is

I Purpose
I This package defines an abstract data type to simplify
I the 1/0 interface to disk files.

-- I
--I Initialization Exceptions (none)
- - I Notes (none) ,

- - I Modifications
- - I 9/10/86 Ada Users Group Initial version
-- I

type FILE TYPE is
private7

End Of File - -
: exception;

Open Error -
: exception;

Mode Error -
: exception;

subtype FILE MODE is
(IN - FILE, SUT - FILE);

7-11

PACKAGES

-- --
-- C r e a t e SPEC --
--
f u n c t i o n C r e a t e

(Name
: S T R I N G ;

Mode
: F I L E MODE := I N F I L E) -

r e t u r n FILE - TYPE;

Purpose
T h i s f u n c t i o n c r e a t e s a F I L E TYPE d a t a o b j e c t t o
r e p r e s e n t t h e d i s k f i l e wi th- the g i v e n name and mode.

Excep t ions (n o n e)
Notes
T h i s f u n c t i o n does n o t a c t u a l l y open t h e f i l e .

-- --
-- Close SPEC
--
--
procedure C lose

(D i s k F i l e -
: i n o u t F I L E TYPE 1 ; -

-- I Purpose
- - I T h i s p rocedure c l o s e s a d i s k f i l e i f i t i s open. I f
- - I t h e f i l e i s a l r e a d y c l o s e d i t h a s no e f f e c t .

- - I Excep t ions (n o n e)
- - I Notes (n o n e)

T- I

-- --
-- Read SPEC --
--
procedure Read

(D i s k - F i l e
: i n o u t F I L E - TYPE;

Data
: o u t S P E C I F I C DATA TYPE) ; - -

7-12

PACKAGES

Purpose
This procedure reads the next record from a file,
opening the file if necessary.

Exceptions
End Of File - raised if no more elements can be
Open Error - if the file cannot be opened
Mode-Error - if the file mode is not IN - FILE

- - read from the file

- -- I
- - I Notes (none)

-- --
-- Write SPEC
--
--
procedure Write

(Disk File -
: in out FILE TYPE; -

Data
: in SPECIFIC DATA TYPE 1 ; - -

- - I Purpose
- - I This function writes a record to a file,
- - I opening the file if necessary.
-- I

Exceptions
Open Error - if the fiie cannot be openned
Mode-Error -

Notes (none)

- if the file mode is not OUT - FILE

private -- Disk
-- .
-- * *
-- * Disk IO * SPEC - -- * *
-- .

package Disk IO is
new SequenFial - IO (SPECIFIC - DATA - TYPE);

I Purpose
I This package provides the basis for the representation
I of disk files.

-- I
- - I Initialization Exceptions (none)
- - I Notes (none)

7-13

PAC K AG E S

F i l e - Name L e n g t h
: c o n s t a n t := 4 0 ;

t y p e F I L E TYPE i s

F i l e - Name

F i l e

Mode

-
record

: S T R I N G (l . . F i l e N a m e - L e n g t h) := (o t h e r s => ’) ;

: D i s k 1 O . F I L E T Y P E ;

: F I L E MODE := D i s k I O . I N F I L E ;

-

- -

- -
end record?

end D i s k ;

7 - 1 4

CHAPTER 8

VISIBILITY

8.1 STRUCTURE

8S1 Scope

(a)* The scope of identifiers should not extend further than
necessary. Where a scope is extended by "with" clauses, these
clauses should cover as small a region of text as possible. [NW]

For example, "with" clauses should be placed only on the subunits
that really need them, not on their parents. This promotes
information hiding and reduces coupling. It can also result in
faster recompilation (due to the dependency rules).

8S2 The Package Standard

(a)* The package STANDARD should not be named in a "with" clause.

,
I 8 . 2 CODING

8C1 The Use Clause

(a)* The "use" clause should be used only in the following cases:

- for packages of commonly known utility operations used throughout a
program (eg, MATHLIB)

- to make overloaded operators visible, so that they may be used in
infix notation

- for predfined input/output packages (eg, Text - IO, instantiations of

- to make enumeration constants visible so that they can be named

Integer - IO, etc.)

without using the dot notation

Note that even when a rrusetl clause is used, the dot notation should
still be used in cases other than those listed above.

8-1

VISIBILITY

8C2 Renaming Declarations

(a) For a name with a large number of package qualifications, a
renaming declaration may be used to define a new shorter name. The
new identifier should still reflect the complete meaning of the full
name.

(b) For a function which can be appropriately represented by an
operator symbol name (see 6 C 4) , a renaming declaration may be used to
give it such a name.

For example a Matrix - Multiply function could be renamed " * " .
8C3 Redefinition

(a)* Items from the package STANDARD should not be redefined or
renamed.

(b) Redefinition of an identifier in different declarations should be
avoided. [N W]

8-2

CHAPTER 9

TASKS

9.1 STRUCTURE

9S1 Use

(a)* A task should fulfill one or more of the following:

- model a concurrent abstract entity appropriate to the problem
domain

- serve as an access-controlling or synchronizing agent for other
tasks, or otherwise act as an interface between asynchronous tasks

- serve as an interface to asynchronous entities external to the
program (eg, asynchronous I/O, devices, interrupts, etc.)

- define concurrent algorithms for faster execution on multiprocessor I a r chi tecture s

- perform an activity which must wait a specified time for an event
or have a specific priority

[NW] [Cherry] I
Just as for packages (guideline 7S1), it is best to have tasks
which model problem domain entities. However, in the case of
tasks it is a l s o necessary to have some tasks which solely
provide interfaces between other tasks and which handle the other
issues of concurrency and parallelism mentioned above. The
program should generally be structured, however, around the tasks
which represent problem-domain entities.

9S2 Nesting I
(a) Tasks should generally not be nested within tasks or subprograms,
except for the main procedure.

Note that a subprogram containing a task cannot return until the
task has terminated.

9-1

TASKS

(b)* Nested task bodies should be separate subunits, unless they are
quite small.

9S3 Visibility

(a) When only certain entries of a task are intended to be called by
program components outside on enclosing package, it is generally
preferable to hide the task specification in the package body,
introducing package procedures which in turn call the actual entries.
[NWl

This helps to promote information hiding and strengthens the
abstraction of the enclosing package (see also guideline 7S2d).
It also hides the use of tasking within the package. Note,
however, that special care must be taken if the task entries are
to be called using conditional or timed entry calls. In this
case either the outer package must provide special procedures o r
procedure parameters or this guideline should not be followed.

9.2 CODING

9C1 Task Types

(a)* A task type should be used only when multiple instances of that
type are required. Otherwise a directly named task should be used.
[NWI

(b)* Identical tasks should be derived from a common task type. [NW]

(c)* Static task structures should be used whenever they are
sufficient. Access types to task type should be used only when it is
essential to create and destroy tasks dynamically, or to be able to
change the names with which they are associated. [NW]

9C2 Task Termination

(a)* A task nested within the main program must terminate by reaching
its "end", or must have a selective wait with a terminate
alternative.

All tasks nested within program must terminate before the program
can terminate. Therefore, if this guideline is not followed, it
will be impossible for the main program to ever terminate other
than by aborting all nested tasks. However, "abort" statements
are t o be avoided (see guideline 9 C 7) .

(b)* Tasks dependent on library units should not use the "terminate"
alternative of a select statement. Therefore, other provision should
be made for the graceful termination of such tasks at system close
down. [NW]

Tasks which are dependent on library units will not terminate due
to a "terminate" alternative [RM]. Therefore a library unit task
should have an entry which forces termination. If it does not,
an "abort" statement in the main program may be used to terminate

9-2

TASKS

the task. However, "abort" statements are to be avoided (see
guideline 9C7).

9C3 Entries And Accept Statements

(a)* Only those actions should be included in the "accept" statement
which must be completed before the calling task is released from its
waiting state. [N W I

(b)* A task should never call its own entries, even by indirection.

This would result in a deadlock.

(c) Conditional entry calls should be used sparingly to avoid
unnecessary busy waiting. [NW]

9C4 Delay Statement

(a)* A "delay" statement should be used whenever a task must wait for
some known duration. A "busy wait" loop should never be used for
this purpose.

It is important to remember that "delay t" provides a delay of at
least t seconds, but possibly more. A program should not rely on
any upper bound for this delay, especially when tasks are used
(since tasks must compete for CPU time). The following example
shows how to alleviate this problem in a periodic activity:

...
Next - Time := Calendar.Clock + Required - Period;

Periodic Activity:
while Still - Time loop

-- Perform activity ...
-- Correct for delay statement incertitude
Period := Next - Time - Calendar.Clock;
if Period < 0.0 then -- processing was too slow
Next Time := Calendar.Clock -- Avoid cumulative effect

end if?
Next - Time := Next - Time + Required - Period;

delay Period; , end loop Periodic - Activity;

(b) The "delay" statement should normally only be used to manage
interaction -with some external process which works in real time, or
to create a task which behaves in a well-defined manner in real time.
[N W l

9-3

TASKS

9C5 Task Synchronization

(a)* Knowledge of the execution pattern of tasks (eg, fixed, known
time pattern, etc.) should not be used to avoid the use of explicit
task synchronization. [NW]

9C6 Priorities

(a) Only a small number of priority levels should be used. The
priority levels used should be spread over the range made available
to type PRIORITY in the implementation. Names should be given to the
priority levels by declaring constants of predefined type PRIORITY
and grouping these declarations into a single package.

Using only a small number of priority levels makes the
interaction of the various prioritized tasks easier to
understand. On the other hand, spreading the levels across the
available range allows easy insertion of a new level between
existing levels if this later becomes necessary. As with other
literal numbers, the use of names is more readable than the use
of the literals. Further, for priorities, the allowable range of
levels is implementation dependent. Naming priority levels by
constant declarations grouped into a single package restricts the
implementation dependency to that package. For example:

with System;
package Priority - Levels is

Lowest

Highest

Numbe r

Average

: constant System.PRIORITY := System.PRIORITY'first;

: constant System.PRIORITY := System.PRIORITY'last;

: constant := Highest - Lowest + 1;

: constant System.PRIORITY := Number / 2;

Idle

Background

User

Foreground

: constant System.PRIORITY := Lowest;

: constant System:PRIORITY := Average - 20;

: constant System.PRIORITY := Average - 10;

: constant System.PRIORITY := Average + 10;

end Priority - Levels;

(b) For any group of related tasks, such as those declared within the
same program unit, priorities should be specified either for all, or
for none of them. [NW]

This avoids confusion about the scheduling of tasks with
undefined priorities.

9-4

TASKS

9C7 Abort Statements

(a) Abortion of tasks should generally be avoided.

Aborting a task can produce unpredictable results. In
particular, do not assume anything ahout the moment at which an
aborted task becomes terminated [NW]. The "abort" statement
should generally be used only in case of unrecoverable failure.

9C8 Shared variables

(a)* Tasks should not directly share variables unless only one of
them can possibly be running at any one time.

(b)* Any task which uses shared variables should identify in its
documentary comments all the shared variables that it uses.

9C9 Local Exception Handling

(a) To allow the handling of local exceptions without task
termination, a task should generally have a block statement with an
exception handler coded within its main loop.

begin -- Some - Task

Main Loop:
loop-

Local:
begin

-- Task code ...
exception -- Local ... handle local exceptions ...
end Local;

end Main - Loop;

... handle fatal exceptions ... except ion

end Some - Task;

9.3 FORMAT

9F1 Task And Entry Names

(a)* A task name should be a noun phrase describing the task function
or abstract entity modeled by the task.

Sensor Interface
StatusIMonitor

9-5

TASKS

Event Handler
Message - Buffer

(b)* Entry names should follow the same guidelines as for procedure
names (guideline 6F1).

9 F 2 Task And Entry Headers

(a)* Each task or task type specification or body and each entry
specification should be preceded by a header comment .block containing
at least the unit name and the indication SPEC, BODY or STUB.

-- .
-- * *
-- * Buffer * SPEC
-- * *
-- .

task Buffer is

--
--
-- Read SPEC --
--
entry Read

9 F 3 Task Specifications

(a)* Task specifications should have the following format:

task <task identifier> is

- - I <documentary comments>

<declaration>
<declaration>

end <task identifier>;

The <documentary comments> should be AT LEAST as required for a
procedure declaration (guideline 6F3), except for the "Exceptions"
section. Note that the <task identifier> should always be repeated
at the "end" of the task specification.

(b)* A task type specification should be formatted the same as a task
specification, with the exception of including "task type" in the
header.

(c)* Entry declarations should have the following format:

9-6

TASKS

entry <entry identifier> (<family range>)
(<parameter specification>;
(parameter specification>) ;

- - I <documentary comments>

Each <parameter specification> should be formatted like an object
declaration (guideline 3F4). The <documentary comments> should be AT
LEAST as required for a procedure declaration (guideline 6F3).

(a)* Parameter mode indications should always be used in entry
declarations.

(e) In a declarative part, all task specifications should appear
before any task or package bodies.

9F4 Task Bodies And Stubs

(a)* Task bodies should have the following format:

separate (<parent>)
task body <task identifier> is

- - I <documentary comments>

<declaration>
<declaration>

begin -- <task identifier>
<statement>
<statement>

exception
when <exceptions> =>

<statement>

end <task identifier>;

The <documentary comments> should be AT LEAST as required for a
- procedure body (guideline 6F4). Note that the <task identifier>
should always be repeated at the "end" of the task body.

(c)* Task stubs snould have the following format:

task body <task identifier> is separate;

9F5 Accept Statements

(a)* "Accept" statements should have one o f the following formats:

9-7

TASKS

accept <entry identifier> (tentry index>);

accept <entry identifier> (<entry index>)
(<parameter specification>;
<parameter specification> 1

do
<statement>
<statement>

end <entry identifier>;

Each <parameter specification> should be formatted like an object
declaration (guideline 3F4). Note that the <entry identifier> should
always be repeated at the "end" of the "accept" (if there is an
"end").

(b)* Parameter mode indications should always be used in accept
statements.

9F6 Select Statements

(a)* Selective wait statements should have the following format:

select
<statement>
<statement>

<statement>
<statement>

when <condition> =>

or

or

<statement>
<statement>

else
< statement >
<statement>

end select;

This format is consistent with the indentation style of other
statements. In addition, the added level of indentation
especially highlights guarded sections of code.

(b)* Conditional and timed entry calls should have the following
format :

select
<entry call>
<statement>

<statement>
< stat e men t >

else

end select;

9-8

TASKS

9F7 Pragma Priority

(a) The priority pragma should appear in task specifications before
any entry declarations, and in the main program before any
declarations. [NWI

9-9

TASKS

9 . 4 EXAMPLES

Example 9x1

-- .
-- * *
-- * Buffer * SPEC -- * *
-- .

task Buffer is

--I Purpose
- - I This task provides a character buffer to smooth variations
- - I between the speed of output of a producing task and the speed
- - I of input of a consuming task.
-- I
--I Exceptions (none)
--I Notes (none)

-- --
-- Read SPEC
--
--
entry Read

(Output : out Character);

Pur pose
This entry reads a character from the buffer.
If the buffer is empty, the entry will wait
until a character is written into the buffer.

Exceptions (none)
Notes (none)

-- --
-- Write SPEC --
--
entry Write

(Input : in Character);

- - I Purpose
- - I This entry writes a character into the buffer.
- - I If the buffer is full the entry will wait
- - I until a character is read from the buffer.

- - I Exceptions (none)
- - I Notes (none)

-- I

9-10

TASKS

end Buffer;

9-11

TASKS

Example 9x2

-- . -- * *
-- * Buffer * BODY -- * *
-- .

separate (Buffer Package)
task body Buffer-is

- - I Notes
- - I This task contains an internal pool of characters processed
- - I in a round-robin fashion.

- - I Modifications
- - I 7/2/86 Fred Blah Initial version.

-- I

-- I
pool Size -

: constant := 100;

subtype POOL RANGE is
INTEGER range I..POO~ - Size;

type POOL TYPE is
array (POOL - RANGE) of CHARACTER;

Pool
: POOL - TYPE;

: INTEGER range O..Pool - Size -- the p o o l .
Count -- The number of characters in

:= 0;

In Index -
: POOL RANGE := 1; -

Out Index -
: POOL RANGE := 1; -

-- The space for the next input
-- character.
-- The space for the next output
-- character.

9-12

TASKS

begin -- Buffer
loop

select
when Count < Pool - Size =>

accept Write

do

end Write:

(Input : in Character)

Pool(1n Index) := Input;

In Index := In Index mod Pool - Size + 1;
Count := Count-+ 1;

or
when Count > 0 =>

accept Read

do

end Read;

(Output : out Character)

Output := Pool(0ut - Index);

out Index := Out Index mod Pool - Size + 1;
couiit := Count --I;

or
terminate;

end select;

end loop;

end Buffer;

9-13

TASKS

Example 9x3

-- --
-- She 11 sort BODY
--
--
procedure Shellsort

(List -- This list will be sorted
: in out ITEM - LIST; -- in place.

: in SATURAL ;
Number Of Items

- - I Notes
- - I This sorting procedure implements the Shell sort by
- - I seperating the n-sorts into multiple Ada tasks.
- - I This algorithm is designed for parallel processing
- - I of the tasks and is not necessarily an efficient
- - I method on a single processor.
-- I
- - I Modifications
- - I 9/5/86 A. Shell Initial version
-- I

Increment
: NATURAL;

Number Of Sorts
: NATURAL;

-- Increment of an n-sort

-- Number of paralled sorts
-- for a single pass

Number Of Tasks
: NATURAL;

-- .
* *

SORTER TASK * *
-- .

--
SPEC * * - --

--

task type SORTER-TASK is

- - I Purpose
- - I Tasks of this type perform the n-sort for the Shell sort.
-- I
- - I Notes
- - I A SORTER TASK terminates itself when i t is no longer
- - I needed f o r the s o r t .

9-14

TASKS

I

-- --
-- sort SPEC --
--

task body SORTER - TASK is separate;

. type SORTER ARRAY is
I array (INTEGER range < >) of SORTER - TASK;

entry Sort
(First : in INTEGER;
Step : in NATURAL) ;

I Purpose
I This entry signals a sorter task to perform a new
I n-sort. Elements are sorted in place in List,
I starting with the element at index First and
I including subsequent elements at the indicated Step.

-- I
- - I Exceptions (none)
--I Notes (none)

end SORTER - TASK;

-- .
-- * *
-- * SORTER TASK * STUB - -- * *
-- .

begin -- Shellsort

if Number Of Items < 2 then

end if;

- -
return;

-- Determine the first n-sort increment.
Increment := 1

while Increment < Number Of Items
Increment := 3*1ncremeiit T 1;

end loop;

Increment := Increment / 3 ;
if Increment < 1 then

end if;
Increment := 1;

-- Determine the number of tasks required to perform
-- the sort.
if Number - - Of Items / Increment = 1 then

9-15

TASKS

Number Of Sorts := Number Of Items mod Increment;
if IncTement/3 > Number of Sorts then

else

end if;

Number - - Of Tasks := Increment / 3;

Number - - Of Tasks := Number-Of-Sorts;

else
Number Of Sorts := Increment;
Number-Of-Tasks - - := Number - Of-Sorts;

end if;

-- Perform the sort

Task Block:
declare

Sort List -
: SORTER ARRAY (1 .. Number Of Tasks); - - -

begin

while Increment > 0 loop

for K in 1 .. Number Of Sorts loop - -
Sort List(K).Sort

(First => List'first + K - 1,
Step => Increment 1;

end loop;

Increment := Increment / 3 ;
Number - - Of Sorts := Increment;

end loop;

end Task - Block;

end Shellsort;

9-16

TASKS

Example 9x4

-- .
-- * *

* SORTER TASK * SUBUNIT -- - -- * *
-- .

separate (Shellsort)
task body SORTER TASK is -

Notes
This task body implements a task type.

Modifications
9/5/86 A. Shell Initial version

-- Global variables
-- List -- An array of all items to be -- sorted by Shellsort.
-- Number Of Items -- The number of items in the list. - -

Start : INTEGER;
Increment : NATURAL;

A : INTEGER;
B : INTEGER;
First - B : INTEGER;

Temp : INTEGER;

begin -- SORTER TASK -

loop

accept Sort

do

(First : in INTEGER;
Step : in NATURAL)

Start := First;
Increment := Step;

end Sort;

First B := Start + Increment;
while-First B <= List'first + Number Of Items - 1 loop - - -

B := First B ;
A := B - Increment;
Find Position:
while A >= Start loop

exit when not (List(A) > L i s t (B)) ;

9-17

TASKS

Temp := List(A);
List(A) := List(B);
List(B) := Temp;

B := A;
A := B - Increment;

end loop Find - Position;

First B := First - B + Increment; -
end loop;

-- Terminate if task is not needed for n-sort
exit when Increment/3 < Start - List'first + 1;

end l oop ;

end SORTER - TASK;

9-18

CHAPTER 10

PROGRAM STRUCTURE AND COMPILATION ISSUES

10.1 STRUCTURE

lOSl Program Units

(a)* Library units should be used in the following cases:

- to allow configuration control of the high level functional

- for general purpose, reusable program units
[ACGE]

subsystems of a program

(b)* Nested program units should be used in the following cases:

- to allow direct access to objects declared in an enclcsing scope
- to increase the structural hiding of the internal implementation

details of an enclosing pr~gram =nit

[ACGE]

(c)* Bodies of nested program units should be made separate unless
they are small enough not to effect the readability of the enclosing
unit.

(d) Library units which are packages are generally preferable over
library units which are subprograms. Library units providing
services to the main program should be packages.

10S2 With Clauses

(a)* No unit should have a "with" clause for a unit it does not need
to see directly.

(b) If only a small part of a given unit needs access to a library
unit, then it should generally appear as a subunit and have its own
"with" clause for that library unit (see also guideline 8S1) [NW].

10-1

PROGRAM STRUCTURE AND COMPILATION ISSUES

10S3 Program Unit Dependencies

(a) Excessive dependencies between compilation units should be
avoided, especially the use of complicated networks of "with"
clauses.

(b) It is preferable to limit program unit dependencies to a tree
structure whenever possible [NW].

10.2 FORMAT

lOFl Compilation Units

(a)* Each compilation unit should be in a separate file, except
possibly in the case of a generic procedure specification and its
body.

10-2

CHAPTER 11

EXCEPT1 ONS

11.1 STRUCTURE

1lSl Exception Propagation

(a) Exceptions propagated by a program unit should be considered part
of- the abstraction or function represented by that unit. Therefore,
it should generally only propagate exceptions which are appropriate
to that level of abstraction. If necessary, an exception which
cannot be handled by a unit at one level of abstraction should be
converted into an exception which can be explicitly recognized by the
next higher level.

For example, a Stack package, should provide a Stack-Full
exception instead of propagating a Constraint Error.
a Matrix Inverse function should raise a Matrix - - Is Singular
exception rather than propagating Numeric - Error.

Similarly,

11.2 CODING

llCl Use

(a)* An exception should be used only for one or more of the
following reasons:

- it reports an irregular event which is outside the normal operation
of a program unit or is in some sense an error

- it is used where it can be argued that it is safer (more defensive)
than the alternative, in particular to guard against omissions of
error checking code f o r especially harmful errors

test at the point of cause/occurence and thus use of the exception
enhances readability.

Exceptions declared in package specifications are really part of
the abstraction defined by that package. Therefore their use
should be integral to the design of the package (see also
guideline lOSl).

- it reports an event for which it is inconvenient or unnatural to

11-1

EXCEPTIONS

Also, note that the predefined exceptions should be used with
care. Due to allowable implementation differences, they should
not be relied upon to indicate particular circumstances. [NW]

(b)* Exceptions should not be used as a means of returning normal
state information. [NW]

For example, a Stack package may have Stack Full and Stack Empty
exceptions which are raised by its Push and-Pop subprograms.
However, these subprograms should NOT be used solely to raise
exceptions to test if the appropriate conditions are true.
Instead, the package should provide BOOLEAN functions such as
Full and Empty to test for these state conditions.

llC2 Exception Handlers

(a)* The exception handler choice "others" should be used only if it
is necessary to ensure that no UNANTICIPATED exception can be
propagated or if some special action must be taken before
propagation.

For example important tasks should generally have an "others"
clause in a local exception handler (see guideline 9C9) to
prevent them from terminating due to unanticipated exceptions.
However, in the case when it can be expected that a certain
exception may sometimes occur, than that exception should always
be explicitly named in the exception handler.

(b)* Recursion should not be used within an exception handler.

(c) Exception handlers on block statements should be used sparingly.

One of the advantages of using exceptions is that it separates
the error handling code from the more often executed
normal-processing code. Excessive use of exception handlers in
block statements can defeat this advantage.

llC3 Raise Statements

(a)* Exceptions declared in the specification of a package which
represents a problem domain entity should not be raised outside that
package.

Exceptions declared in a package specification should be
considered part of the abstraction defined by that package.
These exceptions provide special "signals" from the package
operations, and should thus not be raised outside of the package.

(b)* Exceptions raised within a task should always be handled within
that task.

Note that in the case of an exception raised during a rendezvous
the exception will also be propagated back to the point of the
entry call.

11-2

EXCEPTIONS

I (c) The predefined exceptions should generally not be explicitly .
raised.

llC4 Exception Propagation

(a)* Exceptions should not.be allowed to propagate outside their own
scope. [NW]

An exception may be allowed to propagate to any point where it
can be named in an exception handler. Note that this includes
the case where an exception is defined in a package specification
and has its scope "expanded" by a "with" clause. What must be
avoided are cases such as the following:

. . .-
procedure Raise Exception is

Hidden - Exception : exception;
begin

raise Hidden Exception;
end Raise - Exception;

begin
Raise Exception;
-- "HTdden - Exception" CANNOT be named at this point
...

l l C 5 Suppressing Checks

(a)* Checks should not be suppressed except for essential efficiency
or timing reasons in thoroughly tested program units.

ii.3 FORMAT

llFl Exception Declarations

(a) * Exception declarations should be formatted like object
declarations (guideline 3F4).

11-3

EXCEPTIONS

11.4 EXAMPLES

See examples 5x4, 6x5, 7x2 and 14x2.

11-4

CHAPTER 12

GENERIC UNITS

12.1 STRUCTURE

12S1 Use

(a)* Generics should not be used in situations in which normal
programming constructs are equivalent. [NW]

(b)* A generic program unit should fulfill one or more of the
following:

- provide logically equivalent operations on objects of different
type

- parameterize a program unit by a subprogram value
- provide a data abstraction required at many points in a program,

even if no parameterization is required [NWj

- p r n v i d ~ parameters which are particularly appropriate to be fixed
at declaration o r elaboration time.

12S2 Generic Library Units

(a) Generic units should generally be library units. [N W I

12S3 Generic Instantiation

(a) The most commonly used generic instantiations should generally be
placed in library units.

(b) Generic instantiations should be used cautiously within generic
units.

12.2 CODING

12-1

GENERIC UNITS

12C1 Generic Formal Subprograms

(a)* The actual subprograms associated with the formal subprogram
parameters of a generic unit should be consistent with the conceptual
meanings of the formal parameters (e.g., only functions which are
conceptually "adding operations" should be associated with a formal
parameter named "plus" 1 . [N W I

(b) Operator symbol function generic parameters should generally be
provided with a box default body ("is < > ") .

with function " < "

Y : ITEM)
(X : ITEM;

return BOOLEAN is < > ;

12C2 Use Of Attributes

(a) In writing generic bodies, attr.ibutes should be used as much as
possible to generalize the code produced. [NW]

12.3 FORMAT

12F1 Generic Declarations

(a)* Generic declarations should have the following format:

generic
<declaration>
<declaration>

(program unit specification>;

- - I <documentary comments>

Each <declaration> should be formatted like its non-formal
counterpart (guidelines 3F3 and 3F4), except for formal subprograms
which should be formatted as in (b) below. The <program unit
specification> should be formatted as for non-generic units
(guidelines 6F3 and 7F3).

(b)* A generic formal parameter subprogram declaration should have
one of the following formats:

with tsubprogram specification>;
-- 1 <purpose>

with <subprogram specification> is < > ;
-- 1 <purpose>

with <subprogram specification> is <default name);
-- 1 <purpose>

The tsubprogram specification> should be formatted a s for a
subprogram declaration (guideline 6F3). However, generally the only
documentation needed on formal subprograms is the "Purpose".

12-2

GENERIC UNITS

(c)* A generic declaration should be preceeded by the appropriate
unit header block (guidelines 6F2 and 7F2).

12F2 Generic Instantiations

(a) * Generic instantiations should have one of the following formats:

<unit header> is
new <generic name> (<generic argument), <generic argument>);

- - I <documentary comments>

<unit header> is
or:

new (generic name>
(<generic parameter> => <generic argument>,
(generic parameter) => <generic argument> 1;

- - I <documentary comments>

Note that in the second form the arrows (" = > ") should be kept
aligned. The <documentary comment's> should be the same as those
required f o r a specification of the appropriate kind of unit
(guidelines 6F3 and 7F3).

(.b)* Generic. instantiations should have the same kind of header .

comment block as for a specification of the appropriate kind of unit
(guidelines 6F2 and 7F2).

12-3

GENERIC UNITS

12.4 EXAMPLES

See also examples 7 x 2 and 7 x 3 .

Example 1 2 x 1

-- --
She1 1 sort SPEC --

--
--
generic

type ITEM is
private; -- The type of items sorted

type ITEM LIST is -- The type of the item list
array (INTEGER range < >) of ITEM;

with function " < "
(Left : ITEM;

return BOOLEAN is < > ;
Right : ITEM 1

- - I Purpose
- - I This function defines the ordering used when the
- - I items are sorted.

procedure Shellsort

(List -- This list will be sorted
: in out LIST - TYPE; -- in place.

N -- The number of items in
: in NATURAL) ; -- the list.

1 Purpose
I This procedure sorts the items in List using a Shell
I sort algorithm designed f o r parallel processing.

-- I
- - I Exceptions (none)
- - I Notes
- - I (This is a generic declaration for the procedure
- - I body given in example 9 x 3 .)
-- I
- - I Modifications
- - - I 9/5 /86 A . Shell Initial version
-- I

1 2 - 4

I GENERIC UNITS

I
Example 12x2

-- --
Name Sort SPEC - --

--
--
procedure Name Sort is

new Shellsorx
(ITEM => NAME,

LIST TYPE => NAME - LIST) ; -

1 2 - 5

GENERIC UNITS

Example 12x3

-- .
* * --

-- * Unit Statistics * SPEC
-- * * -
-- .

with TEXT, - IO;
generic

Unit Name -
: STRING;

-- Name of the unit for which
-- statistics are to be kept.

type ELEMENT - TYPE is -- Enumeration type of the elements
(< >) ; -- to be counted.

package Unit - Statistics is

- - I Purpose
- - I This package provides operations to keep counts for the
- - I various elements of a program unit.
- - I incremented or printed out in a report.

- - I Initialization Exceptions (none)
- - I Notes
- - I This package is based on the generic package "Task - Statistics"
- - I written by Dan Roy.
-- I
- - I Modifications
- - I 8/18/86 Ed Seidewitz Initial version

These counts can be

-- I

-- --
Number Of Lines SPEC - - --

--
--
function Number Of Lines

return POSITIVE;-

- - I Purpose
- - I This function returns the number of lines printed by
- - I procedure Report since the last call to Number - - Of Lines.

- - I Exceptions (none)
- - I Notes (none)

-- I

12-6

GENERIC UNITS

-- --
Count Of SPEC - --

--
--
function Count - Of

(Element

return NATURAL;
: ELEMENT TYPE)

- - I Purpose
- - I This function returns the current count for the specified
- - I element.
-- I
- - I Exceptions (none)
- - I Notes (none)

-- --
-- Increment --
--

SPEC

procedure Increment
(Element

: in ELEMENT - TYPE;

: in INTEGER := 1 1 ;
By - Amount

I Purpose

I element by a certain amount. By default, this amount
1 This pic<eduie increments t h e C G U E ~ f ~ r t h e specified

--I is one.
-- I
- - I Exceptions (none)
- - I Notes (none)

12-7

GENERIC UNITS

-- --
-- Report SPEC
--
--
procedure Report

(Report File
: Text - 1O.FILE-TYPE) ;

- - I Purpose
- - I This procedure prints a report of all statistics for
- - I this unit to the specified text file.
-- I
- - I Exceptions (none)
- - I Notes (none)

end Unit - Statistics

Example 12x4

-- .
*
*

*
*

-- *
--

SPEC Telemetry - Reader - Statistics *
--
-- .

package Telemetry Reader - Statistics is
new Unit StatisTics

ELEMENT - TYPE
(Unit-Name => "Telemetry Reader",

=> READER - ELEMENTS 1 ;

- - I Purpose
- - I This package collects statistics on elements of the
- - I Telemetry - Reader.

- - I Initialization Exceptions (none)
- - I Notes (none)

-- I

12-8

CHAPTER 13

REPRESENTATION CLAUSES AND IMPLEMENTATION-DEPENDENT FEATURES

13.1 STRUCTURE

13S1 Encapsulation

(a)* Representation clauses and implementation dependent features
should, if possible be hidden inside packages which present
implementation independent interfaces to users. [NW]

13.2 CODING

13C1 Use

(a)* Machine dependent and low-level Ada features should not be used
except when absolutely necessary.

(b)* Representation clauses and implementation-dependent features
should only be used for one of the following:

- to increase efficiency (when absolutely necessary)

- for interrupt handling
- for interfacing to hardware, foreign code or foreign data
- to specify task storage size
Further, address clauses should be used with entries only to
associate them with hardware interrupts.

(c)* Representation clauses should not be used to change the meaning
of a program. [NW]

13C2 Interrupts

(a) Interrupt routines should be kept as short as possible. [N W I

13-1

REPRESENTATION CLAUSES AND IMPLEMENTATION-DEPENDENT FEATURES

13.3 FORMAT

13F1 Representaion Clauses

(a)* Representation clauses should be placed near to the objects they
affect.

13-2

CHAPTER 14

INPUT-OUTPUT

14.1 STRUCTURE

14.51 Encapsulation

(a)* Use of the Low Level - IO procedures should always be encapsu*ated
in packages or tasks.

(b) Use of the Low Level IO procedures should generally be
encapsulated in task objects associated with each item of controlled
equipment. [NWI

(c,) File management and textual input-output software should
generally be encapsulated in specialized packages with simple
interfaces. [NWI

This should include file interface code, textual formatting code
and user interface code. User interface encapsulation can be
especially useful when a system must accomodate increasing levels
of user interface sophistication or changing user needs over its
lifetime. In these cases it is crucial that details of the
implementation of the user interface be hidden so that changes
can be made to it without affecting the rest of the system.

14.2 CODING

14C1 Text Formatting

(a)* Line and page formatting should be done using the New Line and
New Page subprograms, rather than explicitly writing end-OF-line or
end-of-page characters.

14C2 Low-Level Input-Output

(a)* Use of package Low - Level - IO should be avoided unless absolutely
necessary.

14-1

INPUT-OUTPUT

14C3 Form Parameter

(b) Use of the Form parameter of the Open and Create procedures
should generally be avoided.

The "Form" parameter on the file Open and Create procedures
specifies system-dependent file characteristics. This can reduce
both readability and portability, and so should only be used i f
absolutely necessary.

14-2

INPUT-OUTPUT

14.3 EXAMPLES

See also examples 5x3, 5x4 and 7x3.

Example 14x1

-- --
-- Report SUBUNIT
--

I --
separate (Unit Statistics)
procedure Report is

(Report File
I : in-Text - 1O.FILE - TYPE) is
I

- - I Notes
- - I This example is based on Task - Statistics.Report
- - I by Dan Roy.
-- I
- - I Modifications
- - I 8/18/86 Ed Seidewitz Initial version

Unit - Name Column
: constant := 10;

Value column
: constant := 40;

use Text IO; -- For output operations. -
begin -- Report

-- Print header
,New Line (Report File);
Set-Col (Report File, To => Unit - Name - Column);
Put-Line - (ReporF File,

New Line (Report File);
Numser-Lines - Printed := Number - Lines - Printed + 2 ;

-- Print "element name element value" for all elements
f o r Element in Statistics Array'range loop

"Statistics lor & STRING(Unit - Name)) ;

Put (Report File, ELEMENT - TYPE'image (Element));
Set Col (Report File, To => Value - Column);
Put-Line - (Repor'f File,

Number Lines - Printed := Number - Lines - Printed + 1;
INTEGER'image (Statistics-Array(E1ement)));

end loop7

end Report;

i
14-3

INPUT-OUTPUT

Example 14x2

--
--
-- Re ad SUBUNIT
--
--
separate (Disk)
procedure Read

(Disk File -
: in out FILE - TYPE;

Data
: out SPECIFIC - DATA - TYPE) is

- - I Notes
- - I (This is the body of procedure Read in example 7x3)
-- I
- - I Modifications
- - I 9/10/86 Ada User's Group Initial version
-- I
begin -- Read

if not Disk 10.1s Open(Disk - File-File) then

end if;
Open FileTDisk - File);

Disk 1O.Read
(File => Disk File.File,
Item => Data-);

exception

when Disk 1O.End Error =>
Disk IoTClose TDisk - File.File);
raise End - - Of File;

raise Open - Error;
when Disk 1O.Name Error 1 Disk - IO.Use - Error =>

when Disk 1O.Mode Error =>
raise Mode - Erro?;

end Read;

14-4

REFERENCES

[ACGE]

[Booch]

[Cherry]

[Gardner]

Ausnit, Cohen, Goodenough and Fanes. Ada in Practice.
Springer Verlag, 1985.

Booch, Grady. Software Engineering with Ada.
Benjamin-Cummings, 1983.

Cherry, George. PAMELA. Course Notes, 1985.

Gardner, et al. Intellimac Ada Style Manual
(2nd edition). Intellimac, June 1983.

Myers, G. J. Reliable Systems through Composite Design.
Van Nostrand, 1975.

Nissen and Wallis (ed). Portability and Style in Ada.
Cambridge University Press, 1984.

Quimby and Agresti. Ada Style Guide. CSC,
February 12, 1986.

Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A-1983

Yourdon and Constantine. Structured Design.
Prentice-Hall, 1979.

R- 1

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinas From the First Summer Software Enai-
neerinu Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-
aineerina Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Desian Suecifications Lanuuaaes
Studv, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Procee dinas From the Third Summer Software Enai-
neerim WorkshoD, September 1978

SEL-78-006, GSFC Software Enaineerinu Research Reuuirernents
Analysis Studv, P. A . Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicabili 1 h SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Proaram
(SAP) User's Guide (Revision 3) , W. J. Decker and
W. A . Taylor, July 1986

SEL-79-002, The Software Enaineerina Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module ReRositorv (CSMR) Svstem
Descriution and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
aram Desian Lansuaae (PDL) in the Goddard Space Fliaht Cen-
ter (GSFC) Code 580 Software Desian Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1

SEL-79-005, Proceedinas From the Fourth Summer Software En-
aineerina Workshop, November 1979

SEL-80-002, Multi-Level ExDression Desian Lanauaae-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Comuatibilitv Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 19'80

SEL-80-006, Proceedinas From the Fifth Annual Software Enai-
neerina Workshopj November 1980

SEL-80-007, An ARDraiSal of Selected Cost/Resource Estima-
tion Models for Software SYstems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enaineerina Laboratory Proarammer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatina Software Development bv Analysis of
Chanae Data, D. M. Weiss, November 1981

SEL-81-012, The Ravleiah Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedinas From the Sixth Annual Software Enai-
neerina Workshop, December 1981

SEL-81-014, Automated Collection of Software Enaineerinq
Data in the Software Enaineerina Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Enaineerina Laboratory (SEL) Data Base
Oraanization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

B-2

I

SEL-81-104, The Software Enuineerinu Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Enuineerina Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Enuineerinu Laboratory (S EL) Co muendium
of, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Indeuendent Verification and
Validation (IV&V) Methodolouv for Fliuht Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Enuineerina Laboratory (SEL) Data Base
Maintenance Svste m (DBAM) User's Guide and System Descriu-
tion, P. Lo, June 1984

SEL-81-205, Recommended Auuroach to Software Develoument,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manauement Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Ensineerina Laboratorv (SEL) Data Base
Reportinu Software User's Guide and System Description,
P. Lo, August 1983

SEL-82-004, Collected Software Enuineerinu Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedinas From the Seventh Annual Software
Enuineerinu Workshou, December 1982

SEL-82-008, Evaluatinu Software Develoument bv Analysis of
Chanues: The Data From the Software Enuineerinu Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Prouram
(SAP) System Descriution (Revision 11, W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enuineerinu Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

B-3

SEL-82-406, Annotated Bibliouraphv of Software Ensineerinq
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1986

SEL-83-001, An Approach to S oftware Cos t Estimation,
F. E. McGarry, G. Page, D. N, Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enaineerinu Papers: Vol-
ume 11, November 1983

SEL-83-006, Monitorinu Software Development Throush Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedinus From the Eiuhth Annual Software En-
uineerinu Workshop, November 1983

SEL-84-001, Manauer's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Confisuration Manauement and Co ntrol: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investiuation of Specification Measures for the
Software Enuineerins Laboratorv (SELL, W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinus From the Ninth Annual Software Ensi-
neerinu Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niuues, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Traininu Evaluation and Recommendations From
the Gamma Ray Observatorv Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Enaineerinu Papers:
Volume 111, November 1985

SEL-85-004, Evaluations of Software Technolouies: Testinu.
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testinq, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinus From the Tenth Annual Software
Ensineerinu Workshop, December 1985

B-4

SEL-86-001, Proarammer's Handbook for Fliaht Dynamics So ft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Develoument,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliaht Dynamics Svs tem Software Develoument En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enaineerina Pauers:
Volume IV, November 1986

SEL-86-005, Measurina Software Desian, D. N. Card, October
1986

SEL-86-006, Proceedinas From the Eleventh Annual Software
Enqineerinq Workshoe, December 1986

SEL-87-001, Product Assurance Policies a nd Procedures for
Fliaht Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Stv le Gu ide (Version 1.11, E. Seidewitz
et al., May 1987

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Enaineerina La borato ry, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedinas of the First International Symposium on Ada for
the NASA Suace St ation, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Proaram Transformation and Pro-
gramminu Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedinas of the
Fifth International Conference on Software Enaineerinq.
New York: IEEE Computer Society Press, 1981

lBasili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Comuuter Technoloav,
January 1980, vol. 1

B-5

- I

Basili, V. R., Tutorial on Models and Metrics for Software
Manaaement and Enaineerinq. New York: IEEE Computer
Society Press, 1980 (also designated. SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedinus of the First Pan-Pacific Computer
Conference, September 1985

IBasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Jou rnal of Systems and Software, February 1981,
vol. 2, no. 1

IBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2 , no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
Geedinas of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Studv o r? Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedinas of the ACM SIGMETRICS Sm,posium/Workshop: -0ual-
itv Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedinas of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures f o r Software Development," Proceedinus of the Workshop
on Ouantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

ZBasili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Enqineerinq, November 1983

B-6

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Procee dinas o f the Eiahth International Conference on Soft-
ware Enaineerinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comuarina the Effective-
ness o f Software Testina St ratea ies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Enaineerinq, July 1986

2Basili, V.R., and D. M. Weiss, A Methodoloav for Collect-
ina Valid Software Enaineerinu Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Enaineerinq, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedinas o f the
Fifteenth Annual Conference o n Comuuter Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Procee dinas of the Software Life
Cvcle Manaaement WorkshoD, September 1977

lBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedinas of the Second Soft-
ware Life Cvc le Manaaement Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedinas of the Third Interna-
tional Conference on Software Enaineerinq. New York: IEEE
Computer Society Press, 1978

3Card, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Conaresso Nacional de Informatica, October
1985

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transactions
on Software Enaineerinq, February 1986

B-7

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedinas of t he Eiahth Interna-
tional Conference on Software Enaineerinq. New York: IEEE
Computer Society Press, 1985

khen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
inas o f the Fifth International Conference on Software
Enaineerinq. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types," ACM Software Enaineerina Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedinas of the
Seventh International Computer Software and ADPliCatiOnS
Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product-," Proceedinas of the Hawaiian Inter-
national Conference on Svstem Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedinas of the Eiahth International Computer Software
and Auplications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedinas of the Eiahth Inter-
national Conference on Software Enuineerinq. New-York:
IEEE Computer Society Press, 1985 I

4Seidewitz, E., and M. Stark, "Towards a General Object-
1

the First International Symposium on Ada for the NASA Space

I

Oriented Software Development Methodology," Proceedinas of

Station, June 1986 I
Turner, C., and G. Caron, A ComDarison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981 I

B-8 I

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Enuineerinq, February 1985

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedinus of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Emuirical Foundations
for Comuuter and Information Science (proceedings),
November 1982

Zelkowitz, M. V.,'and V. R. Basili, "Operational Aspects of
a Software Measurement Facility,"' Proceedinus of the Soft-
ware Life Cvcle Manauement Workshou, September 1977

NOTES :

lThis article also appears in SEL-82-004, Collected Soft-

2This article also appears in SEL-83-003, Collected Soft-

3Thi.s article also appears in SEL-85-003, Collected Soft-

4This article also appears in SEL-86-004, Collected Soft-

ware Enuineerinu Pauers: Volume I, July 1982.

ware Enuineerinu Pauers: Volume 11, November 1983.

ware Enuineerinu Pauers: Volume 111, November 1985.

ware Enuineerinu Pauers: Volume IV, November 1986.

B-9

