
I
I
I

", ,,--
a*/

.*f ,* //
S O M A R E ENGINEERING LABORATORY SERIES SEL-87-00

GUIDELINES FOR APPLYING
THE COMPOSITE SPECIFICATION

n n n n m I Y I W Y L L mcnm \uu1r1 /

JUNE 1987

runsn
I
e

National Aeronautics and
S piace Ad m I n is t rat inn

Goddard Space Flight Center
Green belt Maryland 2077 1

https://ntrs.nasa.gov/search.jsp?R=19870013760 2020-03-20T10:38:39+00:00Z

S O F W A R E ENGINEERING LABORATORY SERIES SEL-87-OC

GUIDELINES FOR APPLYING
THE COMPOSITE SPECIFICATION

MODEL (CSM)

JUNE 1987

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administration/
Goddard Space Flight Center (NASA/GSFC) and created for the
purpose of investigating the effectiveness of software engi-
neering technologies when. applied to the development of appli-
cations software. The SEL was created in 1977 and has three
primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software devel-
opment process in the GSFC environment; (2) to measure the
effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful de-
velopment practices. The activities, findings, and recommen-
dations of the SEL are recorded in the Software Engineering
Laboratory Series, a continuing series of reports that
includes this document.

The author of this document is William Agresti (Computer
Sciences Corporation).

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

ii
0345

1
U
1
I
I
I
I
1
I
I
I
I
1
8
I
B
4
I
I 0345

ABSTRACT

The Composite Specification Model (CSM) is an approach to
representing software requirements. This document provides
guidelines for applying CSM and developing each of the three
descriptive views of the software: the contextual view,
using entities and relationships; the dynamic view, using
states and transitions; and the functional view, using data
flows and processes. Using CSM results in a software speci-
fication document, which is outlined in this document.

iii

TABLE OF CONTENTS

Section 1 . Introduction 1-1
1.1 What Is CSM? 1-1
1.2 Who Uses CSM? 1-3
1.3 Outline of. This Document 1-4
Section 2 . Overview of CSMUse 2-1
2.1 The Decision to Use CSM 2-1
2.3 CSM Dictionary 2-5
2.4 Software Tool Support for CSM 2-8
2.2 HOW TO Apply CSM 2-3

Section 3 . The Contextual View: Entities and
Relationships 3-1

3.1 Rationale for Context Modeling 3-1
3.2 The Entity-Relationship-Attribute Approach 3-2
3.3 An Example . 3-3
3.4 ERA Diagrams 3-7
Section 4 . The Dynamic View: States and

Transitions 4-1
4.1' Modeling With States and Transitions 4-1
4.2 State Transition Diagrams 4-2
Section 5 . The Functional View: Processes

and Data Flow5 5-1
5.1 Data Flow Diagrams 5-1
5.2 Process Specifications 5-3
Section 6 . The CS M Product: The Software

SDecification 6-1
Gloss a ry

References

Standard Biblioaraphy of SEL Literature

0345 iv

i

LIST OF ILLUSTRATIONS

I
2-1
3-1

3-2

Fiaure

4-3
4-4

5-1
5-2
5-3
5-4
5-5
6 - 1

3-1
Requirements Statements. 3-6

3-2 ERA Diagram of Information in Table 3-2. . . . 3-9
4-1 Automatic Teller System State Transition

Diagram. 4-4
4-2 State Transition Diagram Showing TCOPS .

Space Transportation System (STS) Mission
Support 4 -5

State Transition Diagram of GRODY. 4-7
Decomposition of GRODY DYNAMIC

SIMULATION State 4-8
Sample Data Flow Diagram 5-2
Sample Context Diagram 5-3
Hierarchy of Data Flow Diagrams. 5-4
Sample GRODY DFD 5-5
Sample GRODY Process Description 5-6
Outline of the CSM Specification 6-2

Extracting Entities and Attributes From

LIST OF TABLES

Table

Steps To Follow in Applying CSM. 2-4
Attributes Associated With Selected Entities

and Relationships of GRODY 3-4
ERA Approach to t h e Requirements in
Figure 3-1 ’. 3-8

0345 V

SECTION 1 - INTRODUCTION

The Composite Specification Model (CSM) addresses the prob-
lem of accurately and completely representing the require-
ments for a software system. CSM itself is not a software
tool, although it is supported by several commercially
available software products, as discussed in Section 2. CSM
is a software method developed in the Software Engineering
Laboratory (SEL) (Reference 1) to support the production of
flight dynamics software at the National Aeronautics and
Space Administration (NASA)/Goddard Space Flight Center
(GSFC). The objective of this document is to offer guidance
and examples for those who are applying this method. This
document is intended for individuals who want to use CSM for
requirements specification. This section defines CSM and
its use, discusses its origin and purpose, and outlines the
remainder of the document.

1.1 WHAT IS CSM?

CSM is a representational medium for software requirements.
It is one response to the widely recognized problem of
developing effective techniques and practices for the ear-
liest, predesign phases of the software development proc-
ess. CSM differs from other requirements specification
approaches, for example, structured analysis (Reference 2),
in its use of multiple perspectives (as in Reference 3) for
viewing requirements.

The rationale for the multiple views of CSM is that no
single view of a complex object should be expected to be
satisfactory. The most obvious analogy is with the multiple
representations used in architecture. A scale model or
artist's rendering of a building, which may be appropriate
to show the planning commission, is not the representation
needed by the plumbers or electricians. Considering the

1-1
0345

number of relations present, software can be more complex
than buildings. A strong case has been made elsewhere that
the largest software systems are the most complex objects
humans have built.

CSM currently uses the following three perspectives:

0 Contextual view--The entities and relationships
being modeled by the software

0 Dynamic view--The behavior of the system over time

0 Functional view--The transformation 9f input data
flows into output data flows

The viewpoints should represent mutually orthogonal di-
mensions of system description. The analogy is to the
representation of a three-dimensional object with a two-
dimensional medium, for example, representing a statue on
paper. One approach would show the orthogonal projections
of the statue onto the x-y, y-z, and x-z planes. Similarly,
CSM gives the "projection" of a software system onto the
contextual, dynamic, and functional planes.

The three perspectives of CSM complement each other to pro-
vide a comprehensive understanding of a particular system.
With a batch processing system, for example, the functional
view may be the most meaningful as it depicts the trans-
formations of input quantities through intermediate stages
to yield output. With the requirements for an interactive
software tool, the dynamic view may be the most valuable for
communicating the intended operation of the system.

CSM is an inherently flexible medium with no limit on the
number or nature of the viewpoints used. Currently, not all
software requirements can be represented in the three exist-
ing views of CSM. Performance requirements, in particular,
are not currently captured in CSM. With increased use, CSM
may be expected to evolve, encompassing more than three

1-2

0345

I
8
8
E
E
8
I
II
I
1
E
I
I
I
I
E
I
1
I

views or replacing the existing views with different ones.
As a further indication of CSM's flexibility, the notation
for capturing each perspective can be changed. Currently,
the following notations are used:

0 Entity-relationship diagrams (contextual)
0 State-transition diagrams (dynamic)
0 Data flow diagrams (functional)

While there is flexibility in the choice of notation, the
clear preference is for graphical, nonnarrative approaches.
This preference may be explained by noting that CSM was a
byproduct of the SEL investigation of specification measures
(Reference 4) . That investigation concluded that the re-
quirements documents typically used in the flight dynamics
environment were not useful as a basis for defining specifi-
cation measures. The documents use narrative text and math-
ematical equations to express software requirements. CSM
was motivated by the need for a requirements representation
that facilitates the definition of specification measures.
Consequently, an integral part of the CSM philosophy is to
use diagrams, lists, and tables rather than narrative text.
The graphical and tabular representations yield simple
counts that are the foundation for specification measures.

The three CSM views and their notations are described in
Sections 2 through 5, respectively.

1.2 WHO USES CSM?

The potential users of CSM--and the audience for this docu-
ment--are software developers during the requirements analy-
sis phase of a project. Section 2 discusses how the use of
CSM affects the work of the software development team.

1-3

0345

1.3 OUTLINE OF THIS DOCUMENT

Section 2 gives an overview of CSM application and describes
the dictionary and CSM tool support. The three views of CSM
are described in Section 3 (contextual), Section 4 (dy-
namic), and Section 5 (functional). Section 6 shows the
suggested format for the resulting CSM specification docu-
ment.

1-4
0345

SECTION 2 - OVERVIEW OF CSM USE

The issues and procedure involved in applying CSM are sum-
marized in this section. Also discussed is the central role
of the dictionary and availability of software tools to sup-
port CSM preparation.

2.1 THE DECISION TO USE CSM

Some key issues affecting the decision to use CSM are as
follows :

0 Experience base of prior CSM usage

0 Characteristics of projects for which CSM may be
most effective

0 Expected cost of applying CSM

0 Role of CSM in the development process

CSM is a recent SEL conception; experience with it is very
limited. It was first used on the Earth Radiation Budget
Satellite (ERBS) Yaw Maneuver Control Utility (YMCU), a
FORTRAN system of 11,000 source lines of code (SLOC) (Refer-
ence 5). This initial use of CSM was in the context of the
previously noted research program in specification measures
and was unusual in that CSM was applied after the YMCU sys-
tem was implemented. The second experience with CSM was
consistent with its expected use during the requirements
analysis phase to specify the requirements for the Gamma Ray
Observatory (GRO) dynamics simulator in Ada' (GRODY) (Ref-
erence 6). This system is larger than the YMCU, with GRODY
exceeding 100,000 SLOC. (The use of Ada accounts for some
of the relatively high number of SLOC; the corresponding
FORTRAN GRO dynamics simulator is 44,000 SLOC.)

lAda is a registered trademark of the U.S. Government, Ada
Joint Program Office.

2-1
0345

In both cases, a CSM specification document, the product of
using CSM, was written. Excerpts from both the YMCU/CSM
(Reference 5) and the GRODY/CSM (Reference 6) specification
documents are used to illustrate features of the CSM in
later sections of this document.

Although limited, this CSM experience has provided some
guidance on the nature of projects that would benefit most
from using CSM. When the software developers do not have a
strong legacy of experience with the application area of the
software, CSM appears to be most helpful. In contrast, ap-
plications (such as attitude ground support systems in the
flight dynamics environment) for which the developers have
ample experience and reusable designs and code would not
seem to benefit significantly from CSM. A key determinant
of the expected benefit from CSM is whether the developers
are producing a new design rather than using essentially the
same high-level architecture from previous systems. The
GRODY/CSM is an example of a development team's using CSM to
help them understand the requirements and thus to create an
original design for the dynamics simulator application.

Along with the expected benefit, the expected cost is a cen-
tral issue in the decision t o use CSM. The only available
cost data shows approximately 9 staff-months of effort ex-
pended on the GRODY specification activity, leading to the
GRODY/CSM document (Reference 6). It is not clear, however,
how much of this effort was in excess of that which would
have been expended if the development process did not use
CSM. The experience with the GRODY/CSM indicates that much
of the effort expended on CSM was essential to understand
the system requirements and would have been attributed to
either requirements analysis or preliminary design if CSM
were not used. However, effort specifically to produce the
GRODY/CSM document would, of course, not be incurred in a
non-CSM project.

2-2

0345

This discussion of the marginal effort of adding CSM to a
project leads to the more general issue of the role of CSM

in the development process. The flight dynamics software
development process is well defined in References 7 and 8 .

CSM would be introduced during the requirements analysis
phase. When this phase begins, the developers receive a
preliminary version of the functional requirements and
specifications document (FRSD). The FRSD describes the
system requirements and provides supporting mathematical
analysis. If CSM were used, it would complement, rather
than replace, the FRSD. The GRODY/CSM specification
(Reference 6) serves as an example of this complementary
relationship: it refers to specific pages in the FRSD
(Reference 9) containing algorithms that define how the in-
put data flows are transformed into output data flows to
support the functional view of CSM.

The principal influence of CSM on the development process is
the creation of a new intermediate product: the CSM speci-
fication document. The typical flight dynamics development
process includes the production of a requirement analysis
summary report during the requirements analysis phase.
Using CSM, the additional CSM specification document would
be produced. The GRODY experience suggests that this extra
product is very useful as a starting point for preliminary
design.

' 2 . 2 HOW TO APPLY CSM

Table 2 - 1 summarizes the steps involved in applying CSM.

The key feature is the gradual evolution of the CSM data
base containing the three views and the CSM dictionary. At
each stage in Table 2-1, more elements of the CSM specifica-
tion become known. Ideally, storing and enhancing this
evolving CSM data should be assisted by an automated soft-
ware tool like one of those mentioned in Section 2 . 4 .

0345

2-3

Table 2-1. Steps To Follow in Applying CSM

Contribution to Evolving
Steps To Take CSM Specification

1. Acquire CSM software Establish project library to
support tool (Sec- maintain elements of CSM
tion 2.4) specification

2. Ana.lyze sources of Begin building CSM data base
requirements--documents on CSM support tool, entering
and personnel (Section 3) the following:

a. Contextual view (entities,
relationships, attributes)

b. Events (preliminary list)
c. Dictionary (preliminary)

with data items, entities,
events, etc.

3. Prepare selected entity- Add selected ERA diagrams;
relationship-attribute update contextual view
(ERA) diagrams to illus-
trate key entities and
relationships (Section 3)

view, then the functional a. Events (transitions) update
view; (see Sections 4 b. ' States defined
and 5) c. State transition diagrams

4 . Prepare first the dynamic Enter the following:

d. Data flow diagrams
e. Dictionary update
f. Process specifications

including references to
separate requirements
documents for details

5. Analyze interfaces among Add mappings that show the
views (Section 6) interfaces among views;

verify consistency of dic-
tionary for contextual and
functional views

6. Trace progress from re- Add the following:
quirements documents to a. Requirements traceability
CSM specification (Sec- table
tion 6) b. List of requirements not

addressed in CSM specifi-
cation

2-4
0345

The recommended CSM plan in Table 2-1 is based on the ex-
perience with GRODY. While the three views are generally
approached in the order of contextual, dynamic, and func-
tional, the table shows that there is a considerable inter-
leaving of parts of each view. This continual shifting of
viewpoint is a constructive feature, leading to successvie
refinement of each view. For example, after some time is
spent reaching an understanding of the required dynamic be-
havior of the system, the team should reexamine its lists of
entities and relationships to determine if updates are
needed. Some degree of iteration over steps 3 and 4 in
Table 2-1 is necessary to continue refinement of each of the
views (see.Sections 3, 4, and 5).

Two aspects of CSM application seem clear. First, informa-
tion produced by the functional view will generally be the
largest and most detailed. Second, the determination of the
system as being either more control-oriented (e.g., in em-
bedded or real-time applications) or data-oriented (e.g., in
file handling or transaction processing) will help to answer
whether the dynamic view or functional view will be the most
revealing and useful perspective.

2.3 CSM DICTIONARY

The CSM dictionary is similar to one used in structured anal-
ysis (Reference 2). However, for CSM, the dictionary sup-
ports all of the views by defining all of the names used in
the CSM specification and the roles they fulfill. The CSM
dictionary defines, for example, all data names used with
data flow diagrams (DFDs) in the functional view and all
attributes used in the contextual view. In practice, most
data names appear in both views. For example, "fuel den-
sity" may be a data flow name on a DFD, while "density" may
be an attribute of the entity "fuel" in the contextual
view. The entry in the dictionary follows the names used in

2-5
0345

the functional view, so "fuel density" would be defined.
The contextual view lists, for attribute "density" of entity
"fuel," that the corresponding dictionary entry is "fuel
density. I'

The preparation instructions for a dictionary entry of a
data name are as follows (Reference 10):

1. Data Name--Actual name used on a data flow diagram,
in a process specification, o r elsewhere in the dictionary
(e.g., in the data element composition of another data dic-
tionary entry).

2. Aliases--Other name(s) by which this dictionary
entry is known. Each listed alias should also be entered in
the dictionary.

3. Abridaed DescriDtion--A concise, one-line statement
about what the data name is or means.

4 . Item Description or Composition--If the data name
is a composite of other defined data names, this is the
definition of the composition. The notation to be used to
define the data's composition is as follows:

- - is composed of
+ AND
I OR
** enclosed text is commentary only
I# a# enclosed text is literal character string
[I any one of the enclosed elements
{ I sets or iterations of the enclosed element(s)
ll{}ul 11 is the lower limit of sets/iterations; ul

1 1 0 11 is the lower limit of sets/iterations; no
is the upper limit

upper limit

2-6
0345

0
Examp le :

there is no lower limit; ul is the upper limit
of sets/iterations
enclosed element(s) is optional

- day-of-week -
week-day - -

week-end-day =

phone-numbe r =

area-code =

loc a 1-numbe r =

digit - -

[week-day[week-end-dayl
[Monday [Tuesday [Wednesday [
Thursday1 Friday1
[Saturday1 Sunday1
area-code+local-number
3{digit}3
3{digit}3+4{digit}4
[0[1[2[314[516[7[8[91

If the data name is a
other defined data), enter the following:

data element (i.e., not compose, of

a.

b.

C.

d.

e.

Units. Include units of measure (e.g, meters, de-
grees) if meaningful. Otherwise, leave the units
field blank.

Constant or Variable and associated Value. If the
data item is a system constant, enter the con-
stant's value. Otherwise, enter "variable." If
the variable requires an initial value, specify it;
otherwise, leave the initial value field blank.

Ranue. Enter the range of valid values for this
data element (e.g., Sunday..Saturday, 1-1000, etc.)

Dimensions. If the data element is a vector or
matrix, enter the appropriate dimensions and enter
a particular coordinate system (i f applicable) that
is assumed in the values.

Data Type. Enter data type--either character,
logical, integer, floating point, etc.

2-7
0345

Such information should be maintained, in alphanumeric or-
der, by a software support tool (Section 2.4) or at least in
computer-readable form.

2.4 SOFTWARE TOOL SUPPORT FOR CSM

The desired CSM support would maintain all of the elements
of the CSM specification, provide consistency checking, and
support document production and maintenance. Commercially
available software tools support the generation of CSM dia-
grams and the maintenance of the dictionary. Some examples
are Excelerator (Reference ll), CASE 2000 (Reference 12),
and Analyst Tool Kit (Reference 13). The GRODY/CSM specifi-
cation (Reference 6) used Excelerator. Examples in Sec-
tions 3 and 5 show diagrams produced by Excelerator.

2-8

0345

SECTION 3 - THE CONTEXTUAL VIEW: ENTITIES AND RELATIONSHIPS

The contextual view describes the objects and relationships
that are being modeled by the software. This section dis-
cusses the rationale for this viewpoint, the elements that
constitute it, and an example of extracting the contextual
view from narrative text.

3 . 1 RATIONALE FOR CONTEXT MODELING

The contextual view describes the environment o r information
space in which the system will reside. Capturing the con-
text of a system has been relatively undervalued as a tool
for requirements engineering. A partial explanation may be
that, for small programming exercises (e.g., sorting numbers
or solving an equation), the background environment is
either nonexistent or not a major concern; thus, there is no
need to try to represent it. Many of the guidelines for
addressing large system development have begun as attempts
to "scale-up" the approaches (e.g., structured techniques)
that were successful with small programs. Because the con-
text is not important in understanding small programs, it
has not been one of the techniques that investigators pur-
sued in this scaling-up process.

With larger systems, the context or environment is a signif-
icant element in understanding the system's behavior. The
software system is modeling some portion of an environment.
When it is completed, the system will be taking its place in
that environment, interacting with other objects (e.g.,
hardware, sensors, and other software) that are producing
behavior in the environment. To describe its behavior rela-
tive to these other objects, the system must refer to speci-
fic attributes of the objects, for example, the mean radius
of the Earth or the size of fuel tanks. Likewise, events in
the environment (e.g., loss of signal, thruster on-time) may

3-1
0345

trigger behavior by the system. Not all of the attributes
or events in the environment are modeled by the system. In
this sense, the model of the environment is not complete,
nor is it ever intended to be complete. An individual at-
tempting to understand the functioning and behavior of the
software will be aided by seeing a representation of pre-
cisely those objects, attributes, and events that the system
needs to know about in its environment.

This modeling approach is a natural introduction to object-
oriented design (References 14 and 15), often used on Ada
implementations like GRODY (Reference 15). Reference 14
recommends underlining the nouns and verbs in a requirements
statement as a way of identifying objects and operations for
object-oriented design. The contextual view is a form of
object-oriented specification, identifying entities, rela-
tionships, and attributes that form the basis of design-
level structures.

3 . 2 THE ENTITY-RELATIONSHIP-ATTRIBUTE APPROACH

CSM captures the contextual view through the entity-
relationship-attribute (ERA) approach (Reference 17). Brief
definitions and examples will be presented for each of the
three ERA elements: entities, relationships, and attri-
butes. Reference 17 contains a more thorough introduction.

Entities are identifiable objects in the environment. For
example, the YMCU/CSM specified these entities: Earth,
fuel, momentum wheel, pressurant, Scanwheel, spacecraft,
Sun, surface model component, tank, thruster, and user (Ref-
erence 5). This list illustrates that entities often have
some physical significance, like instruments o r fuel tanks.
Relationships are associations among entities and are

3 - 2
0345

described as are relations in discrete mathematics (Refer-
ence 18). Examples of relationships are Earth-spacecraft
and fuel-thruster-tank.

Information about entities and relationships is expressed by
attributes. An attribute is a property or feature of the
entity or relationship. For example, the entity "Earth" may
have attributes of radius and magnetic field. Attributes
correspond to data items that are listed in the CSM diction-
ary (Section 2).

A valuable conceptual feature of the ERA approach is the
ability to associate attributes with relationships as well
as with entities. As an example, the attribute "unit vector
from the spacecraft center of mass to the center of Earth"
is associated with the "Earth-spacecraft" relationship, not
with the entities "Earth" or "spacecraft" alone. Table 3-1
shows the attributes defined for some of the entities and
relationships of GRODY (Reference 6).

3.3 AN EXAMPLE

Figure 3-1 shows an excerpt from requirements statements
that appeared in an FRSD. The contextual view regards the
system being developed as modeling some real objects and
relationships in the problem domain. The entities are under-
lined in Figure 3-1. The text also provides information
about attributes of entities and relationships, that is, the
characteristics of which the system must be aware. Attri-
butes appear in bold italics in Figure 3-1. For example,
volume is an attribute o r feature of a tank. An implicit
assumption in CSM is that entities and attributes would not
appear in requirements statements unless they had a role in
the activity of the system. For example, because the volume
of the tank is mentioned, it is assumed that the system will
need to know the volume at some point during the process-
ing. By implication, other possible attributes of a tank

3-3 0345

Table 3-1. Attributes Associated With Selected Entities
and Relationships of GRODY (Reference 6)
(1 of 2)

Ent i tv

Earth

Fine Sun Sensor (FSS)

Fixed-Head Star Tracker (FHST)

Gamma Ray Observatory (GRO)

Earth - GRO

Earth - Moon
Earth - Sun

Earth - Magnetometer (TAM)

FHST - ground
FHST - GRO

Attribute

Atmospheric-density-ref-data
Earth-gravitational-constant
Earth-radius
Magnetic-field-model
Failure-indicator
FSS-half-angles
FSS-noise-parameters
Circular-cone-vertex-angle
Failure-indicator
FHST-cutoff-angles
FHST-noise-parameters
FHST-occultation-angles
fhst-temperature
Intensity-threshold
Body-inertia-tensor
Body-moment-arm
Center-of-mass
Coefficient-diffuse-

reflection
Coefficient-specular-

reflection
Drag-coefficient
Aerodynamic-torque
Argument-of-perigee
Atmospheric-density
Earth-unit-vector
Eccentricity
Epoch-time
Geomagnetic-field
Geomagnetic-field-torque
Inclination
Rt-ascension-ascending-node
Semima j or-axi s
Computed-earth-moon-vector
Computed-earth-sun-vector
Earth-velocity
Tam-vector-measurement

. Body-to-fhst-rotation-matrix
FHST-command

3-4
0345

Table 3-1. Attributes Associated With Selected Entities
and Relationships of GRODY (Reference 6)
(2 of 2)

Ent i tv Attribute

FHST - Onboard Computer (OBC) FHST-command
FHST-da t a
FGST-status

FHST - stars
FSS - GRO
FSS - Sun

FHST-angular-coordinates
FHST-star-intensity
body-to-FSS-rotation-matrix
FSS-alpha
FSS-beta
FSS-sun-present

3-5
0345

The spacecraft has eight thrusters and two tanks with
volume and l o c a t i o n given in ... [The system] will treat
each tank individually and will have mathematical models
to predict the spacecraft cen ter of m a s s and moment of
i n e r t i a as functions of the w e i g h t of fuel remaining in
each tank.

Note: Entity is underlined; attribute is in bold italics.

Figure 3-1. Extracting Entities and Attributes From
Requirements Statements

3-6
0345

(e.g., its color or its material composition) need not be
part of our contextual model because these other attri-
butes are not discussed and, it is assumed, not a factor in
the system's processing.

Table 3-2 shows the list of entities, relationships, and
attributes extracted from Figure 3-1. It should be noted
that some attributes, which may seem to refer to an entity,
are associated with relationships. For example, the tank by
itself has volume, but its location is a characteristic of
the relationship between the tank and the spacecraft.

3.4 ERA DIAGRAMS

The contextual view can be depicted graphically using ERA
diagrams (Reference 17). Figure 3-2 shows the ERA diagram
corresponding to the information in Table 3-2. Figure 3-2
was drawn using the Excelerator support tool (Reference ll),
one of the software systems (discussed in Section 2) that
can support CSM. ERA diagrams can be helpful for visualiz-
ing the logical connectedness of entities and relation-
ships. However, as Figure 3-2 suggests, the graph can
become cluttered if more than a few entities are selected
for display.

3-7
0345

I

Table 3 - 2 . ERA Approach

1
-I

to

Entity

thruster
tank
fuel
spacecraft

RelationshiD

f uel/t ank
fuel/tank/spacecraft

spacecraft/tank

3-8

the Requirements in Figure

Attribute

number
number, volume

Attribute

weight
center of mass
moment of inertia
tank location

3-1

0345

I
I
I
I
1
I Figure 3-2. ERA Diagram of Information in Table 3-2

0345 3-9

1
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I

SECTION 4 - THE DYNAMIC VIEW: STATES AND TRANSITIONS

The dynamic view describes the behavior of a system over
time. -This section discusses the modeling of dynamic be-
havior in terms of states and transitions. Examples will
help to illustrate the recasting of textual requirements
into state-transition diagrams, which have wide use for sys-
tem description (e.g., Reference 19).

4.1 MODELING WITH STATES AND TRANSITIONS

When a software system is executing, it can be considered to
be moving through various states.
the system's condition and characteristics at a particular
time. A system changes state when an event occurs, altering
some aspect of the system's condition. The identification
of a system's states and events is a useful exercise in try-
ing to understand the required dynamic behavior of the sys-
tem. To be effective, this identification process must
begin by taking a very high-level view of the system.

Only major events and states should be recognized ini-
tially. Each major state, for a large system, may be the
aggregate of a wide range of system behavior. But, by
grouping this behavior under a single state, the CSM user
has performed a valuable simplification. For example, a
system may have an initialization or start state during
which the user of the system sets initial conditions, opens
files, and writes initialization reports. In another ex-
ample, the system may be in a "maneuver support'' state,
triggered by the event of the user commanding that a maneu-
ver occur. This state name suggests that the application
area will strongly determine the most reasonable assignment
of states.

A state is a record of

4-1
0345

Major events may-correspond to actions of the user or occur-
rences in the environment being monitored by the system.
For example, the user may issue commands to start, restart,
or stop processing, or the system may detect that transmis-
sion of a telemetry stream has stopped.

Listed below are the major events defined for the YMCU.
These events marked state transitions in the CSM dynamic
view of the YMCU:

Maneuver start time
End of integration step
Yaw rate exceeding cutoff yaw rate
Yaw angle equaling target yaw angle
Yaw rate changing sign
Pitch angle exceeding maximum pitch angle
Roll angle exceeding maximum roll angle
Thruster on-time
Thruster off-time
Maximum number of correction burns reached
Yaw angle within epsilon of final yaw angle
Maximum number of targeting phase iterations reached
Maneuver stop time

4 . 2 STATE TRANSITION DIAGRAMS

A state transition diagram consists of only two symbols:

0 A node (circle)--Used to represent a particular
state of the system; the name in the circle is the
system's state

0 An arc (arrow)--Used to indicate the transition
from one state to another resulting from the occur-
rence of an event; the name on the arc is the event
causing the transition

4-2

0345

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

m

Figure 4-1 is a representative state transition diagram and
will be used to help explain the content of these diagrams.
The diagram illustrates a simple bank Automatic Teller Sys-
tem (ATS) (Reference 10). It shows that the initial state
of the ATS is called the I D L E state. The system is simply
awaiting the insertion of a customer's access card. Upon
detecting the insertion'of a card, the ATS advances to the
next state (VALIDATE USER), during which the user's access
is validated. The user's card is checked for recognition by
the ATS; the user is then prompted to specify his/her
special access code or password. Upon successful verifica-
tion of both, the system advances to the state in which it
expects the user request (AWAIT REQUEST). If the user is
not verified, the system returns to the IDLE state to await
the next card insertion. Once in the AWAIT REQUEST state,
the ATS expects a request valid for this user. A.deposit,
withdrawal, transfer funds, or balance request will cause
the system to enter the PROCESS REQUEST state, during which
the user's request is performed. Upon completion, the ATS
returns to the AWAIT REQUEST state for the next request.
Any unrecognized entry (e.g., entering a series of numbers)
causes the system to remain in this.state. A terminate re-
quest causes the ATS to return to the IDLE state, and the
process begins again. The unlabeled arrow on the left-hand
side of the IDLE state is used to indicate the state into
which the system enters upon startup.

Figure 4-2 shows a high-level state transition diagram for
the Trajectory Computation and Orbital Products System
(TCOPS) (Reference 2 0) . States are shown as nodes in the
diagram, with transitions appearing as arcs between nodes.
The node "TCOPS Readiness," without any incoming arcs, is
obviously the initial state. Notice that the state transi-
tions describe events occurring in the system or its en-
vironment.

4-3

0345

1
I
I
I
1
I
I
I
I
I
I
I
C
1
c
I
I
I
I

E
(d
k
bl
(d
-4
a
c
0
-4
4J
-4
m
c
3
k
H

a,
4J
m
4J
VI

4 - 4

notification of
simulated or real

simulated

obtained notification launch

\
of misskn support

need 3 READINESS

weight
on wheels

STS ON-ORBIT
SUPPORT

notificaiion of

STS REENTRY
SUPPORT

Figure 4-2. State Transition Diagram Showing TCOPS Space
Transportation System (STS) Mission Support

4-5

Figures 4-3 and 4-4 show the dynamic view from the GRODY/CSM
specification (Reference 6). In Figure 4-3 , an arc without
a source shows that "Presim Setup" is the initial node. The
events causing state transitions are either explicit user
commands or the simulation being completed.

Figure 4-4 addresses the difficulty of representing differ-
ent levels of dynamic behavior. Figure 4-4 can be con-
sidered nested inside the "Dynamic Simulation" state of
Figure 4-3 . The transition "Start Command" takes the system
into the major state "Dynamic Simulation" and simultaneously
(Figure 4-4) into the secondary state "Standby Kode" within
the "Dynamic Simulation" state. The "Restart Command" re-
turns the system to the secondary state from which the
"Interrupt Request" transition was taken. This latter in-
terpretation is not apparent from the diagrams in Fig-
ures 4-3 and 4-4. If state transition diagrams are nested
in some way, the CSM user must clarify all of the relation-
ships (e.g., in supporting text) 'among diagrams and their
states and transitions.

4-6

0345

REPORT
GENERATION 3

POSTPROCESSING

RESET
PRESIM SETUP 4 Y

TERMINATE REQUEST PARAMETER
UPDATE

INTERRUPT REQUEST

START
COMMAND

RESTART COMMAND

f

SIMULATION b TERMINATION
DYNAMIC

SIMULATION
TERMINATE REQUEST OR SIMULATION COMPLETE

F i g u r e 4-3. S t a t e T r a n s i t i o n Diagram of GRODY

4-7

0345

[FROM PRESIM SETUP
STATE1

GROUND
COMMAND

I
WHEEL

COMMAND
MODES

v-
STAND BY

MODE

L

I

THRUSTER
COMMAND

MODES 4 + COMMAND

Figure 4-4. Decomposition of GRODY DYNAMIC SIMULATION State

4-8

0345

SECTION 5 - THE FUNCTIONAL VIEW: PROCESSES AND DATA FLOW

The CSM functional view describes the successive transforma-
tion of input data flows to provide output data flows. CSM
uses structured analysis methods (Reference 2) for data flow
analysis and process descriptions. This section summarizes
those methods. Reference 2 contains a more detailed descrip-
tion of structured analysis.

5.1 DATA FLOW DIAGRAMS

DFDs show the flow of data through a system and the trans-
formations that data undergo. DFDs do not show flow of con-
trol. Four symbols are used in DFDs:

0 Data flow (a named arc)
0 Process (a node or "bubble")
0 Data store (parallel straight lines)
0 External entity (a box)

Figure 5-1 is a simple DFD (of a portion of a hypothetical
Automatic Bank Teller System--the same example used in Sec-
tion 4) that shows all four symbols (Reference 10). The
-- data flow is a named arc, connecting processes, data stores,
and/or external entities. The name appearing on the arc is
that of a data item, record, file, or logical collection of
any of these. In Figure 5-1, the data flow "savings account
withdrawal request" is actually a logical group of data
items (account identification and withdrawal amount). The
direction of the arc indicates the direction of the data
flow. The name must appear in the CSM dictionary. (The
dictionary (Section 2) completely defines the type and com-
position of the data flow.) The name itself should be a
noun.

5-1
0345

I TERMINAL
FUNDS INSUFFICIENT MESSAGE I

CASH
WITHDRAWAL

VERIFY AMOUNT COUNT
ENOUGH CUSTOMER

(SOURCEI

UPDATE
ACCOUNT
BALANCE

SAVINGS ACCOUNT
BALANCES

BANK
CUSTOMER

(SOURCEI

SAVINGS ACCOUNT
BALANCES

Figure 5-1. Sample Data Flow Diagram

The process is the transformation that converts input data
flows to output data flows. The name of the process should
indicate what is done to the input data to produce the out-
put. This name is typically a verb followed by a noun.

The data store is a repository (temporary or permanent) of
data. The external entity lies outside the scope of the
system and is an orginator or receiver of data. Examples of
external entities are people, organizations, terminals, or
other hardware or software. Figure 5-1 shows that the ex-
ternal entity "bank customer" is a source, an originator of
data flows, while "terminal" is a sink, an ultimate destina-
tion of data flows.

The context diaaram is the topmost DFD for a given system
(or subsystem) and should be the first diagram made during
design. It shows at the system level "what do I have to
produce?" (output) and "from what can I produce it?" (in-
put). It consists simply of one process bubble and as many

5-2

0345

system input and output data flows as are appropriate.
Figure 5-2 is a context diagram.

SYSTEM
CUSTOMER

3 ACCOUNT
DEPOSITS il

Figure 5-2. Sample Context Diagram

DFDs are hierarchical. The context diagram is decomposed
into finer and finer detail in subsequent DFDs, which pro-
vide the user with as much or as little detail about the
system as needed. Figure 5-3 illustrates this decomposi-
tion. Some general DFD guidelines are to use three to seven
bubbles per page, and three to nine data flows per bubble;
that is, do not try to put t o o much information into any one
DFD. Reference 2 is an extensive introduction to DFDs.

5.2 PROCESS S PECIFICATIONS

When the DFDs have been completed, process specifications
must be written for all primitive processes--that is, those
not decomposed into lower levels. In Figure 5-3, the primi-
tive processes are 1, 2.1, 2.2, 2.3.1, 2.3.2, 2.3.3, 3, 4.1,
4.2, 4.3, and 4.4.

The process specifications (mini-specs in Reference 2) de-
scribe in a program design language (PDL)-like notation how
the input data flows are transformed into output data
flows. The specification should use the same data flow
names that appear in the DFD for that process. In this way,
someone examining the DFDs and process specification will
understand how the data flows from the diagram are proc-
essed. Figures 5-4 and 5-5 illustrate the desired consist-
ency between DFD and process specification.

5-3

0345

M
GEP

E
IAL

MORE
DETAl LED

.-CONTEXT DIAGRAM ;
DETAIL OF ATS

-

DETAIL OF 2

DETAIL OF 2.3
I

2.3.3

4 2.3.2

DETAIL OF 4

FIVE INDIVIDUAL DFDs

F i g u r e 5 - 3 . H i e r a r c h y of Data Flow Diagrams

5-4

0 3 4 5

4

C
Y

c
E

Y

L
3
0

"

f
Y

(r

ORIGINAL PAGE IS
OE POOR QUALnV

u - n
5
I

J
Q

0
*r

I-

U B
D

1
IJ

I+---

5-5

nl

C
Y

8
I

W

L

U
>

P
6
Y
UI

VI

PI
4.l
W

1

4
Q

Process 1.4.3.3.1 cpe control torquers

If acad-mode is not safe hold or contingency Then
For every 512 msecs Do

[a1 Adjust for a failed wheel if any
[b l Transform stored-wheel-momenta to body coordinates
[cl Compute the dumping momentum using cpe-torquer-

[dl Compute magnetic-control-torquers to dump this

[el Limit magnetic-control-torquers

cont ro l-pa r ame t er s

momentum using net-magnetic-field

If torquer-enable and acad-mode is sun-referenced Then
Send magnetic-control-torquers as torquer-commands

Else
Send torquer-commands to zero the torquer current

Endif
Enddo For

Endif

Figure 5-5. Sample GRODY Process Description

5-6
0345

Figure 5-4 is a DFD from the GRODYICSM (Reference 6). Some
notation in Figure 5-4 differs from the DFD overview of Sec-
tion 5.1 because of the u s e of the Excelerator support soft-
ware. Processes appear as rounded rectangles rather than
circles as in Section 5.1. The small circles in Figure 5-4
are off-page connectors to processes, data stores, o r exter-
nal entities that are identified fully on higher level
DFDs. The primitive process 1.4.3.3.1, "cpe control
torques," has five input data flows:

a Stored wheel momenta
a Net magnetic field
a CPE torquer control parameters

Torquer enable
a ACAD mode

and two output data flows:

a Magnetic control torquers
a Torquer commands

The 1.4.3.3.1 process specification is shown in Figure 5-5.
It should be noted that the data flows are all mentioned in
the specification. Further, hyphens are used to connect
words comprising each data flow name to inform the reader
that each name refers to a particular data flow that both
appears on DFDs and is defined in the dictionary. The nota-
tions [a], [b], ..., [el in Figure 5-5 identify parts of the
specification that need more explanation of the algorithm or
particular method used to accomplish the processing. (Not
shown is the part of the GRODY/CSM specification (Refer-
ence 6) that lists the reference document that corresponds
to 1.4.3.3.1[a], ..., 1.4.3.3.1[e]). Figure 5-5 serves as
an example of the complementary role, noted in Section 2, of
the CSM specification and other reference documents (such as
the FRSD) containing supporting mathematical equations. It
should be noted that the process specification in Figure 5-5

5-7
0345

. I

includes a performance requirement ("For every 512
msecs ..."). Although, as noted in Section 1, CSM does not
yet integrate performance requirements into its system of
.multiple views, such requirements can be added textually as
part of the process descriptions.

5-8

0345

SECTION 6 - THE CSM PRODUCT: THE SOFTWARE SPECIFICATION

The product of applying CSM is a document: the CSM specifi-
cation of the software system. This section discusses the
suggested contents and organization of the CSM specification
document.

Figure 6-1 shows the recommended outline of the CSM specifi-
cation. The three views comprise the core of the specifica-
tion. The recommended order of the views, shown in
Figure 6-1, establishes first the objects and environment
being modeled and leaves the most detailed (functional) view
to the end.

The section on interfaces among views is recommended because
it is a check on consistency and coverage.

The complete CSM specification should reinforce the philoso-
phy of describing the system using diagrams, tables, and
lists to the greatest extent instead of narrative text.

6-1
0345

Section 1 - Introduction

0 Overview of the project

0 Statement on use of CSM for specification

0 Relationship between this CSM specification and
other requirements documents

0 List of.requirements not addressed by the CSM
specification

0 Outline of remainder of document

Section 2 - Contextual View

0 List of entities and their attributes

0 List of relationships and their attributes

0 Statement that attributes are defined in the CSM
dictionary (Appendix A)

0 Selected entity-relationship-attribute diagrams to
show key information

Section 3 - Dynamic View

0 Lists and definitions of states and transitions
(events in the system)

0 State transition diagrams

0 Supplementary text (as needed) to explain interpre-
tation of multiple or nested state transition dia-
grams

Section 4 - Functional View

0 List of data flow diagrams: name, number, and
hierarchical structure

0 List of process names and numbers

Figure 6-1. Outline of the CSM Specification (1 of 3)

6-2

0345

0 List of data store names and numbers

0 List of external entity names and numbers

0 Data flow diagrams in order corresponding to hier-
archical structure, beginning with context diagram,
level-0 DFD, and so on

0 Process specifications in numerical order with an-
notations that map to more detailed (mathematical)
references

Section 5 - Interfaces Between Views

0 Contextual/dynamic interface

- Table showing, for each state, what entities
are modeled during that state

0 Contextual/functional interface

- Table showing, for each entity, the numbers of
processes related to that entity

0 Dynamic/functional interface

- Table showing, for each state, the numbers of
processes active (e.g., potentially executing)
during that state

Appendix A - CSM Dictionary

0 Shared by all three views

0 Defines data items (attributes), entities, rela-
tionships, states, transitions, data stores, exter-
nal entities, data flows, and processes

Figure 6-1. Outline of the CSM Specification (2 of 3)

6-3
0345

Appendix B - Process Specification References

0 Mapping the annotations used in process specifica-
tions to specific pages in other documents contain-
ing detailed equations or algorithms

Appendix C - Requirements Traceability Table

0 Table showing how each requirement in an earlier
document (e.g., the FRSD) maps to specific elements
in the CSM specification, (e.g., numbered proc-
esses, entities, o r transitions (events)

Figure 6-1. Outline of the CSM Specification (3 of 3)

6-4

0345

ATS
CSM
DFD
ERA
ERBS
FRSD

GRO
GRODY
GSFC
NASA
PDL
SEL
SLOC
TCOPS

YMCU

GLOSSARY

Automatic Teller System
Composite Specification Model
data flow diagram
entity-relationship-attribute
Earth Radiation Budget Satellite
functional requirements and specifications
document
Gamma Ray Observatory
GRO Dynamics Simulator in Ada
Goddard Space Flight Center
National Aeronautics and Space Administration
program design language
Software Engineering Laboratory
source lines of code
Trajectory Computation and Orbital Products
System
Yaw Maneuver Control Utility

G-1
0345

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

0345

REFERENCES

Software Engineering Laboratory, SEL-8.1-104, The Soft-
ware Enaineerinu Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

T. DeMarco, Structured Analysis and System Specifica-
tion. New York: Yourdon, Inc., 1978

-- , Controllins Software Projects. New York: Yourdon
Press, 1982

Software Engineering Laboratory, SEL-84-003, Investiaa-
tion of Specification Measures for the Software Ensi-
neerina Laboratory (S EL), W. W. Agresti, V. E. Church,
and F. E. McGarry, December 1984

Computer Sciences Corporation, A Case Study in Recastinq
Flisht Dynamics So ftware Requirements Us ins the Com-
posite Spec ification Model (CS MI, W. Agresti,
December 1984

-- , CSC/TM-85/6108, SDecification of the Gamma Ray Ob-
servatorv (GRO) Dynamics Simulator in Ada (GRODY), W.
W. Agresti, E. Brinker, P. Lo, et. al., November 1985

Software Engineering Laboratory, SEL-84-001, Manaser's
Handbook for Software Development, W. W. Agresti,
F. E. McGarry, D. N. Card, et al., April 1984

-- , SEL-81-205, Recommended Approach to Software De-
velopment, F. E. McGarry, G. Page, S. Eslinger, et al.,
April 1983

Computer Sciences Corporation, CSC/SD-85/6016, Gamma
Ray Observatory (G RO) Dynamics Simulator Requirements
and Mathematical Spec ifications, G. Coon, April 1985

Software Engineering Laboratory, SEL-86-001, Prosram-
mer's Handbook for Fliaht Dynamics Software Development,
R. Wood and E. Edwards, March 1986

Index Technology Corporation, Excelerator Reference
Guide, Release 1.11, 5 Cambridge Center, Cambridge,
Massachusetts, 02142, 1984

Nastec Corporation, CASE 2000, 24681 Northwestern High-
way, Southfield, Michigan, 48075, 1984

R-1

13. Yourdon Software Engineering Company, Analyst Toolkit,
1501 Broadway, New York, New York, 10036, 1985

14. G. Booch, Software Enuineerins with Ada. Menlo Park:
Benj amin/Cummings, 1983

15. Software Engineering Laboratory, SEL-86-002, General
Obiect-Oriented Software Development, E. Seidowitz and
M. Stark, August 1986

16. Computer Sciences Corporation, CSC/SD-86/6013, GRO DY-
namics Simulator in Ada (GRODY) Detailed Desiun Note-
book, W. Agresti, E. Br'inker, P. Lo, et al., March 1986

17. P. Chen, "The Entity-Relationship Model--Toward a Uni-
fied View of Data," ACM Transactions on Data Base SYS-
tems, March 1976

18. C. L. Liu, Elements of Discrete Mathematics. New York:
McGraw-Hill, 1977

19. P. Gilbert, Software Desiun and DeveloDment. Palo
Alto: Science Research Associates, 1983

20. Computer Sciences Corporation, CSC/SD-85/6708, Traiec-
tory Computation and Orbital Products System (TCOPS)
System Definition, J u l y 1985

0345 R-2

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinas From the First Summer Software Enqi-
neerina Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-
aineerinq Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Desiqn Specifications Lanquaqes
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinqs From the Third Summer Software Ensi-
neerina Workshop, September 1978

SEL-78-006, GSFC SO ftware Enqineerinq Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Auplicabilitv o f the Rayleiah Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Prosram
(SAP) User's Guide (Revision 31, W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, The Software Ensineerinq Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
qram Desisn Lanquaqe (PDL) in the Goddard Space Fliqht Cen-
ter (GSFC) Code 580 Software Desisn Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
0345

SEL-79-005, Proceedinss From the Fourth Summer Software En-
gineerinu Workshop, November 1979

SEL-80-002, Multi-Level Expression Desicrn Lansuaqe-
Reauirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Studv, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Studv of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinus From the Fifth Annual Software Ensi-
neerinu Workshop, November 1950

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliabilitv Estimation Models (CAREM1
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Ensineerins Laboratory Prosrammer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatina Software Development by Analysis of
Chancre Data, D. M. Weiss, November 1981

SEL-81-012, The Ravleiuh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedinss From the Sixth Annual Software Enui-
neerinu Workshop, December 1981

SEL-81-014, Automated Collection of Software Enuineerinq
Data in the Software Ensineerins Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Ensineerinu Laboratory (SEL) Data Base
Oruanization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July .1983

B-2 0345

SEL-81-104, The Software Ensineerinq Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Enaineerinq Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Enaineerinq Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A . Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IVStV) Methodolow for Flisht Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Enqineerinu Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manauement Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Enaineerins Laboratory (SEL) Data Base
Reportinq Software Use r's Guide and System Description,
P. Lo, August 1983

SEL-82-004, Collected S oftware Enqineerinu Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedinas From the Seventh Annual Software
Enqineerinq Workshop, December 1982

SEL-82-008, Evaluatins Software Development by Analysis of
Chanqes: The Data From the Software Enaineerins Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Prosram
(SAP) System Description (Revision 11, W. A . Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enaineerina Laboratory
Terms, T. A . Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

0345 B-3

SEL-82-406, Annotated Bibliosraphv of Software Ensineerinq
Laboratorv Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1986

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et a l . , February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enuineerinu Papers: Vol-
ume 11, November 1983

SEL-83-006, Monitorins Software Development Throush Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceed inas From the Eiahth Annual Software En-
aineerina Workshop, November 1983

SEL-84-001, Manaser's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Conf iuurat ion Manaaement and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investisation of Specification Measures for the
Softwa-re Engineerins Laboratorv (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinss From the Ninth Annual Software Ensi-
neerins Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Trainina Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Ensineerins Papers:
Volume 111, November 1985

SEL-85-004, Evaluations of Software Technolosies: Testins,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testinq, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinqs From the Tenth Annual Software
Engineerins Workshop, December 1985

B-4
0345

SEL-86-001, Prosrammer's Handboo,. for Fliqht Dynamics Sof
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object -Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliaht Dynamics Svstem Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enaineerinq Papers:
Volume IV, November 1986

SEL-86-005, Measurinq Software Desiqn, D. N. Card, October
1986

SEL-86-006, Proceed inas From the Eleventh Annual Software
Enaineerinq Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for
Fliqht Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.11, E. Seidewitz
et al., May 1987

SEL-87-003, Guidelines for Auplvins the Composite
Specification Model (CSM), W. W. Agresti, June 1987

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Enqineerina Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedinss of the First International Svmposium on Ada for
the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Proqram Transformation and Pro-
qramminq Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedinas of the
Fifth International Conference on Software Enaineerinq.
New York: IEEE Computer Society Press, 1981

IBasili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technolow,
January 1980, vol. 1

B-5
0345

Basili, V. R., Tutor,al on Models anc Metrics for So tware
Manaqement and Ensineerinq. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedinas of the First Pan-Pacific Computer
Conference, September 1985

IBasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

IBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedinas of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedinas of the ACM SIGMETRICS SvmPosium/WorkshoP: Oual-
itv Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedinus of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedinus of the Workshop
on Ouantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Ensineerinq, November 1983

0345 B-6

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic.Software Metric Set,"
Proceedinas of the Eishth International Conference on Soft-
ware Enuineerinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Cornparins the Effective-
ness of Software Testins Strateaies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Enuineerinq, July 1986

ZBasili, V.R., and D. M. Weiss, A Methodoloav for Collect-
ins Valid Software Enaineerinu Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Ensineerinq, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedinas of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedinus of the Software Life
Cycle Manasement Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedinss of the Second Soft-
ware Life Cycle Manaaement Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedinus of the Third Interna-
tional Conference on Software Enuineerinq. New York: IEEE
Computer Society Press, 1978

3Card, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Conuresso Nacional de Informatica, October
1985

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transactions
on Software Ensineerinq, February 1986

B-7 0345

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedinus of the Eishth Interna-
tional Conference on Software Enuineerinq. New York: IEEE
Computer Society Press, 1985

khen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
inqs of the Fifth International Conference on Software
Enqineerinq. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types," ACM Software Ensineerins Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedinus of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedinss of the Hawaiian Inter-
national Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedinus of the Eishth International Computer Software
and Applications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedinus of the Eiuhth Inter-
national Conference o n Software Enuineerinq. New York:
IEEE Computer Society Press, 1985

4Seidewitz, E . , and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedinss of
the First International Symposium on Ada for the NASA Space
Station, June 1986

Turner, C., and G. Caron, A Comparison of RADC and NASAISEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

0345 B-8

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Enaineerinq, February 1985

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedinss of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for ComPuter and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedinas of the Soft-
ware Life Cvcle Manasement Workshop, September 1977

NOTES :

1This article also appears in SEL-82-004, Collected Soft-

2This article also appears in SEL-83-003, Collected Soft-

3This article also appears in SEL-85-003, Collected Soft-

4This article also appears in SEL-86-004, Collected Soft-

ware Enaineerins Papers: Volume I, July 1982.

ware Ensineerins Papers: Volume 11, November 1983.

ware Ensineerins Papers: Volume 111, November 1985.

ware Ensineerins Papers: Volume IV, November 1986.

0345 B-9

