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Introduction 

This paper develops a technique for estimating 
software reliability using the Moranda geometric de- 
eutrophication model (ref. l) .  The major premise of 
Moranda’s model with respect to software reliability 
is that the failure rate of the software decreases in a 
geometric progression as bugs (design flaws and cod- 
ing errors) are removed from the software, and this 
decreasing failure rate implies growth in the reliabil- 
ity. Work in the area of software reliability-growth 
models has largely emphasized estimation of only the 
model parameters by least-squares estimation (ref. 2) 
or maximum-likelihood techniques. However, only 
single point estimates and asymptotic approxima- 
tions for reliability are directly attainable from the 
estimates of the model parameters. The emphasis 
of this work is on extending the estimation proce- 
dures for a software reliability-growth model. The 
estimation procedures are extended by developing 
confidence limits for reliability and prediction limits 
for the time to  the next failure based on Moranda’s 
model. 

Since confidence and prediction limits for relia- 
bility are not directly obtainable from the estimates 
of the model parameters, a technique called the piv- 
otal method is utilized. The pivotal method allows 
a straightforward construction of exact bounds with 
an associated degree of statistical confidence about a 
desired quantity. In this case, the desired quantity is 
the reliability of the software. The confidence limits 
derived in this paper provide a precise means of as- 
sessing the quality of software. The limits take into 
account the number of bugs found while testing and 
the effects of sampling variation associated with the 
random order of discovering bugs. 

To use the geometric de-eutrophication model and 
the pivotal method to construct the limits, the envi- 
ronment for gathering the necessary software failure 
data for the model must be specified. The testing and 
development process assumed in this paper consists 
of inputting a series of randomly selected test cases 
to the software and correcting bugs as they occur. 
No assumptions beyond proper repair of the identi- 
fied bug are made as to whether new bugs are intro- 
duced during repair. Interest is primarily focused on 
the times X I ,  X z ,  . . . , X ,  between detecting bugs 
where n is the total number of bugs found. In gen- 
eral, as more bugs are repaired, the interfailure times 
X I ,  X2,  . . . are expected to increase. 

Moranda’s geometric de-eutrophication model is 
used here to model the interfailure times resulting 
from the described testing process. The model is fully 
defined in the next section and the model parame- 
ters are estimated using maximum-likelihood tech- 

niques. Then, the pivotal approach to  statistical 

tions for the confidence limits for reliability and the 
prediction limits for the time to the next failure. 
The accuracy of asymptotic approximations to  both 
the confidence and prediction limits is also exam- 
ined. Further, the effect of departures from the as- 
sumed exponentially distribut,ed interfailure tfimes in 
the model is investigated by simulating interfailure 
times from Pareto, Weibull, and gamma distribu- 
tions. Through this simulation the sensitivity of the 
model to the interfailure-time distribution will be 
demonstrated. 

I am grateful to Larry D. Lee of Old Dominion 
University (formerly of the Langley Research Center) 
for his technical guidance and development of the 
pivotal functions used in this work. 
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Symbols 
2 x 2 covariance matrix for a limiting 
normal distribution 

element ( 2 ,  j )  of A matrix (i, j = 1,2)  

cumulative distribution function 
probability density function 
lower confidence limit for reliability 
lower prediction limit for time to next 
failure 

moment-generating function for random 
variable 2 

number of bugs found in software 
probability function 
pivotal function used to  define S and T 
reliability at  time y after n bugs have 
been found in software 

estimator of &(y) 
pivotal function for estimating time to 
next failure 

percentage point of S distribution 
pivotal function for estimating reliability 
percentage point of T distribution 

upper confidence limit for reliability 
upper prediction limit for time to next 
failure 

dummy variable 
pivotal function used to define S and T 
random variable for time between detect- 
ing the (i - 1)st and i th bugs 
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specific time between detecting the 
(i - 1)st and ith bugs 

operational time of software 

random variable from standard exponen- 
tial distribution 

specific value for Zi 

confidence coefficient for confidence and 
prediction limits 

parameter of geometric de-eutrophication 
model 

maximum-likelihood estimator of ,B 

parameter of geometric de-eutrophication 
model 

maximum-likelihood estimator of y 

parameter for Pareto distribution 

failure rate of software after i - 1 bugs 
have been found 

statistical variance of a variable 

parameter for Weibull distribution 

parameter for gamma distribution 

Geometric De-Eutrophication Model and 
Parameter Estimation 

The Moranda geometric de-eutrophication model, 
which has been studied previously in the context 
of software reliability, is described in this section. 
The geometric de-eutrophication model is a relatively 
simple reliability-growth model that has been popu- 
lar for describing the failure rate of software. The 
principal assumptions of the model are that the in- 
terfailure times are exponentially distributed and the 
failure rate of the software decreases in a geometric 
progression with each failure. Intuitively, one would 
expect the failure rate of the software to decrease as 
the testing process continues. Correspondingly, the 
reliability of the software is expected to increase as 
the rate at  which failures occur diminishes. The geo- 
metric de-eutrophication model uses the interfailure 
times from the testing process to determine the fail- 
ure rate of the software and, consequently, the growth 
in the reliability. 

The interfailure times X I ,  X2, . . . are modeled 
using the assumption that the failure rate X i  of the 
software after i - 1 bugs are removed is 

A .  2 -  - e7-P(i-1) (i = 1, 2, . . .) 

The model is completely defined by adding the as- 
sumption that X i ,  X2 ,  . . . , X n  are independent and 
exponentially distributed. The P parameter governs 
the rate at  which X i  increases or decreases. Note that 
as i increases, P ( i  - 1) becomes the dominating term 
in the failure rate function. For p > 0, the failure 
rate decreases and reliability growth is implied. Us- 
ing the above assumptions, the probability density 
function of each interfailure time X i  is given as 

Maximum-likelihood techniques are then used to 
estimate the model parameters. From the assump- 
tion of independent and exponentially distributed 
interfailure times, the likelihood function given a set 
of interfailure times X I ,  z2, . . . , 2, is 

The maximum-likelihood estimators 5 and a (given 
in a slightly different form by Moranda) are the 
solutions to 

i= 1 I 
Estimates of these parameters can be evaluated nu- 
merically from equations (2) by knowing only the 
interfailure times. If > 0, reliability growth in 
the software is implied. From these estimates of the 
model parameters, single point estimates of reliabil- 
ity are possible. However, estimators that possess a 
degree of statistical confidence are desired, and these 
estimators are obtained by utilizing a pivotal func- 
tion approach. 

Pivotal Functions and Confidence Limits 
Confidence and prediction limits are developed in 

this section to provide interval estimators of software 
reliability and the time to the next failure. Confi- 
dence limits are developed since they give a sense 
of assurance in the accuracy of estimating the reli- 
ability and the time to the next failure as opposed 
to single point estimators. The confidence coefficient 
associated with the limits, denoted by 1 - a,  gives 
the percentage of time, in repeated sampling, that 
the constructed limits will contain the parameter of 
interest. If the confidence coefficient is high, one can 
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be highly confident that the limits contain the true 
parameter of interest. 

Since exact confidence and prediction limits are 
not direct results from the estimation of the model 
parameters, the pivotal method is used to construct 
both the confidence and prediction limits. The piv- 
otal method hinges on defining a function that pos- 
sesses the following two properties: (1) the function 
is an association of the sample observations (inter- 
failure times in this case) with an unknown quantity 
of interest, say 8, where 8 is the only unknown quan- 
t i ty (here, 8 represents reliability and the time to the 
next failure); and (2) the function has a probability 
distribution that is independent of 8 (ref. 3). If the 
distribution of the pivotal function can be obtained 
by using analytic derivation, simulation, or any other 
means, the limits can be constructed from that distri- 
bution. The Student's t statistic is a familiar example 
of a pivotal function. 

In this section two pivotal functions, S and T ,  
based on the maximum-likelihood estimators of the 
model parameters, are defined from which the con- 
fidence and prediction limits will be derived. The 
distributions of these pivotals seem analytically in- 
tractable, so no attempt is made to derive them. 
However, the distributions can be ascertained by sim- 
ulation since the pivotal functions used here can be 
represented as implicit functions of independent stan- 
dard exponential variates that can be randomly gen- 
erated. The simulation will be discussed in further 
detail after the theoretical development of the pivotal 
functions. 

Using the estimators of the model parameters y 
and p in equations (2),  the quantities W = -i. - y and 
Q = - p can be defined; these functions provide 
the foundation for generating the pivotal functions 
S and T needed to construct the confidence limits. 
The quantities W and Q are also pivotal functions 
since their sampling distributions are independent of 
y and p. To see this, let 21, 2 2 ,  . . . , Zn be indepen- 
dent random variables having a standard exponential 
distribution with a probability density function e-' 
where z 2 0. Using moment-generating functions, it 
can be shown that the quantity Zie-y+p(Z-') where 
i = 1, 2, . . . , n has a distribution identical to that of 
Xi. It follows from the moment-generating function 
of Zi, that is, 

M&) = (1 - q-1 

that the moment-generating function of 2ie-y+p(i-1) 

is given as 1 - te-y+p(i-') I-'. Since each distri- 
bution has a unique moment-generating function, it 
follows that the probability density function of the 

[ 

which is equivalent to the density of Xi.  Substituting 
for each xi in equations (2) yields the following 
representations: 

J zi [i - 1 - (n  - 11/21 e-Q(Z-') = o 
i= 1 

Although inference about y and p is now possible 
on the basis of W and Q, the estimation effort is 
extended by using W and Q as building blocks of 
other pivotal functions germane to reliability and the 
time to the next failure. 

Given W and Q, consider the following pivotal 
which'is a function of the time to the (n  + 1)st fail- 
ure and the estimated failure rate after n bugs have 
been removed from the software: 

(4) 

Note that S is composed of the quantity of interest 
(the time to the next failure xn+l)  and a function of 
the sample observations (the failure rate after n bugs 
have been removed from the software A n + l ,  which 
can be calculated using 9 and ,h from equations (3)). 
The distribution of S can be written in terms of stan- 
dard exponential variates as in the following equation 
so that the distribution can be easily simulated: 

( 5 )  

Once the percentage points of S are determined, 
prediction limits for the time to  the ( n  + 1)st failure 
can be obtained. From the S distribution, percentage 
points s1 and s 2  can be identified such that 

Pr (SI < s < s2 )  = 1 - a (0 < a < 1) 

It follows that 

From this probability statement the general equa- 
tions for the lower and upper prediction limits, de- 
noted respectively, by L, and Up,  for Xn+1 are de- 
fined as 
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where SI < s 2  are percentage points of S, corre- 
sponding to some confidence level 1 - cy. 

Thc same technique is used to generate confidcncc 
limits for reliability at a specified operational time y. 
In accordance with Musa (ref. 4), the reliability of 
software at a given time y 2 0 after n bugs have 
been found, denoted by Rn(y) ,  is the probability of 
failure-free execution of the software for some time 
interval of length y. In terms of the model, reliability 
is defined as 

(7) 
- yer - O n  

Rn(Y) = e 

Now, consider a function T defined in terms of 
the maximum-likelihood estimator &(y) (obtained 
by replacing y and /3 in eq. (7) by 'y and a) where 

By manipulating equation ( 8 ) ,  T can be written as 
Then, substituting the pivotal 

functions W and Q as before gives 
- y - (a - /3)n. 

T = W - n Q  (9) 

The sampling distribution of T is, thus, independent 
of the unknown parameters (y and @), which indi- 
cates that T is a pivotal function. Given that the dis- 
tribution of T can be determined, percentage points 
t 1 and t 2  of the T distribution can be identified such 
that 

Pr(tl < T < t2 )  = 1 - a  (0 < CY < 1) 

Substituting the form of T in equation (8) into this 
probability statement gives 

After some manipulation, lower and upper confidence 
limits, denoted by L,  and U,, respectively, for Rn(y) 
are given as 

where t l  < t2  are percentage points of the pivotal T 
distribution chosen for a level of confidence 1 - cy. 

Simulation and Large Sample 
Approximation 

As mentioned earlier, analytic derivation of the 
exact distributions of pivotal S and pivotal T seems 

improbable. Hence, Monte Carlo techniques were 
employed to obtain the desired distributions. The 
simulation was inipleiiiellted with the following al- 
gorithm for n = 5 to 100 (as shown in tables I 
and 11): (1) randomly generate n + 1 of the standard 
exponentially distributed interfailure times, denoted 
earlier as 21, 2 2 ,  . . . , &+I, (2) solve for W and Q in 
equations (3), (3) calculate S and T (eqs. (5) and (9), 
respectively), (4) repeat steps (1) to (3) 1OOOOO times 
to realize the two distributions, and (5) determine the 
percentiles of each distribution. A general purpose 
bisection method with a tolerance of lop6 was in- 
voked to solve for W and Q in equations (3). Tables I 
and I1 contain the simulated percentage points of the 
pivotal S and pivotal T distributions, respectively. 

Theoretically, asymptotic normality of the esti- 
mators of the model parameters could be used to 
construct asymptotically distribution-free confidence 
limits for reliability. Using asymptotic approxima- 
tions to estimate reliability would eliminate the need 
to construct pivotal functions and generate their dis- 
tributions as long as the asymptotic approximations 
are close to the true limits. The asymptotic approx- 
imations are often assumed to be adequate for es- 
timating reliability. However, the accuracy of the 
approximated limits is not assured in this case since 
the interfailure times are not identically distributed 
and n may not be large enough to justify the use of 
limiting distributions. 

By comparing the limiting distributions of each 
pivotal to its simulated sampling distribution, the ad- 
equacy of asymptotic approximations for this prob- 
lem can be studied. Using a central limit theorem 
and a weak law of large numbers, it is shown by Cox 
and Hinkley (ref. 5) that 9 and a, as in equations (a), 
have limiting ( n  + 00) normal distributions. In par- 
ticular, (n1j2(9 - y), n3/2( f i  - @)) converges in dis- 
tribution as n -+ 00 to a bivariate normal distribu- 
tion with a mean vector 0 and a 2 x 2 covariance 
matrix A where a l l  = 4 and a12 = a21 = a22 = 6. 
For large n, the A matrix is defined by 

Consequently, the asymptotic variances for large n 
are 

0 2 ( - ^ y )  = 2(2n - l ) / [n(n + 111 = 4n-I 
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Now, consider the sampling distribution for piv- 
otal T given in equation (9). Using the multivariate 6 
method as described in reference 6 (p. 493), it follows 
that 

n'/2(W - nQ) = n'/'T 

converges in distribution to the norinal with a mean 
of 0 and a variance of approximately 4. The 
convergence of n'I2T also implies that T converges 
in probability to 0; hence, eW-nQ converges in prob- 
ability to 1. Therefore, because Zn+l is a standard 
exponential variable 

s = Zn+lew-nQ 

has a limiting exponential distribution. So, a normal 
distribution and a standard exponential distribution 
are the asymptotic approximations for the T and 
S distributions, respectively. The convergence of 
T and S to these approximations is apparent when 
observing the percentage points in tables I and 11. 

Using tables I and I1 and the asymptotic results 
above, the percentage points of the pivotal distribu- 
tions can be compared with their limiting distribu- 
tions to realize how close the approximate distribu- 
tions are to the true distributions. For n = 5, the 
95th percentile is 2.332 for the pivotal T distribu- 
tion and is 1.471 for the asymptotic approximation. 
However, for n = 100, the 95th percentile is 0.355 for 
the pivotal T as compared with 0.329 for the limiting 
normal. For n = 5, the 95th percentile point is 10.948 
for the pivotal S compared with 2.996 from the stan- 
dard exponential distribution; and, for n = 100, the 
95th percentile is 3.137 for the pivotal S as compared 
again with 2.996. Thus, it is obvious that for small 
values of n, the limiting distributions provide poor 
approximations to the true distributions. However, 
as n increases, the difference between the percent- 
age points of the limiting and pivotal distributions 
decreases along with the change in the limits. 

Because of the inadequacy of the asymptotic ap- 
proximations for small n, confidence and prediction 
limits based on the limiting distributions would be 
poor approximations for the true limits for small 
n. The inadequacy of the approximations when n 
is small is particularly significant since existing soft- 
ware testing data largely consist of relatively small 
sample sizes, with n 2 50 being uncommon. Unless 
other approaches are considered, such as estimating 
the percentage points of the pivotal distributions by 
higher order approximation to their moments (see 
ref. 5, p. 282), the use of the simulated pivotal dis- 
tributions provides the best way of computing the 
confidence and prediction limits, especially for real 
data where n is small. 

Ko bustness 

In computing confidence and prediction limits 
based on the geometric de-eutrophication model, the 
interfailure times are assumed to be exponentially 
distributed. Tt has yet to he shown, t,hough, t,hat, 
the interfailure times from a software testing process 
are exponentially distributed. Robustness, as con- 
sidered here, is concerned with.how well the limits 
cover the parameter of interest when the interfailure 
times are not exponentially distributed. The Pareto 
distribution, whose distributional shape is similar to 
the exponential but has a longer tail, has been sug- 
gested as a more realistic distribution for describing 
the behavior of the interfailure times (ref. 7). The 
Weibull and gamma distributions are also candidates 
since both take on a wide variety of shapes, including 
the exponential, by varying their parameter values. 
This investigation of robustness is limited to studying 
the effect of the different distributions on the predic- 
tion limits and considers interfailure times from the 
Pareto, Weibull, and gamma distributions. 

Monte Carlo techniques are again used to pro- 
duce interfailure times from the different distribu- 
tions. The simulation consisted of generating n + 1 
random variables representing the interfailure times 
X I ,  X2, . . . , Xn+l according to each of the three 
distributions and then scaling each X i  by a factor of 
eT-o(z-') where i = 1, 2, . . . , n+ 1. Prediction lim- 
its for the time to the (n+ 1)st failure were computed 
from the first n variates using equations (6) and the 
percentage points from the S distribution. To real- 
ize the actual confidence level for these limits, this 
process was repeated 10000 times checking at each 
iterate to see if the ( n  + 1)st variate was contained 
in the prediction limits. 

The results of this simulation, found in table 111, 
show that the distributional form of the interfailure 
times significantly affects the actual level of confi- 
dence of the prediction limits. Confidence levels for 
the limits in the case of Pareto (8)-distributed in- 
terfailure times appear to converge to the expected 
90-percent level as 8 increases. Confidence levels in 
the Weibull ( 4 )  and gamma ($) cases, though, fall 
below the expected 90-percent level for 4 and $ < 1 
and exceed the 90-percent level for 4 and 11, > 1. 
Hence, the method appears robust with respect to 
Pareto (8)-distributed interfailure times where 8 is 
large, but it does not appear robust for Weibull- and 
gamma-distributed interfailure times if their param- 
eter values are not close to 1. This result indicates 
that the model should be applied to cases where the 
interfailure times are determined to be exponentially 
distributed. 
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Concluding Remarks 
Pivotal functions are effective tools for detcr- 

mining confidence limits for software reliability and 
prediction limits for the time to the next failure. 
The method of pivotal functions produces exact 
confidence and prediction limits with corresponding 
degrees of statistical assurance in the quality of the 
reliability estimates. The usual application of asymp- 
totic results for estimating the limits is inadequate 
as compared with the pivotal approach] especially 
when only a small number of bugs have been found 
during the testing process. Furthermore] the distri- 
butional form of the interfailure times does influence 
the confidence level of the prediction limits, but the 
limits derived by the method of pivotal functions ap- 
pear robust for a special case of Pareto-distributed 
interfailure times. Because of the sensitivity to the 
interfailure-time distribution, use of the Moranda 
model should be restricted to cases in which the in- 
terfailure times are exponentially distributed. 
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n 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
20 
25 
30 
35 
40 
45 

50 
60 
70 

100 

Table I. Percentage Points of Pivotal S Distribution 

so.01 

0.0065 
.0071 
.0080 
.0082 
,0082 
.0085 
.0084 
.0087 
.0092 
.0094 

0.0095 
.0092 
.0093 
.0096 
.0095 
.0102 
.0106 

0.0096 
,0098 
.0104 
.0101 

80.05 

0.0347 
.0381 
.0412 
.0429 
.043 1 
.0453 
.0450 
.0449 
.0471 
.0467 

0.0474 
.048 1 
.0484 
.0504 
.0498 
,0516 
.0506 

0.0509 
.0507 
.0503 
.os11 

so. 10 

0.0753 
,0814 
.0866 
.0887 
.0910 
,0946 
.0942 
,0943 
.0968 
.0976 

0.0989 
.0993 
.lo13 
.lo39 
.lo24 
.lo47 
,1049 

0.1032 
.lo44 
.lo5 1 
.lo50 

80.90 

5.864 
4.889 
4.340 
3.935 
3.669 
3.488 
3.337 
3.241 
3.121 
3.072 

2.992 
2.790 
2.694 
2.622 
2.568 
2.516 
2.520 

2.484 
2.438 
2.425 
2.376 

s0.95 

10.948 
8.469 
7.149 
6.320 
5.797 
5.288 
5.018 
4.767 
4.602 
4.452 

4.288 
3.896 
3.732 
3.597 
3.484 
3.396 
3.387 

3.346 
3.254 
3.210 
3.137 

so. 99 

39.417 
25.470 
19.417 
15.911 
13.641 
11.725 
10.949 
9.842 
9.508 
8.663 

8.387 
7.147 
6.606 
6.117 
5.919 
5.661 
5.621 

5.417 
5.250 
5.165 
4.950 
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n t0.01 

I 

Table 11. Percentage Points of Pivotal T Distribution 

t0.05 to.10 to.90 t0.95 to.99 

-2.351 
- 2.049 
-1.821 
- 1.685 
-1.556 

-1.613 
-1.419 
-1.267 
-1.183 
- 1.093 

-1.241 
- 1.095 
-.983 
-.916 
-.847 

1.772 
1.537 
1.369 
1.241 
1.143 

2.332 
2.021 
1.793 
1.624 
1.488 

3.522 
3.045 
2.676 
2.431 
2.219 

10 
11 
12 
13 
14 

- 1.461 
- 1.390 
-1.322 
-1.254 
-1.204 

- 1.030 
- ,972 
-.931 
-.884 
-.850 

-0.799 
- .753 
-.727 
-.687 
- .663 

1.057 
.992 
.935 
.890 
.849 

1.381 
1.296 
1.221 
1.153 
1.105 

2.046 
1 .goo 
1.789 
1.699 
1.617 

I 
15 
20 
25 
30 
35 
40 
45 

-1.164 
- .993 
-.881 
- .808 
-.749 
-.701 
-.657 

-0.821 
- .708 
- .626 
-.574 
-.532 
-.496 
-.468 

-0.635 
-.553 
-.488 
-.448 
-.415 
-.386 
-.365 

0.807 
.680 
.595 
.534 
.487 
.455 
.424 

1.049 
,879 
.770 
.691 
.631 
.588 
.547 

1.534 
1.260 
1.123 
.997 
.907 
.840 
.789 

50 
60 
70 

100 

-0.623 
- .573 
-.532 
-.445 

-0.445 
- .407 
-.378 
-.313 

-0.346 
-.318 
-.293 
-.246 

0.398 
.360 
.328 
.275 

0.512 
.465 
.424 
.355 

0.736 
.666 
.606 
.505 
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Table 111. Actual Confidence Levels of Prediction Limits for Time to Next Software Failure Given 
Pareto-, Weibull-, and Gamma-Distributed Interfailure Times 

0.680 
.809 
.869 
389 

Distribution 
of interfailure times 

0.680 
,818 
.870 
.891 

Modified Pareto (0): 
F ( z )  = 1 - (1 + z)-@ 
(where z 2 0) 

0.825 
.goo 
.968 
.996 

Weibull (4): 
~ ( z )  = 1 - e-"' 
(where z 2 0) 

0.834 
.goo 
.970 
.996 

Gamma ($I): 
~ ( z )  =* r($)-l Je+le-tdt 
(where z > 0) 

1c, = 0.5 

1c, = 2.0 
1c, = 1.0 

Parameters 

0.712 0.728 0.736 
.goo .goo .goo 
.984 .980 .980 

I 

Actual confidence level of 
90-percent prediction limits for 

time to the ( n  + 1)st failure 

I n = 5  n = 15 n = 30 

0 = 1.0 
0 = 2.0 
0 = 5.0 

0 = 15.0 

4 = 0.8 
0 = 1.0 
0 = 1.4 
(b = 2.0 

0.702 
,812 
.873 
,890 

0.818 
.goo 
.970 
.996 

* r ( y )  = so" uy-le-' dv where y > 0. 
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