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Work i s  i n  progress on: ( a )  determining the shapes and the internal  
s t ructures  of sate1 1 i t e s  ( w i t h  Peter Thomas of Cornel 1 Uni versi t y  ) ; (b)  
invest igat ing t he  t ida l  heating of M i  randa ( w i t h  Renu Ma1 hotra of Cornel 1 
University and Carl Murray of Queen Mary College, London); ( c )  invest i  gat- 
ing the  dynamics of arc-1 i ke  r ings ( w i t h  Carl Murray) ; and (d)  determining 
the  s t ructure  of the zodiacal cloud as revealed by IRAS ( w i t h  Phil ip 
N i  chol son of Cornel 1 Uni versi  t y )  . Si gni f i  cant  progress has been made i n  
( a )  the determination of the  shape and the in ternal  s t ruc ture  of Mimas and 
(b )  understandi ng the  dynami cal evolution of M i  randa' s o rb i t .  

The Shape and Interwal Structure  o f  Mimas 

Limb prof i l es  from the six best Voyager images have been used t o  
determi ne the  shape of the sate1 1 i t e .  Correction of image d i s to r t ions  
a1 lows coordinates on the 1 imbs t o  be located w i t h  an accuracy of 
approximately one-half p ic ture  element: about 0.5 km fo r  the two best  
images and between 1 and 2 km for  the other images. El l ipses  f i t  t o  t he  
1 imbs show t h a t  the  shape of Mimas i s  well -represented by a t r i a x i a l  
el 1 ipsoid: i t  i s  the small e s t  sate1 1 i t e  observed for  which t h i s  is  
possible. The r a t i o  of the  differences of the axes , (b - c ) / ( a  - c ) ,  i s  
0.27 + 0.04, indicat ing t ha t  the s a t e l l i t e  i s  close t o  hydrostat ic 
equilibrium. This i s  the  f i r s t  observation of a sate1 1 i t e  i n  the  so la r  
system w i t h  a t r i ax i a l  equi 1 i brium figure.  Using the sate1 1 i t e  mass 
determined by Kozai (1957) from observations of the  l ib ra t ion  period and 
the 1 i bration amp1 i tude of the Mimas-Tethys resonance, and a second-order 
theory for  the  e l l ipsoidal  f igure  of equilibrium, we deduce t h a t  the  
sate1 1 i t e  has a mean radius <R> of 198.9 + 0.6 km, a mean density of 1.137 
+ 0.018 g/cm3 and t ha t  the  difference between the  long and shor t  axes, a - 
c,  i s  17.0 + 0.7 km. The expected value of a - c fo r  a comparable, but 
homogeneous sate1 1 i t e  i n  hydrostat ic equilibrium i s  20.3 2 0.3 km. We 
conclude t ha t  Mimas i s  probably d i f fe ren t ia ted  and may have a rocky core 
of radius ( Oe43 2 0.10) <R>.  The materi a1 outside the  core probably has 
a mean density of 0.98 + 0.08 g/cm3, consis tent  w i t h  t h a t  of uncompressed 
water-ice. The rock/ice r a t i o  (by weight) of Mimas i s  probably a fac tor  
of 2 lower than the cosmic r a t i o :  Mimas is  markedly def ic ient  i n  rock. 
T h i s  work represents the  f i r s t  determi nation of the in ternal  s t ruc ture  of 
a sate1 1 i t e  i n  the so la r  system, other than the  Moon, and i s  1 ikely t o  
shed 1 i ght on the  accretion of sate1 1 i t e s .  Prel imi nary consi derat i  ons 
favor the i dea of heterogeneous accretion (Dermott and Thomas, 1986 1. 

(b)  Tidal Heating of Miranda 

This work i s  par t  of a continuing e f f o r t  t o  understand the dynamics 
of the  Uranian s a t e l l i t e  system. We showed t h a t  the  theory previously 
used t o  find the  masses of the Uranian s a t e l l i t e s  from t h e i r  orbi ta l  
precession r a t e s  contai ned a fundamental e r ro r  (Dermott and Ni chol son, 
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1986). Thus, we were able t o  predict tha t  the pre-Voyager masses of the 
s a t e l l i t e s  would prove to  be incorrect. This prediction has now been 
proved t o  be right.  

We have now analyzed the evolution of the Uranian sate1 1 i t e  orb i t s  
due t o  t idal  dissipation in the planet and have calculated the change i n  
the orbital  elements due to  passage through low-order orbi t-orbi t 
resonances. We have succeeded in showing that  the orbital  eccentricity 
of M i  randa woul d have been dramatical ly increased by these passages and 
that  the subsequent t idal damping of this eccentricity would have heated 
the sate1 1 i t e .  We have also calculated the change i n  the orbital  
inclination of Mi randa on passage through the same se t  of resonances. The 
calcul ated change is  large enough to  account for  the present very high 
orbital  inclination of Miranda. Thus, we consider tha t  we have found a 
dynamical solution for both the bizarre appearance of Miranda observ.ed by 
Voyager and the anomalous orbital  inclination (Malhotra, Dermott and 
Murray, 1986). 

(c)  Qynamics of Arc-Like Rings 

The location and the s t ab i l i t y  of the Lagrangian equilibrium points 
i n  the res t r ic ted  circular  three-body problem have been examined under a 
vari ety of drag forces. L i  near stabi 1 i ty analysis and numerical 
integration confirm tha t ,  contrary t o  what might be expected from simple 
energy arguments, the L and L points can be asymptotically s table  under 
the action of certain drag forces, despite being points of potential 
maxima. The resul ts  have been extended t o  the horseshoe regime where the 
radial osci l la t ions of the par t ic le  are small compared with the width of 
the horseshoe path in the rotating reference frame. In th i s  case, the 
behavior of the Jacobi constant averaged over the horseshoe path 
determines the stabi 1 i t y  and the sense of evolution of the par t ic le .  I f  
the drag force varies as vP,  where v i s  the velocity of the par t ic le  i n  
the iner t ia l  frame, then the value p = 2 i s  c r i t i ca l  for both the tadpole 
and the horseshoe regimes. S tabi l i ty  i s  ensured i f  sign(a) x sign 
( 2  - p) i s  negative. 

A similar analysis can be applied t o  any part ic le  in a co-rotating 
arc. These resul ts  may have important implications for the s t ab i l i t y  of 
arcs of ring materi a1 where the dynamical effects  of drag can counteract 
the spreading due to  par t ic le  coll isions (Murray and Dermott, 1986). 

(d l  Structure of the Zodiacal Cloud as Revealed by IRAS 

The IRAS Zodiacal History Fi le ,  which contains the a1 1 -sky survey 
data, i s  now t o  hand a t  Cornel 1. Software has been written t o  Fourier 
analyse the data and thereby separate the smooth large-scale zodiacal 
background from the narrower dust bands. Our preliminary resul ts  were 
described in a paper read a t  the Uppsala Asteroid, Comets and Meteors 
meeti ng (Dermott, N i  chol son, and Wol ven, 1986). 



We have previously shown t h a t  the  dust bands may be debris  associated 
w i t h  the H i  rayama as teroid  fami 1 i es ,  i n  p a r t i cu l a r ,  the Eos and Themis 
fami 1 i e s ,  and we have predicted ( a )  t h a t  the  e c l i p t i c  l a t i t u d e s  of the dust 
bands should vary with e c l i p t i c  longitude and (b )  t h a t  the central  dust 
band should be s p l i t  (Dermott e t  a l . ,  1984, and Dermott e t  a l . ,  1985). We 
now have evidence supporting both of these predict ions.  In pa r t i cu l a r ,  we 
have evidence showing t h a t  the  central  dust band i s  indeed s p l i t  and t h a t  
the separation i n  1 a t i tude  of the two components i s  consis tent  w i t h  t h a t  
expected fo r  debr is  derived from the Themis family. T h i s  has important 
imp1 ica t ions  f o r  the or ig in  of the pa r t i c l e s  i n  the zodiacal cloud. 
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