DYNAMIC RESPONSE OF TWO COMPOSITE PROP.FAN MODELS ON A NACELLE/WING/FUSELAGE HALF MODEL

By
Arthur F. Smith
and
Bennett M. Brooks

HAMILTON STANDARD DIVISION UNITED TECHNOLOGIES CORPORATION WINDSOR LOCKS, CONNECTICUT 06096

October, 1986

```
(NASA-CK-179589) DYNANIC heSECNSE CF TWO N87-2:615
CCaposite frof-Fan mciels ca l
NaCELLE/WING/FESELAGE HALf ECLEL Final
Fefort (Hamiltcn Standard) 157 p Avail: Unclas
MIIS EC AO8/GF AO1
```


NMSn

DYNAMIC RESPONSE OF TWO COMPOSITE PROP-FAN MODELS ON A NACELLE/WING/FUSELAGE HALF MODEL

By
Arthur F. Smith
and
Bennett M. Brooks

HAMILTON STANDARD DIVISION UNITED TECHNOLOGIES CORPORATION WINDSOR LOCKS, CONNECTICUT 06096

October, 1986

N/S^

[^0]
FOREWORD

All of the testing reported herein was performed in the 4.27 m (14 foot) transonic wind tunnel at the NASA-Ames Research Center by NASA-Ames personnel, under the direction of Mr. Ronald C. Smith. Calculations of the flow field induced by the model installation in the vicinity of the Prop-Fan were performed by Dr. Joel P. Mendoza. These efforts are accomplished with the assistance and direction of Mr. Oral Mehmed of the NASA-Lewis Research Center, who was the NASA Technical Monitor for this project.

The test was supported and the test data were reduced, analyzed and reported by personnel from Hamilton Standard, a division of the United Technologies Corporation. Test support was provided by Mr . Richard C. Valentine and Mr. Arthur F. Smith. Mr. Donald J. Marshall performed the data reduction and Mr. Arthur F. Smith conducted the test data analysis and comparison to predictions. Mr. Peter J. Arseneaux performed the study to modify and improve the existing finite element analysis models. Ms. Mary E. Coyne and Ms. Carol M. Vaczy performed the blade response prediction calculations. The Project Manager was Mr. Bennett M. Brooks.

This work was accomplished under contract NAS3-24088 for the NASA Lewis Research Center in Cleveland, Ohio.
fraceining face blank not flamed

III

TABLE OF CONTENTS

Page
ABSTRACT iii
FOREWORD v
TABLE OF CONTENTS vii
SUMMARY 1
SYMBOLS AND ABBREVIATIONS 3
1.0 INTRODUCTION 5
2.0 DESCRIPTION OF THE EXPERIMENTAL PROGRAM 7
2.1 Test Models 7
2.2 Model Instrumentation 8
2.3 Test Procedures 8
2.4 Operating Conditions 9
2.5 Data Reduction. 9
3.0 DATA ANALYSIS 11
3.1 Spectral Analysis
11
11
3.2 Campbell Diagrams 12
3.3 Total Vibratory Strain Measurements 13
3.4 P-order Vibratory Strains 14
3.5 Effect of Fuselage Attitude on 1P Strain 14
3.6 Higher Order Vibratory Strain 15
3.7 Strain Sensitivity 17
3.8 Power Coefficient
18
18
3.9 Strain Sensitivity vs. Power Coefficient.
18
18
3.10 Data Comparison with Isolated Nacelle Tests 19
4.0 THEORETICAL PREDICTIONS AND COMPARISONS TO TEST DATA 21
4.1 Analytical Techniques 21
4.2 Blade Natural Modes and Frequencies 22
4.3 P-Order Response Calculations and Comparisons to Measurements 22
5.0 CONCLUSIONS 27
6.0 RECOMMENDATIONS 29
7.0 REFERENCES 31
TABLES 33
FIGURES 41
APPENDIX 83
APPENDIX II
97
97
APPENDIX III 147

SUMMARY

High speed blade dynamic response tests were conducted on two Prop-Fan models, one with swept and the other with unswept composite blades. These were mounted on a simulated fuselage/wing/nacelle half model.

TEST

The tests were conducted, in the NASA-Ames Research Center 4.27 meter (14 foot) wind tunnel, on the SR-2C and SR-3C-3 model Prop-Fans, operating on a simulated aircraft installation. The SR-2C and SR-3C-3 advanced turboprop models are nominally 62.2 cm (24.5 in.) in diameter, and have eight blades constructed of graphite/epoxy composite material. The SR-3C-3 model has swept blades and the SR-2C model has unswept (straight) blades. They were operated at tunnel velocities up to 0.85 Mach number. Also, the fuselage orientation was varied from -1 to 4 degrees from the freestream flow direction.

DATA ANALYSIS AND CORRELATION TO CALCULATIONS

Blade vibratory strain gage test data were reduced and analyzed to determine modal and forced response. Response trends with variations of operating parameters were studied. Non-dimensionalized blade strain sensitivities are presented as a function of rotor power coefficient.

Calculations of blade response were made using lifting line aerodynamic and finite element structural methodologies. The calculations are compared to test data. Also, fuselage installed data for the SR-3C-3 model are compared to data for that model from isolated nacelle tests.

CONCLUSIONS

1) The presence of the wing, downstream of the rotor, induced $1 P$ responses about twice those previously measured for an isolated nacelle installation, as would be expected.
2) The swept composite blade showed less response than the unswept composite blade.
3) Measured 2P blade strain varied linearly with wing lift.
4) Higher order response for the $S R-2 C$ model was not important.
5) Higher order response for the $S R-3 C-3$ model can be important near critical speeds due to the proximity of the blade tips to the wing leading edge.
6) Correlations between $1 P$ dynamic response calculations and measured data for the SR-2C model were good (underprediction averaged 10 percent). For the SR-3C-3 model, $1 P$ correlations were fair (overprediction averaged 33 percent).
7) The $2 P$ dynamic response of both blade models was overpredicted.
8) Improvements to the calculation method were identified and implemented.

RECOMMENDATIONS

1) The improved finite element prediction method should be confirmed by additional modal and forced response calculations.
2) Existing test data for other Prop-Fan models should be reviewed to determine the extent of nonlinear effects on blade response. These nonlinear effects should be included in future improvements to the blade response calculation method.
3) The effects of unsteady aerodynamics, aerodynamic damping and stiffness, and structural damping should be investigated.

SYMBOLS

	SYMBOLS
AF	$\text { Blade Activity Factor }=\frac{100,000}{16} \int_{0.2}^{1.0} \frac{b}{D} x^{3} d x$
b	Blade Section Chord Width, m
Cl	Blade Section Design Lift Coefficient
CN	Aircraft normal force coefficient
CP	Power coefficient $=2 \pi \rho / \rho n^{2} D^{5}$
D	Rotor Diameter, m
$e_{\text {total }}$	Total strain (statistically based) $=$ Xbar $+2 \nabla$
EF	Excitation Factor $=\psi\left(\mathrm{V}_{\text {eq }} / 348\right)^{2}$
EFeq	Equivalent Excitation Factor $=\alpha_{\text {eq }}\left(V_{\text {eq }} / 348\right)^{2}$
N	Rotor Speed, RPM
n	Rotor Speed, revolutions/sec
Q	Rotor Torque, $\mathrm{N}-\mathrm{m}$
SHP	Shaft Horsepower
Veq	Equivalent Airspeed, knots $=\mathrm{V}_{T} \sqrt{\rho / \rho_{0}}$
V_{T}	True Airspeed, knots
$V_{\text {tip }}$	Blade Tip Rotational Speed, m/s $=\mathrm{n} \pi \mathrm{D}$
x	Non-Dimensional Blade Radius
Xbar	Mean Strain (Statistically Based)
α_{f}	Aircraft Attitude (Angle of Attack) degrees
α_{0}	Aircraft Attitude for Minimum lP Excitation, degrees
$\alpha_{\text {eq }}$	Equivalent Inflow Angle $=\alpha_{f}-\alpha_{0}$, degrees
Bref	Reference Blade Angle (at 0.78 radius), degrees
B. 75	Blade Angle at 3/4 Radius $=\beta_{r e f}+0.9$, degrees
ϵ	Micro-Strain
p	Air density, $\mathrm{kg} / \mathrm{m}^{3}$
p.	Air Density, Standard Sea Level $=1.225 \mathrm{~kg} / \mathrm{m}^{3}$

Strain Standard Deviation (statistically based)
$1 P$
nP Prop-Fan Shaft Tilt (isolated nacelle), degrees Frequency $=$ one cycle per propeller revolution, Hz Frequency $=\mathrm{n}$ cycles per propeller revolution, Hz

SI units of measurement used throughout unless specified otherwise.

Prop-Fan aircraft propulsion technology has been developing for over a decade in a joint venture between the NASA-Lewis Research Center and Hamilton Standard, a division of United Technologies Corporation. The technical and economic benefits of the Prop-Fan concept, shown during this development, are discussed in Reference 1.

Of key importance, for successful development of the Prop-Fan, is the structural integrity of the rotor hardware. This concern has been addressed by programs of both theoretical analysis and test of scale Prop-Fan models. The results of some recently completed programs studying the structural integrity of Prop-Fan models are reported in References 2, 3 and 4. These reports discuss rotors with solid metal blades, tested on an isolated nacelle, and a model with straight composite blades, tested on an isolated nacelle as well as on a nacelle/wing/fuselage half model.

Ultimately, knowledge of the integrated effect of the aircraft flow field on the Prop-Fan is essential, since the wings, pylons and/or other empennages alter the airflow in the vicinity of the Prop-Fan and may drastically affect its efficiency and dynamic structural response. As an example, much of the lost swirl due to Prop-Fan rotation can be recovered by properly shaping the wing behind the Prop-Fan (see Reference 5). In a like manner, the flow field encountered by the rotor can be tailored to either improve or worsen the vibratory response of the blade.

As part of the continuing studies of Prop-Fan structural stability and blade dynamic response, two single-rotation tractor, composite blade configurations, the $S R-2 C$ and the $S R-3 C-3$, were tested. The SR-2C model was designed by NASA-AMES and the SR-3C-3 model was designed by NASA-Lewis with Hamilton Standard support. The models were fabricated by NASA-Ames.

Forced response tests were conducted by NASA-Ames in the 4.27 meter (14 foot) transonic tunnel, over a Mach number range of 0.6 to 0.85 . The Prop-Fan models were mounted on a nacelle/wing/fuselage half model The SR-2C was tested as an eight-bladed configuration and the SR-3C-3 was tested as a four-bladed configuration. The wing on this model contained a leading edge extension (LEX), which was contoured over the wing nacelle as discussed in Reference 6. These tests were conducted during July and August of 1984. Hamilton Standard, under contract, supported the test effort, and then reduced and analyzed the structural response data acquired during these tests.

This report summarizes the results of the dynamic blade response investigation. Included are trends of measured vibratory blade strain with operating conditions for the two configurations tested. The test results are presented in the form of total vibratory strain, modal vibratory strain, P-order strain and frequency spectra. Comparisons are made between measured blade strain and calculated analytical predictions for selected test cases. Improvements to the calculation method were identified and implemented. Data trends were analyzed and recommendations are made for future Prop-Fan design and application.

2.0 DESCRIPTION OF THE EXPERIMENTAL PROGRAM

The tests described in this report were conducted on the SR-2C 8-bladed, and SR-3C-3 4-bladed Prop-Fan models mounted over the wing on a contoured nacelle/wing/fuselage half model configuration. The tests were run in the NASA-Ames 4.27 meter (14 foot) transonic wind tunnel. The primary purpose of these tests was to determine the effects of the aircraft flow field and attitude on the vibratory response of Prop-Fans at high speed, up to 0.85 tunnel Mach number.

2.1 Test Models

The SR-2C and SR-3C-3 Prop-Fan models are nominally 62.2 cm (24.5 in .) in diameter and incorporate thin airfoils (2 percent thick at the tip). The SR-2C has a straight (unswept) planform while the SR-3C-3 incorporates swept blades to achieve high aerodynamic efficiency with low noise generation. Table I is a summary of the overall design parameters for these Prop-Fans. The blades and hubs were built at NASA-Ames and the geometric shapes (aerodynamic shapes) are Hamilton Standard designs. The blades are made of unidirectional carbon fiber cloth layers in an epoxy matrix. The cloth plies are oriented in such a manner as to provide similar vibratory response frequencies as the metal SR-2 and SR-3 models, and to allow the models to be free of unstalled flutter instabilities. Further discussion of composite blade stability is found in Reference 7.

Figure 1 shows the $S R-2 C$ and $S R-3 C-3$ models installed in the wind tunnel. Reference 3 contains a description of the geometric characteristics of these blades. The characteristics include blade twist, blade section chord, and sweep distribution, plotted as a function of radius.

Each of the blades is fitted with a gear sector at the end of the shank which meshes with a ring gear in the hub to synchronize blade pitch. The pitch angle of all blades (collective pitch) is ground adjustable. It may be readily changed by relocation of a pin which locks the ring gear to the hub.

The wind tunnel facility used for these tests was the 4.27 meter (14 foot) transonic wind tunnel at the NASA-Ames Research Center, in California. This is a closed-circuit tunnel equipped with an adjustable, flexible-wall nozzle and a test section with four slotted walls. The air circuit is closed except for the air exchanger, which is located in the low speed plenum section. The exchanger is controlled in order to maintain suitable air temperature. Airflow is produced by a three-stage, axial-flow compressor powered by three variable-speed, electric motors mounted in tandem and rated at 82,000 kw (110,000 horsepower) total power.

The SR-2C model was tested in the full 8-bladed configuration. Test rig limitations dictated that the $S R-3 C-3$ model be tested in a 4-bladed configuration.

The SR-2C and SR-3C-3 models were mounted in an over-the-wing contoured nacelle on a wing/fuselage half-model. This half-model was fastened to a balance in the tunnel floor. The balance was used to measure the aerodynamic forces on the model installation. The aircraft attitude could be changed remotely in pitch during the testing. References 6 and 8 discuss this installation. The model Prop-Fan was powered by an air turbine mounted within the nacelle which was supplied by air routed up through the wing. The turbine supplied up to 545 kilowatts (730 horsepower) of power to the rotor.

2.2 MOdEl Instrumentation

Foil strain gages mounted on the cambered (suction) surface of selected blades were used to measure vibratory surface strain due to blade dynamic response. The strain gages were mounted by NASA-Ames personnel, at locations recommended by Hamilton Standard.

The strain gages were located at points along the blade mid-chord where the vibratory strains were calculated to be high. Figure 2 shows the locations of the strain gages as they were applied to the blades. The blades of each rotor were numbered for identification of strain gage instrumentation. Looking upstream, the SR-2C blades were assigned the numbers 1 through 8 consecutively in the clockwise direction. The SR-3C-3 blades were assigned the numbers $2,4,6$, and 8 , in the clockwise direction. The blade strain gages are identified by $B G x-y$, where x is the blade number and y is the gage number, as shown in Figure 2.

On the SR-2C model the gages were used to measure inboard bending, inboard shear (torsion), and mid-blade bending on blade number 3 , and inboard bending on blade number 1 . On the SR-3C-3 model, inboard and mid-blade bending were measured on blade number 4, and inboard bending and shear were measured on blade number 8. A description of the gages and their locations is found in Table II.

The strain gage signals were routed through a slip ring assembly located within the nacelle. The output was ultimately directed to magnetic tape recording equipment.

2.3 Test Procedures

The tunnel airflow was brought up to speed with the Prop-Fan wind-milling (zero power). Its rotational speed was dependent on the blade pitch angle setting. The model rotational speed, at this fixed blade angle and fixed tunnel Mach number, was incrementally increased by increasing the power to the rotor. This was done until an operating limit, such as a blade stress limit, rig power limit or rotational speed limit was reached. The maximum allowable rotational speed was 8500 RPM for the SR-2C and 7000 RPM for the SR-3C-3, determined by safety limits for rig unbalance in case of blade loss. This procedure was repeated for various aircraft attitudes and tunnel Mach numbers, which were varied from the control room.

The tunnel was shut down in order to change blade pitch angle (ground adjustable). An inclinometer was used to set the blade pitch angle at the reference location (reference blade angle) prior to tunnel start up. The reference location for the SR-3C-3 and the SR-2C models is the 0.78 radius. The blade/hub collective pitch mechanical arrangement allowed the measurement of blade angle for a single blade to be used for this adjustment. However, the blade angle of each blade was measured, and the average of those values was used for reporting.

2.4 Test Conditions

The operating parameters that were varied during the test were Mach number, aircraft attitude, blade angle and rotor RPM. All of these parameters, except blade angle, were remotely controllable from the control room. The Mach numbers, blade angles, and rotor shaft tilt angles which were tested are summarized in Table III. The rotational speeds which were tested range from 3740 RPM to 7000 RPM for the SR-3C-3, and 5677 RPM to 8532 RPM for the SR-2C. The RPM was increased in 500 RPM increments, from the windmilling RPM to the RPM limit. The operating conditions for each test run, may be found in Appendix II.

Figure 3 shows the operating envelopes for this test. These boundaries include the RPM limits encountered, defined by windmilling, the maximum drive power available, or a pre-determined limit of 7000 RPM for the $S R-3 C-3$ and 8500 RPM for the SR-2C. The upper bounds on tilt angle and blade angle were generally limited by blade strain limits. A set of operating boundaries is shown for each Mach number tested.

It should be noted that the aerodynamic conditions for these wind tunnel tests differ from the Prop-Fan design cruise operating condition at 10668 meters (35000 feet) altitude because of a large air density difference. The near sea level density of the wind tunnel results in a higher dynamic pressure for blade tip relative Mach number similarity.

2.5 Data Reduction

Two types of magnetic tape data were provided to Hamilton Standard by NASA-Ames. One contained the operating condition data in digital form, and the other contained the strain data, in analog form. The first type (condition data) was used during the data reduction process to formulate the operating condition tables and data trend summary curves.

The second type (strain data) was also processed at Hamilton Standard using a computer based instrumentation data tape playback system. The time varying strain gage signals were passed through a scaling amplifier and then through vibratory peak detectors. Positive and negative amplitudes were averaged over specific time intervals. The peak detector output was then sampled by an analog to digital
converter and calibrated in engineering units for subsequent storage in computer memory. The data were then processed by a computer based analysis system.

Once the sampled data resided in computer memory, a statistical, total treatment of the data was used to define the "total strain". For the present work. Total strain is defined by the mean value of the time-varying strain half amplitude (zero to peak), plus 2 times the standard deviation of the strain amplitude, as measured during the sample record period. That is:

$$
\epsilon_{\text {total }}=x_{\text {bar }}+2 \nabla
$$

The instantaneous strain amplitude will be below this level 97.72 percent of the time during the data sampling period. That is, only 2.28 percent of the measured vibratory strains will be above this value. Note that "total strain" levels determined by this method will generally be higher than levels determined by a data sample average process, such as spectral analysis.

The core of the data analysis system is a high speed mini-computer. This computer was used to process and store the total strain data on a dual rigid disk drive. These data were later used to create trend summary plots of total strain vs. RPM and other test operating variables.

The data analysis system also performed a spectral analysis of the analog blade strain data. The spectral data (in digital form) were then stored on a disk for every steady state run analyzed. An algorithm for the computer, developed at Hamilton Standard, determined the peaks of the spectral data above a specified threshold level. Tables of p-order values and trend summary plots were made from these data and will be discussed later in the report.

The test data for the SR-2C straight blade and the SR-3C swept blade were analyzed. The trends of vibratory blade response with variations of operating parameters were determined. Results for the SR-2C straight blade and the $S R-3 C-3$ swept blade were compared. The test results are presented in the form of blade vibratory strain amplitudes and spectra. Also, measured and calculated blade natural frequencies are compared and test data trends in terms of non-dimensional parameters are presented. In addition comparisons are made between isolated nacelle and nacelle/wing/fuselage test data.

3.1 Total Vibratory Strain Measurements

Blade vibratory strain measurements were made, as described in the report instrumentation section (2.2), during wind tunnel testing of each Prop-Fan operating on the simulated nacelle/wing and fuselage combination. The angle of attack of this simulated aircraft was varied to change the inflow angle into the propeller, for a variety of operating conditions (blade angle, RPM, tunnel Mach number). As previously discussed, the total strain amplitude was defined, using a statistical approach, as the mean of the vibratory amplitude (zero to peak) plus twice the amplitude standard deviation (represented by $X_{\text {bar }}+2 \nabla$, see section 2.5).

Total strain measurements were obtained for all of the steady state runs made during the testing, and a table of these values is found in Appendix I. The table includes total strain values for all of the gages (listed by run number). A run number identifies a data sample Łaken at a single operating condition. The operating conditions that these runs represent are found in Appendix II.

For this study, trend plots of total vibratory strain were made for variations of operating condition, for all of the steady state runs. Total strain was plotted as a function of rotational speed (RPM) for various fuselage attitudes, combinations of blade angle, and Mach number. These trends are shown in Figures 4 through 8 and are discussed below.

RPM Trends. Figure 4 contains plots of inboard bending total vibratory strain as a function of rotational speed, at a constant Mach number of 0.6 , for both the $S R-2 C$ and $S R-3 C-3$ models at various fuselage attitudes (fuselage angles of attack).

The high stress regions shown in Figure 4 are indications of critical speeds for the blades. The $S R-2 C$ has strain peaks near 6000 RPM and just above 8000 RPM, while the $S R-3 C-3$ has strain peaks near 4000 and 7000 RPM. These critical speeds are discussed in further detail in Section 3.3.

Similar plots of measured total blade strain, but at a tunnel Mach number of 0.8 and for three blade strain gages, and shown in figures 5 and 6 .

Figure 5 shows $\operatorname{SR-2C}$ model response data. The highest strain for the bending gages again occurs near 6000 RPM, indicating a blade critical speed. However, the shear strain is almost constant with RPM. The critical speed appears to be due to excitement of one or more bending modes, to which the shear gage does not respond (Section 3.3).

Figure 6 shows response data for the $S R-3 C-3$ model. The high strain regions for each gage indicate response to critical speed creitations. Furthar analysis of critical spaeds is discuisseu below (Section 3.3).

Fuselage Attitude Trends: Some of the total strain data have been crossplotted in Figures 7 and 8 in the form of total stress vs. fuselage attitude. Also shown in these figures are once per revolution (1P) vibratory strain components, which are discussed below.

Figure 7 shows the SR-2C total inboard bending strain (BG3-1) at a rotational speed of 8000 RPM and Mach numbers from 0.6 to 0.85 , and blade angles from 50.8 degrees to 56.6 degrees.

Figure 8 shows the $S R-3 C-3$ total inboard bending strain (BG4-1) at a rotational speed of 6000 RPM and Mach numbers from 0.60 to 0.8 , and blade angles from 58.8 degrees to 62.7 degrees.

The total strain data all show variations with fuselage attitude that are approximately hyperbolic in shape. Note that the fuselage attitude yielding the minimum total strain increases somewhat with increasing Mach number. This minimum does not appear to be affected by rotor power (blade angle). The minimum total strain values for these data are about 500 micro-strain.

It will be shown below, that the total strain contains significant contributions by two and three per revolution (2P and 3P) strain components, in addition to the $1 P$ components.

3.2 Spectral Analysis

Spectral analysis of the strain gage signals was used to identify the harmonic P-order and non P-order (modal) responses of the blade. p-order responses are blade strain responses at frequencies which are integer multiples of the Prop-Fan rotational speed. Modal responses occur at the natural frequencies of the blade vibratory modes. Computer spectral analyses were conducted for all of the steady state runs. A table of the p-order harmonic values, derived from these data, is given in Appendix II. Also, spectral plots were made from these data for selected test runs as discussed in this section.

SR-2C Response. Figures 9 and 10 show typical samples of the spectral plots for the $S R-2 C$ blade response to angular inflow at several Mach numbers. Each figure shows the strain response spectrum
of the inboard bending gage, the outboard bending gage and the outboard shear gage. The test operating conditions for the data in these figures are as follows:

	Mach No.	Fuselage Angle of Attack	RPM Figure Figure 10	0.6

Both curves show substantial amounts of 60 Hertz noise and multiples thereof, probably due to contamination of the signal with power line interference the exact source of this noise is unknown, but the amplitudes of the spikes were small in comparison to the strain amplitudes. For this reason, this noise was ignored.

Blade strain data for both operating conditions show significant amounts of 4 P and higher P -order response. Figure 10 shows a higher $1 P$ vibratory strain value than that of Figure 9. This is because the angular flow effects are more severe for the higher Mach number even though the fuselage angle-of-attack is smaller. All of the bending gages show response to the first mode at around 220 Hz , while the outboard bending shows some higher mode response at around 530 Hz . The shear gage also shows higher mode response at 650 Hz .

SR-3C-3 Response. Figures 11 and 12 are spectral plots showing the blade vibratory strain response of the $S R-3 C-3$ blade operating at a Mach number of 0.6 , a fuselage angle of attack of -1.0 degree, and a blade angle of 62.7 degrees. Figure 11 data were measured during operation at 3800 RPM. Figure 12 data were measured during 6000 RPM operation.

Figure 11 for 3800 RPM operation, shows a large $1 P$ and $3 P$ response. Figure 12, for 6000 RPM operation, shows a large $1 P$ and 2P response for the inboard bending and outboard bending strains. At angular inflow conditions, the $1 P$ response generally dominates. Response magnification due to the presence of the first mode critical speed, causes the high 3P response at 3800 RPM, and the high 2 P response at 6000 RPM. This is discussed further in the next section. The shear gage does not show this effect, because there is little first mode response in shear.

3.3 Campbell Diagrams

The critical speeds for the $S R-2 C$ and $S R-3 C-3$ models are shown in the Campbell diagrams in Figure 13. Critical speeds are defined as the rotational speed at which a blade natural mode frequency crosses a p-order excitation frequency. This is sometimes known as a critical speed "crossover".

Measured and calculated blade natural frequencies are shown in Campbell diagrams in Figure 13, for several modes for each blade from spectral data. Measured frequencies were determined from spectral data. The calculated mode frequencies are discussed later in this
report (Section 4.2). Of primary interest is the first mode/2p crossover critical speed, since it generally is a major source of blade response. As such, it is to be avoided during operation if possible. It is noted that during this test critical speeds were encountered, which resulted in high measured strains at about 3800 and 6000 RPM for the SR-3C-3, and about 6000 and 8100 RPM for the $S R-2 C$.

3.4 P-order Analysis

A digital computer program was used to search the spectral data previously stored on disk (see section 2.5), and to pick out the values of strain amplitudes at the spectral peaks. These "peak values" were separately stored on disk for subsequent tabulating and plotting. Only peaks above an arbitrarily chosen threshold level were saved. In the present study, the cut-off strain value was 0.5 micro strain.

A table of the P-order harmonic values of vibratory strain (up to 6P), tabulated according to reading number, is given in Appendix II. The values were tabulated for the following gages on the SR-2C; inboard bending on blades 1 and 3, BG1-1 and BG3-1, mid-blade shear on blade number 3, BG3-2, and outboard bending on blade number 3, BG3-4.

Values were also tabulated for the following gages on the SR-3C-3; inboard bending on blades number 4 and 8, BG4-1 and BG8-1, outboard bending on blade number four, BG4-2, and outboard shear on blade number 8, BG8-3. Also tabulated were run number, Mach number, fuselage attitude, blade angle, Prop-Fan rotational speed, shaft power, and power coefficient.

If the rotational speed of the rotor drifts during a test run, the frequency of a harmonic peak will also drift. Then, the value of the harmonic peak will be reduced due to frequency smearing. This error can be as great as 10 percent, although it is typically less.

For a number of selected test cases, a harmonic order analysis was performed on the strain data. This is a spectral analysis which is triggered by the rotor once-per-revolution signal. The purpose of this special procedure, called data speed correction, was to refine the tested P-order strain values for comparison to calculations. These results are discussed further in section 4.3.

3.5 Effect of Fuselage Attitude on $1 P$ Strain

Total and $1 P$ vibratory strains were plotted in Figures 7 and 8 as a function of fuselage attitude for different combinations of blade angles and Mach numbers, for the SR-2C at 8000 RPM and for the SR-3C-3 at 6000 RPM.

The curves in Figures 7 and 8 show variations of $1 P$ strain with fuselage attitude. The 1P strain decreases linearly with increasing fuselage attitude, with the minimum strain value dropping very close to zero. At higher attitudes the $1 P$ strain then increases linearly with increasing attitude.

Since the $1 P$ response has a minimum near zero, this indicates that there is very little $1 P$ distortion to the infiow at that operating condition. Ip inflow distortion can be due to a combination of both pitch and yaw effects. Pitch related effects include fuselage attitude, nacelle downtilt and wing upwash. Yaw related effects include streamine divergence due to the presence of the fuselage and nacelle. They are fairly independent of pitch. To counteract yaw inflow effects, nacelle toe-in (see Figure 1) is usually applied. Since the minimum measured $1 P$ responses are nearly zero, this is an indication that the Prop-Fan toe-in angle is properly adjusted for this aircraft configuration.

It is seen that the total vibratory strain is substantially higher than the IP vibratory strain. This is due to two factors.

1) The total strain consists of many vibratory components and the IP vibratory strain is only part of the total signal.
2) The $1 P$ vibratory strains are data sample averages (RMS values) taken over 30 second intervals, as needed to produce the spectral analyses. The total strain is the statistically highest strain over about 97% of the data sample. The total vibratory strain and 1P strain measured by these methods, will have the same magnitude only if the signal was comprised of $1 P$, and had a constant amplitude for the data sample period.

From Figures 7 and 8, it is observed that the minimum $1 P$ vibratory strain occurs at a fuselage attitude between 2.3 and 3.4 degrees, depending on the Mach number. Figure 14 contains curves showing the average fuselage attitude giving IP minimum vibratory strain, plotted as a function of Mach number. Data are shown for each model tested.

There is a small difference of about 0.14 degrees between the two curves of Figure 14. A possible explanation for this slight difference may be that there were only four blades in the SR-3C-3 configuration tested, while there was a full complement of eight blades in the SR-2C configuration. The SR-2C produced more thrust and absorbed higher power and hence blew more air over the wing, causing greater circulation (upwash). Thus, a slightly smaller fuselage attitude (wing angle-of-attack) would be required to offset the nacelle droop, to achieve minimum vibratory strain for the SR-2C model.

This effect is also seen in the scatter of data for each blade model, which is due to testing at different Prop-Fan blade angles (power). It can be concluded from the small magnitude of these variations, that the effect of rotor power and thrust on wing lift, and thus flowfield, is small. This confirms the validity of neglecting thrust in the flowfield calculations. This calculation is discussed in section 4.1 .

3.6 Higher Order Vibratory Strain

For realistic Prop-Fan installations, higher order vibratory blade strain can be significant. As an example, the presence of a swept
wing behind the Prop-Fan generates 2P vibratory blade loads, from wing induced flow variations in the plane of the Prop-Fan. For this test, measured blade strain had significant $2 P$ and $3 P$ components.

2P Response. Figures 15 and 16 show $2 P$ micro-strain amplitudes for the $\mathrm{SR}-2 \mathrm{C}$ and the $\mathrm{SR}-3 \mathrm{C}-3$ models, respectively. These data are given for the same operating conditions as in Figures 7 and 8 where the 1P strain components are shown. Here, the 2 p micro-strain is plotted as a function of fuselage attitude, for various blade angles and Mach numbers.

Doth the $S R=2 C$ and the $S R=3 C-3$ data indicate large amounts of $2 F$ vibratory blade strain. The 2P contribution is highest when operating at or near a critical speed. The rotational speeds for the data shown were chosen so as to avoid the effects of critical speed. Mach number and blade angle show little effect on $2 P$ amplitude. However, fuselage attitude has a substantial effect.

The 2P vibratory strain increases linearly with fuselage attitude. The minimum or zero value is at some negative fuselage attitude. Extrapolating the 2P curves of vibratory strain for the SR-2C model, gives a zero strain value close to -3.0 degrees of fuselage attitude. The SR-3C-3 and SR-2C models show equivalent $2 P$ vibratory strains at similar blade angles.

The above results are consistent with the propeller aerodynamic theory that predicts 2 p blade airload excitation due to wing sweep (see Reference 9). If the 2 P response is primarily due to excitation caused by wing sweep (differences in upwash at the upgoing and downgoing blades), then it should be expected that the 2 P response should be minimum at a fuselage attitude for zero lift.

Figure 17 is a curve of lift coefficient (for the entire half-span aircraft model) plotted as a function of fuselage attitude, for the model aircraft with the SR-2C Prop-Fan installed. This curve displays data for 0.80 Mach number operation, at several Prop-Fan rotational speeds. All RPM curves converge on the zero lift crossover point at approximately $\mathbf{- 2 . 5}$ degrees fuselage attitude. Other Mach numbers show zero lift occurring at the same fuselage attitude. This is close to the fuselage attitude for minimum $2 P$ strain response (-3.0 degrees) that was extrapolated from measured data. It is recommended that negative fuselage attitudes be included in future testing to more closely determine the attitude for zero $2 P$ response.

3P Response. The 3P response for the $S R-2 C$ is small, so it will not be discussed here. However, the $3 P$ response for the SR-3C-3 has a significant amplitude. This can be verified by the data in Appendix II. The $3 P$ vibratory strain response of the $S R-3 C-3$ was plotted as a function of fuselage attitude for various rotational speeds in Figure 18. Here, the $3 P$ vibratory strain is a strong function of rotational speed, where the strain decreases for increasing rotational speed. From the Campbell diagram in Figure 13, it may be concluded that there is a 3P critical speed crossover at 4000 RPM, which would explain the high strain values at the lower rotational speeds.

The observation that the SR-3C-3 has higher $3 P$ vibratory strain than the SR-2C can be partially explained by the location of the critical speeds. Also, some of the $3 P$ aerodynamic excitation may be due to the sweep of the SR-3C-3 model blades. In addition, the tip of the SR-3C-3 blades were located within one inch ($\sim 1 / 2$ tip chord) of the leading-edge of the inboard side of the wing. This small tip clearance will cause significant higher order excitation due to the effect of a local wing blockage. This effect will be smaller for the SR-2C straight blade model, which had a larger tip clearance.

3.7 Strain Sensitivity

Strain sensitivity is a term used in the analysis of blade dynamic response. It is defined as the vibratory strain (usually ip vibratory strain) divided by another term, know as the excitation factor (EF). The excitation factor is defined for a rotor in pure angular inflow (isolated nacelle) by the following relationship:

$$
\mathrm{EF}=\psi\left(\mathrm{V}_{\mathrm{eq}} / 348\right)^{2}
$$

where ψ is the nacelle tilt angle in degrees, and $V_{\text {eq }}$ is the equivalent airspeed in knots. The excitation factor is proportional to rotor shaft tilt angle and to free stream dynamic pressure. It can also be thought of as being proportional to blade aerodynamic unsteady loading. Normalization of strain by EF has been demonstrated to be a valid way to account for the effects of shaft tilt and dynamic pressure, see References 2,4 and 10.

Since this discussion is about an aircraft configuration, consider the aircraft angle of attack (fuselage attitude, α_{f}). Recall that the $1 P$ vibratory strain does not go to zero when the fuselage attitude is zero, see Figures 7, 8, and 14, as would be the case for an isolated nacelle installation. The attitude for which the vibratory strain is minimum can be defined as α_{0}. An equivalent excitation factor can be defined for the aircraft configuration based on the difference between the actual fuselage attitude and the attitude of minimum vibratory strain. This is shown graphically in Figure 19.

Equivalent inflow angle is defined as:

$$
\alpha_{e q}=\alpha_{f}-\alpha_{0}
$$

The equivalent excitation factor is:

$$
E F_{e q}=\alpha_{e q}\left(V_{e q} / 348\right)^{2}
$$

The strain sensitivity can now be defined for an aircraft by dividing the blade strain by the equivalent excitation factor, having the units of strain per degree. Noting, as before, that the strain is linear with variations in attitude, the strain sensitivity is the slope of the curve. This slope is the same value at all fuselage attitudes, for any particular operating condition. Therefore, strain sensitivity is independent of fuselage attitude.

3.8 Power Coefficient

The effect of rotor power variation on blade strain can be studied through the use of the term "power coefficient". This term has been in use for many years, in application to propeller data analysis. The power coefficient is a non-dimensional function of the dynamic pressure, due to rotational speed at the blade tip, rotor torque and diameter cubed. That is, everything else held constant, the power the rotor absorbs is proportional to the tip dynamic pressure and diameter cubed. Power coefficient is defined as:

$$
C_{p}=\frac{2 \pi Q^{2}}{\rho n^{2} D^{5}}=\frac{\pi^{3} Q}{1 / 2 \rho^{2} t i p^{D^{3}}}
$$

where $\rho=$ air density in $\mathrm{kg} / \mathrm{m}^{3}, Q=$ rotor torque in $N-m$, $\mathrm{n}=$ rotational speed in revolutions per second, $V_{\text {tip }}=$ blade tip rotational speed in m / s, and $\mathrm{D}=$ rotor diameter in m . Use of the power coefficient normalizes the effect of rotor size and speed in the data. In the range of linear aerodynamics, the power coefficient includes the effect of blade angle.

3.9 Strain Sensitivity vs. Power Coefficient

Strain sensitivity is plotted against power coefficient for the SR-2C and SR-3C-3 model Prop-Fans mounted on the simulated model aircraft, in Figures 20 and 21, respectively. Curves are shown for Mach numbers of $0.6,0.7,0.8$, and 0.85 for each configuration. Points are plotted for each steady state condition. These data encompass variations in blade angle, rotational speed, and fuselage attitude.

Note that there is some scatter present in the data. This may be due to several factors, involving data for which the equivalent inflow angle was small (less than one degree). At small equivalent inflow angles, the blade strain is small and normal experimental variations are large percentages of the mean strain. Also, the equivalent inflow angle itself is calculated using an angle for minimum strain which is an approximation of data at several operating conditions (see Figure 14). Although these variations are small, they can cause larger variations in the strain sensitivity for small strain.

Note that the SR-3C-3 model Prop-Fan was run in a four-way configuration. The values of power coefficient for these data were doubled for comparison to eight-way Prop-Fan data, to account for the effects of rotor solidity. Therefore, the data points in Figure 21 represent test cases for which the power coefficient value has been multiplied by two.

Both model Prop-Fans show a trend of strain sensitivity increasing with increasing power coefficient. The unswept SR-2C model generally shows higher strain sensitivity than the swept SR-3C-3 model. This reduction of blade response with sweep was also seen in
tests of the solid metal blade Prop-Fan models (Reference 4). Thus, the benefits of sweep in reducing blade vibratory response apply also to blades of composite material construction.

3.10 Data Comparison with the Isolated Nacelle Tests

In addition to the data observed during this test at NASA-Ames, data are shown in Figure 21 that represent the results of structural dynamic response tests for the $S R-3 C-3$ on an isolated nacelle, tested at NASA-Lewis in an eight-way configuration (see Reference 9).
Figure 21 shows that the $1 P$ vibratory strain sensitivities for the SR-3C-3 Prop-Fan installed on the aircraft model, are almost twice the values measured during the isolated nacelle test conducted at NASA-Lewis. This indicates that the $1 P$ vibratory strain response for a Prop-Fan installed on an aircraft increases at twice the rate as the response for an isolated nacelle configuration with a change in attitude, or angle-of-attack. This is consistent with the fact that the inflow angle at the Prop-Fan on an aircraft has both a component due to a change in rotor attitude, and a component due to a change in wing circulation or lift.

4.0 THEORETICAL PREDICTIONS AND COMPARISONS TO TEST DATA

Comparisons are presented between measured blade strain and calculated analytical predictions for selected test cases. These comparisons are useful to validate and improve the prediction methods. An accurate analytical model for blade response is a key element in the development of an optimum blade design.

4.1 Analytical Techniques

Extensive use was made of the MSC/NASTRAN finite element analysis computer program, described in Reference ll, for the n-P structural dynamic analysis of the $S R-2 C$ and $S R-3 C-3$ model blades. Careful modeling techniques are required in order to create a finite element model that gives accurate results for a Prop-Fan blade.

Initially, a finite element model for the $S R-3 C-3$ blade provided by NASA-Lewis was used. This model was composed of CTRIA3 elements, and a schematic representation of the model is shown in Figure 22. Later an improved finite element model was generated by Hamilton Standard using CQUAD4 elements. It is also shown in Figure 22. The calculations made for comparison to measured $S R-3 C-3$ blade response for the fuselage/wing installation were performed using this model. The study on which the improved model was based in described in Appendix III.

A CTRIA3 finite element model of the SR-2C blade was also evaluated in this study. It was determined that with minor modifications, this model was satisfactory. The modifications included altering the element stiffnesses so that the calculated first mode non-rotating frequency better matched measurements. This modified finite element model was used for calculations made for comparison to measured SR-2C blade response, and is shown in Figure 23.
Figure 24 shows a block diagram of the prediction methods used in this analysis. The computer codes used in this analysis are iisted in Table IV, where they are matched to their numerical designation.
Referring to Figure 24, the model finite element description and flow field definitions were initial inputs for the calculation procedure. The flow field velocity components at the rotor disk location were calculated by NASA-Ames for a particular operating condition of the wing/body model using the method of References 12 and 13. Rotor thrust was ignored in these calculations, as discussed in section 3.5. The wing angle-of-attack for which the flow field was calculated was corrected to match the measured lift at the chosen operating condition.

Using the calculated flow field as input, the blade steady airloads, were computed by the HS/H045 code. These airloads, as well as centrifugal load effects, were input into MSC/NASTRAN to determine a steady displaced blade position. The $n P$ airloads were then computed using the HS/H337 skewed wake analysis. These airloads were distributed over the finite element model using the HS/F194 code, and input into the MSC/NASTRAN structural dynamics analysis. A
post-processor code was used to determine the blade strain at the gage locations.

4.2 Blade Natural Modes and Frequencies

Blade mode shapes and natural frequencies were calculated by Hamilton Standard for the non-rotating SR-3C-3 and SR-2C model blades. These calculations were performed using the improved finite element models, described above. The mode shapes and frequencies calculated, using the improved CTRIA3 SR-2C model and the CQUAD4 SR-3C-3 model, compare well with holographic measurements (ñй-ñtatingi made at NASA-Lewis. These comparisons are showin in Figures 25 and 26.

Mode shapes and frequencies for rotating operating conditions were calculated at NASA-Lewis using the unimproved SR-3C-3 and SR-2C finite element models. Some discrepancies were noted between these calculations and measured blade modal data (see section 3.3, and Campbell diagrams, Figure 13). It is recommended that blade modal data be calculated, using the improved finite element models, at rotating conditions, in addition to the non-rotating condition described above, to further validate the blade models. A more detailed discussion of these issues is found in Reference 10.

4.3 P-Order Response Calculations and Comparisons to Measurements

The dynamic response of the model blades operating in the nacelle/wing/fuselage environment was calculated using the method described in section 4.1 above, for selected test operating conditions. Twelve cases were studied for the SR-2C and SR-3C-3 models, six each. The operating conditions for these cases are listed in Table V, and correspond to test points for which measured strain data are available. These points were chosen to provide variations in operating condition which would be useful in identifying data trends, and to determine the ability of the calculation procedure to model those trends.

SR-2C Responses. The measured and calculated values of $1 P, 2 P$ and $3 P$ vibratory strains are given for the SR-2C model in Table VI. The strain values are given for the selected test operating conditions for the inboarding bending, mid-blade bending and mid-blade shear gage locations. The measured strain data given in Table VI were "speed corrected", using the method described in section 3.4. This technique eliminates any frequency smearing of harmonic peaks, yielding the most accurate test values. Note that these levels are data sample averages, and are generally lower than "total strain" levels, as discussed earlier.

Comparison of the calculated to the measured values, for the $1 P$ inboard bending strain, is very good for most of the test condition cases. Inboard bending strain is an important factor in determining blade and hub structural design. Inboard bending strain is an important factor in determining blade and hub structural design. The measured values are slightly underpredicted. The exception is case 5, for which the strain is overpredicted. For this case,
however, the measured strain is very low and therefore not significant. At the less important mid-blade location, the bending and shear strains are also underpredicted, with the exception of case 5.

A comparison of tested and calculated values of $2 p$ strain, in Table VI, shows these values to be overpredicted. The important inboard bending strain values are overpredicted by an average of about 60 percent. Note that the $2 P$ strain magnitudes are generally much lower than the $1 P$ strain values, and thus will make a smaller contribution to the total strain level.

The reason for the overprediction of $2 P$ strain could be an overprediction of the dynamic magnification due to the 2 P critical speed. Referring to the Campbell diagram for the $S R-2 C$ model in Figure 13, it is seen that the rotational speeds for the comparison cases (~ 8000 RPM and up) are well above the first mode 2 p critical speed of 6000 RPM. However, the variation of first mode frequency with RPM is predicted to be larger than is indicated by the test data. Thus, at 8000 RPM, the first mode frequency is predicted to be closer to the 2 P excitation, producing greater dynamic magnification, than is indicated by the measured data. Note also, that the dynamic magnification would be reduced by the addition of structural or aerodynamic damping, which were not included in this analysis.

As discussed earlier, the $3 P$ response of the $S R-2 C$ model blade is insignificant.

SR-2C Trends. The trends of the important inboard bending strain with RPM, fuselage attitude, rotor blade angle and Mach number are shown in Figures 27 and 28. Both $1 P$ and $2 P$ responses are shown. The measured values shown on these charts were not speed corrected during data reduction (section 3.4), which accounts for any difference between the chart strain values and those given in Table VI.

The variation of blade response with RPM for constant Mach number, blade angle and fuselage attitude is shown at the top of Figure 27. Measured 1P response increases with increasing RPM. This trend is followed by the calculations, although not as strongly. Measured 2P response drops with increasing RPM, above the critical speed and levels off about 7500 RPM. The calculated response drops more than measured, due to the overprediction of dynamic magnification effects, discussed above.

The variation of blade response with fuselage attitude is shown at the bottom of Figure 27. Measured 1P response decreases linearly with increasing attitude angle to a minimum, and then increases (see Section 3.5). This trend is matched by the calculations, although the amplitude of the minimum point is overpredicted. This may be due to a discrepancy between the actual and predicted $1 P$ flow fields at these low excitation conditions. The 2 p calculated response slope matches the test data well, although the amplitude is overpredicted.

The variation of blade response with blade angle (power) for constant Mach number, RPM and fuselage attitude is shown at the top of Figure 28. Both $1 P$ and 2P calculations generally match the measured data trends. Response trends with Mach number for constant RPM, blade angle and fuselage attitude are shown at the bottom of Figure 28. Again, measured data trends are generally well predicted.

SR-3C-3 Responses - The tested and calculated values of 1P, 2P, and $3 P$ vibratory strains are given for the SR-3C-3 model in Table VII. The strain values are given for the inboard bending, mid-jiade benaing and mid-biade shear gage locations, for selected operating conditions. The measured values were "speed corrected" during data reduction (Section 3.4) to obtain the true test values.

Comparison of calculations to test values for the important $1 P$ inboard bending strain shows the test data to be overpredicted. For most cases, this overprediction is by about one third of the test value. The exception is, as for the SR-2C model, a low strain case at higher fuselage attitude (case ll).

This level of overprediction (~ 33 percent) for $1 P$ inboard bending strain is consistent with that obtained using the improved SR-3C-3 CQUAD4 model for the isolated nacelle tests, as described in Reference 10. Also similar to the lP isolated nacelle results, are the comparisons of calculated to test strain values for the mid-blade bending and shear gages. The mid-blade bending strain is substantially underpredicted, while the shear calculation varies with each case. Note that mid-blade $1 P$ strains are consistently lower in level than inboard $1 P$ strains.

Comparison of measured and calculated $2 P$ strains, for the SR-3C-3 model, are shown in Table VII. Almost all strains are significantly overpredicted. Similarly to the SR-2C $2 P$ strain situation, this may be due to overprediction of dynamic magnification associated with the 2P/first mode critical speed. Referring to the Campbell diagram in Figure 13, the comparison case rotational speeds (6000-6500 RPM) are very close to the predicted critical speed. The measured first mode frequencies are slightly higher than predicted. The measured first mode critical speed is about 7000 RPM, while the predicted critical speed is about 6500 RPM. Therefore, the influence of the critical speed on $2 P$ response is not as great in test as was predicted. Also, the addition of damping to the calculation procedure would redo the $2 P$ overpredictions.

Comparison of measured and calculated 3P strains are shown in Table VII. Even though the 3P strain are generally much less than the lower order strains, they are still significant. This may be caused by additional excitation due to the proximity of the swept SR-3C-3 blade tip to the wing leading edge. Also, the $3 P /$ first mode critical speed ($\sim 4000 \mathrm{RPM}$) may have an influence on the response (see section 3.6). The 3P blade bending strains are generally underpredicted somewhat while shear strain is overpredicted. The cause of this is not known.

SR-3C-3 Trends. The trends of the important inboarding bending strain with RPM, fuselage attitude, rotor blade angle and Mach number are shown in Figures 29 and 30 . Both $1 P$ and $2 P$ responses are shown. The measured strain values shown on these charts were not speed corrected during data reduction. This accounts for any small differences between the chart strain values and those given in Table VII.

The variation of blade response with RPM for constant Mach number, blade angle and fuselage attitude is shown at the top of Figure 29. The measured increase of IP strain with increasing RPM is well matched by the calculations, although at a higher absolute level, as discussed above. The 2 P response is overpredicted, with the degree of overprediction increasing with proximity to the critical speed, also discussed above.

The variation of $S R-3 C-3$ blade response with fuselage attitude is shown at the bottom of Figure 29. As for the SR-2C trend (Figure 27), the $S R-3 C-31 P$ response trend is well matched by the prediction, except for the difference in absolute level. The 2 P responses are greatly overpredicted, due to the difference between the calculated and measured critical speed and the neglect of damping in the analysis, as discussed above.

The variation of blade response with blade angle (power) for constant RPM, Mach number and fuselage attitude is shown at the top of Figure 30. The 1P response trend is well matched by the calculations. The 2 P response is overpredicted. Response trends with Mach number for constant RPM, blade angle and fuselage attitude are shown at the bottom of Figure 30. Except for the overprediction in absoiute level, both $1 P$ and 2P strain trends are well predicted.
Correlation Evaluation. The usefulness of the blade structural dynamics prediction method as a Prop-Fan design tool can be assessed by evaluating the correlation between measured and calculated response data. For the important $1-\mathrm{p}$ responses, the SR-2C straight blade calculations were generally good, underpredicting test data by about 10 percent. The $S R-3 C-3$ swept blade calculations were fair, overpredicting test data by about 33 percent.
For both the $S R-2 C$ and $S R-3 C$ blades, $2 P$ responses were substantially overpredicted. This is due to the proximity of the rotational speeds for these comparison cases to the $2 P /$ first mode critical speed, for each blade. Response calculations near critical speeds are quite sensitive and not generally reliable. Away from critical speeds, it is presumed that 2 P correlations would improve, as was found in previous Prop-Fan model studies (Reference 14).

The causes of differences between measured and predicted IP response are more complex. The composite SR-2C straight blade response is underpredicted, which was also found in studies of metal Prop-Fan blades at high speed (References 2, 14). By contrast, the composite SR-3C-3 swept blade response was overpredicted. Blade sweep and flexibility effects, not accounted for in the theory, may be responsible.

The correlation between measured and predicted l-P blade strain for the SR-3C-3 wing/fuselage test repeats the results found for the isolated nacelle SR-3C-3 test, which was reported in Reference 10. This indicates that the predicted flow field definition at the rotor, for this fuselage/wing test, is probably valid. Also, the steady and p-order vibratory blade airloads, calculated to arise from the flow field, are probably correct. The structural finite element model was validated by the good correlation between measured and predicted mode shapes and frequencies. Therefore, it must be concluded that the overprediction of l-P strain is due to phenomena not accounted for in the calculation method.

Possible effects not included in current predictions were described in Reference lo. These include dynamic twist magnification, structural damping, aerodynamic damping and stiffness, and other aeroelastic and nonlinear effects.

Twist magnification is important since blade airloads are calculated assuming the blade is rigid. The blade angle of attack is not calculated to increase with loading. Thus, airloads may be underpredicted. This effect is more prominent for straight blades than swept blades, and may explain the small underprediction of SR-2C lP strain. Other offsetting aeroelastic or nonlinear factors due to blade sweep and flexibility may be responsible for the SR-3C-3 overprediction. This warrants further study.

5.0 CONCLUSIONS

As a result of this study of $S R-2 C$ and $S R-3 C-3$ model Prop-Fan blade dynamic response, the following conclusions are made:

1) The pressure of the wing, downstream of the rotor, induced $1 p$ responses about twice those previously measured for an isolated nacelle installation, as would be expected.
2) The swept composite blade showed less response than the unswept composite blade.
3) Measured 2P blade strain varied linearly with the wing lift.
4) Higher order response for the SR-2C model was small.
5) Higher order response for the $S R-3 C-3$ model was significant near critical speeds due to the proximity of the blade tips to the wing leading edge.
6) Correlations between IP dynamic response calculations and measured data for the SR-2C model were good (underpredictions averaged 10 percent). For the SR-3C-3 model, correlations were fair (overprediction 33 percent).
7) The $2 P$ dynamic response of both blade models was overpredicted.
8) Improvements to the finite element models of the blades resulted in better correlation between predicted and measured blade strains.

6.0 RECOMMENDATIONS

Based on the conclusions of this study, the following recommendations are made:

1) The improved finite element model should be confirmed by additional modal and forced response calculations.
2) Existing test data for these and other Prop-Fan models should be reviewed to determine the extent of nonlinear effects on blade response. These nonlinear effects should be included in future improvements to the blade response calculation method.
3) The effects of unsteady aerodynamic, aerodynamic damping and stiffness, and structure damping should be investigated.
4) To better determine the influence of wing lift effects on blade strain, future testing should include additional negative fuselage angles.

7.0 REFERENCES

1. Gatzen, B. G., Reynolds, C. N., "Single and Counter Rotation Prop-Fan Propulsion System Technologies and Trade-offs", 14th Congress of the International Council of Aeronautical Science Proceedings, Toulouse, France, Sept. 1984.
2. Bansal, P. N., Arseneaux, P. J., Smith, A. J., Turnberg, J. E., Brooks, B. M., "Analysis and Test Evaluation of the 'Dynamic Response and Stability of three Advanced Turboprop Models, NASA CR 174814, NASA/Lewis, August 1985.
3. Smith, A. F., "Analysis and Test Evaluation of the Dynamic Stability of Three Advanced Turboprop Models at Zero Forward Speed", NASA CR-175025, December 1985.
4. Smith, A. F., "Analysis and Test Evaluation of the Dynamic Response and Stability of Three Advanced Turboprop Models at Low Forward Speed" NASA CR-175026, December 1985.
5. Kroo, I., "Propeller-Wing Integration for Minimum Induced Loss", AIAA/AHS/ASEE Aircraft Design Systems and operations Meeting, San Diego, California, AIAA-84-2470, October 1984.
6. Page, G. S., Welge, H. R., Smith, R. C., "Aerodynamic Test Results for a Wing-Mounted Turboprop Propulsion Installation", SAE paper no. 841480, October 1984.
7. Turnberg, J. E., "Unstalled Flutter Stability Predictions and Comparisons to Test Data for a composite Prop-Fan" Model, NASA CR -179512, October 1986.
8. Vernon, D. F., Page, G. S., Welge, H. R., "Prop-Fan Experimental Data Analysis", NASA CR-166582, August i984.
9. Dale, A. S., "Addition of Wing Sweep Effects to Flow Field Program", Hamilton Standard Vibration Engineering Memo No. V666, October 1976.
10. Smith, A. F., Brooks, B. M., "Dynamic Response Tests of an Advanced Composite Prop-Fan Model", NASA CR-179528, October, 1986.
11. MacNeal, R. H., "The NASTRAN Theoretical Manual", (Level 15.1), MacNeal Schwendler Corp., December 1962.
12. Hess, J. I., "Calculation of Potential Flow about Arbitrary Three-Dimensional Lifting Bodies", Doughlas Aircraft Co., Inc., Report MDC-J5679-02, October, 1972.
13. Mendoza, J. P., "Interference Effects of Aircraft Components on the Local Blade Angle of Attack of a Wing-Mounted Propeller", NASA TM 78587, June, 1979.
14. Bansal, P. N., "Experimental and Analytical Evaluation of the Effects of Simulated Engine Inlets on the Blade Vibratory Stresses of the SR-3 Model Prop-Fan", NASA CR-174959, September 1985.

DESIGN CHARACTERISTICS FOR THE SR-2C AND THE SR-3C MODEL PROP FAN

PARAMETER	SR-2C	SR-3C
Number of blades	8	8
Activity factor/blade AF	203	235
Activity factor, total	1624	1880
Integrated design lift coefficient, Cl	0.081	0.214
Blade aerodynamic tip sweep, degrees	0	34.5
$\begin{aligned} & \text { Power loading, } \\ & \mathrm{kw} / \mathrm{m}^{2}\left(\mathrm{shp} / \mathrm{ft}^{2}\right) \end{aligned}$	300(37.5)	300(37.5)
Tip speed, m/sec (FPS)	244(800)	244 (800)
Power coefficient, $C p$	1.695	1.695
Advance ratio, J	3.056	3.056
Material	carbon	composite
Diameter, cm (in.)	62.2(24.5)	62.2(24.5)
3/4 chord cm (in.)	8.79(3.53)	11.51(4.53)
Airfoil outboard (NACA)	16 series	16 series

Table II SR-2C_AND_SR-BC=3_MODEL_PROP-FAN_SIRAIN_GAGE
DESIGNATIONS_ NASA-Ames Wing/Body/Nacelle Response Tests

```
                    Radial
    Gage Stat. Blade Number
```



```
SR=2C__Eight_Way
    Inboard
    Bending
        0.522 BG1-1 - BGJ-1
    Mid-Bld
    Bending 0.816 - - BG3-4
    Shear 0.612 - - EGS-2 -
SRR=\XiC=3__Egur_Way
    Inboard
    Bending 0.381 - - - BG4-1 - - - BG8-1
    Mid-Bld
```


Table III QPERATING_CONDITIONS_FOR_THE_SR=2C_AND_SR-SC-S PROP-FAN_MODELS, Wing/body/nacelle response tests NASA-Ames.

Variable

SR-2C

SR-3C=3

MACH NO.
Rotational Speed

Blade Angle

Rangge_of_variable
$0.6,0.7,0.75,0.8,0.85$
5677 to 8532
in 500 RPM increments
50.8, 52.5, 55.0, \& 56.6 deg.
$0.6,0.7,0.8,0.85$
3740 to 7000
in 500 RPM increments
$58.8,60.7,61.9, \& 62.7$ deg.

HAMILTON STANDARD COMPUTER CODES USED FOR

BLADE DYNAMIC RESPONSE ANALYSIS

Code Designation Description

HS / H045	Lifting line, quasi-static performance strip analysis, $2-D$ airfoil section data, Goldstein wake induction, azimuthal variations.
HS/H337	Lifting line, quasi-static performance strip analysis, 2-D airfoil section data, skewed wake induction, azimuthal variations.
HS /F194	Distributes airloads over finite element grid.
MSC/NASTRAN	Finite element analysis used for calculating vibratory mode shapes and frequencies, and dynamic responses of Prop-Fan model blades.
STRAINNP	Converts element stresses from MSC/NASTRAN to strains at the strain gage locations.

OPERATING CONDITIONS FOR TEST POINTS USED FOR COMPARISON WITH CAICUIATIONS

Prop-Fan Config.	Case No.	Run No.	Rotational Speed RPM	Mach No.	Fuselage Attitude deg.	Blade Angle deg. deg.	Shaft Power kw
SR-2C	1	3556	8025	0.6	0.0	52.5	371
	2	3726	8417	0.6	0.0	50.8	372
	3	3725	7996	0.6	0.0	50.8	273
	4	3546	8003	0.6	1.0	52.5	366
	5	3536	7981	0.6	2.0	52.5	363
	6	3652	8007	0.8	0.0	52.5	34
	7	4415	6000	0.6	0.0	61.9	137
	8	3904	6000	0.6	0.0	58.8	122
	9	3903	6500	0.6	0.0	58.8	80
	10	3894	6500	0.6	1.0	58.8	121
	11	3864	6500	0.6	2.0	58.8	120
	12	4532	6050	0.85	0.0	61.9	15.5

Case No.	Gage* No.	Test	$\frac{1 P}{\text { Calc }}$	Calc/ Test	Test	$\frac{2 \mathrm{P}}{\text { Calc }}$	Calc/ Test	Test	$\frac{3 P}{\text { calc }}$	Calc/ Test
1	1	576	485	. 84	189	316	1.67	39.1	44	1.13
	2	427	344	. 81	59	83	1.41	15.7	26	1.66
	$\stackrel{4}{4}$	227	153	. 52	105	26コ	1. 72	12.2	36	2.95
2	1	532.5	461	. 87	164.5	247	1.50	29.2	37	1.27
	2	382.3	302	. 79	54.0	57	1.06	12.8	22	1.72
	4	268.5	134	. 50	81.7	140	1.71	9.4	33	3.51
3	1	507.9	456	. 90	168.3	307	1.82	35.7	43	1.20
	2	388.7	320	. 82	44.8	77	1.72	18.6	25	1.34
	4	223.7	146	. 65	93.7	175	1.87	10.1	35	3.46
4	1	315.4	296	. 94	240.1	354	1.47	41.4	48	1.16
	2	245.2	212	. 86	67.7	90	1.33	18.4	30	1.63
	4	176.5	97	. 55	130.4	201	1.54	10.3	37	3.59
5	1	78.4	196	2.50	299.3	405	1.35	48.9	54	1.10
	2	80.8	147	1.82	80.7	94	1.16	31.5	39	1.24
	4	63.9	73	1.14	164.1	227	1.38	9.1	38	4.18
6	1	641.8	614	. 96	158.3	302	1.91	28.1	39	1.39
	2	378.3	289	. 76	12.2	50	4.10	9.9	15	1.52
	4	186.8	144	. 77	96.5	158	1.64	46.4	36	. 78

* a. Gage l measures inboard bending strain and is the average between blades no. 1 and no. 3.
b. Gage 2 measures mid-blade shear strain on blade no. 3 .
c. Gage 4 measures mid-blade bending strain on blade no. 3 .

* a. Gage 1 measures inboard bending strain and is the average between blades no. 4 and no. 8.
b. Gage 2 measures mid-blade bending strain on blade no. 8.
c. Gage 3 measures mid-blade shear strain on blade no. 8.

FIGURE 1. AIRCRAFT GEOMETRY AND PROP-FAN INSTALLATION
sapeig 745: je-ys

SR-3C-3 Four Blades

SR-2C and SF-3C-3 Prop-Fan Schematics showing the
strain gage locations, NASA-Ames Wing/Body/Nacelle
response tests.

Figure 3 Test envelopes for the SR-2C model Prop-Fan wing/body/nacelle tests in the 14 foot transonic tunnel, NASA-Ames.

Fusel age Attitude
___Deg:_

Blade Angle Deg.

$$
-1,0,1,2,3,4
$$

Figure 3 (Continued)

Test envelopes for the SR-3C-3 model Prop-Fan wing/body/nacelle tests in the 14 foot transonic turnel, NASA-Ames.

Figure 4. Measured total inboard bending vibratory strain as a function of rotational speed for the SR-2C and SR-3C-3 model Prop-Fans, Mach No. $=0.6$.

Figure 5. Measured total vibratory strain for the SR-2C model Prop-Fan. Blade angle $=56.6$ deg., Mach No. $=0.8$.

Figure 6. Measured total vibratory strain for the SR-3C-3 model Prop-Fan. Blade angle $=62.7$ deg., Mach No. $=0.8$.

Figure 7. $\quad \frac{\text { SR-2C } 8 \text {-way }}{\text { Strain }}$ Measured total and $1 P$ inboard bending vibratory strain (BG3-1) as a function of fuselage attitude, Prop-Fan Nacelle/Wing/Fuselage tests. 8000 RPM. NASA-Ames 14 ft . transonic tunnel.

Figure 7. (Continued)

Figure 7. (Continued)

Figure 7. (Continued)

Figure 8. \quad SR-3C-3 4-way measured total and $1 P$ inboard bending vibratory strain (BG4-1) as a function of fuselage attitude, Prop-Fan Nacelle/Wing/Fuselage tests at NASA-Ames 14 ft . transonic tunnel. 6000 RPM.

Figure 8. (Continued)

Figure 8. (Continued)

Figure 8. (Continued)

Finite Element Calculations

Figure 13. Campbell diagrams for the $S R-2 C$ and $S R-3-C$ model Prop-Fans, measured and predicted modal responses.

Figure 14. Approximate fuselage attitude for minimum measured $1 P$ vibratory strain for the SR-2C and SR-3C-3 models.

Figure 15. 2-P Inboard bending vibratory strain (BGJ-1) as a function of fuselage attitudes. SF-2C 8-way Prop-Fan Nacelle/Wing/Fuselage tests. BOOO FFM. NASA-Ams: i4 ft transonic tunnel.

Figure 15 (Continued)

Symbol Mach_№ㅡㅡㅡㄹ

\square	0.6
0	0.7
\square	0.75

Figure 16. 2-P Inboard bending vibratory strain (BG4-1) as a function of fuselage attitude, SF-SC-3 4-way Frop-Fan Nacelle/Wing/Fuselage tests. boOO RPM. NASA-Ames 14 ft transonic tunnel.

Figure 16 (Continued)

Figure 17. Aircraft normal force coefficient as a function of fuselage attitude, SR-2C 8-way Frop-Fan Nacelle/Wing/Fuselage tests. NASA-Ames 14 ft transonic tunnel. Mach number $=0.80, \mathrm{Blade}$ angle $=56.6 \mathrm{deg}$.

Figure 18. 3-P Outboard bending vibratory strain (BG4-2) as a function of fuselage attitude, SR-3C-3 4-way Prop-Fan Nacelle/Wing/Fuselage tests. Blade angle $=61.9$ deg. NASA-Ames 14 ft. transonic tunnel.

MIM
$\operatorname{STRAIN}\left(\alpha_{0}\right)$

$$
\alpha_{f}, \quad \text { AIRCRAFT ATTITUDE }
$$

$$
\alpha_{E Q}=\alpha_{f}-\alpha_{0}
$$

EQUIVALENT EXCITATION FACTOR

$$
E F_{E Q}=\alpha_{E Q} \quad \cdot \quad\left(\frac{V_{E Q}}{348}\right)^{2}
$$

STRAIN SENSITIVITY

MICRO STRAIN ET EQ

Figure 19. Strain Sensitivity Analysis Definitions

Figure 20. Comparison of 1-P vibratory strain sensitivity for the SR-2C Frop-Fan with the wing/body/nacelle configuration plotted as a function of Mach number.

Figure 20. (Continued)

Figure 21. Comparison of 1-F vibratory strain sensitivity for the SR-SC-S Prop-Fan with and without the wing/body/nacelle configuration plotted as a function of Mach number.

Figure 21. (Continued)

Modified Nastran Model
SR-3C-3 FINITE ELEMENT MODELS
Original Nastran Model

Figure 23. SR-2C FINITE ELEMENT MODEL

Figure 24. Analytical Blade Response Prediction Method

닐

440 Hz

 810 Hz
607 Hz
MODE

2

$$
\begin{aligned}
& \text { Note: Stiffness } \\
& \text { 'adjusted' to match } \\
& \text { lst mode frequency }
\end{aligned}
$$

Figure 26. CALCULATED AND MEASURED MODE SHAPE \qquad

630 Hz

MICRO STRAIN

$\diamond 1 P$ TEST $~ 1 P$ CALC
a $2 P$ TEST $\quad 2 P$ CALC
(TEST VALUES NOT SPEED CORRECTED)

Figure 27. $\frac{\text { SR-2C }}{\text { WING/BODY }}$ /NACELLE NASA AMES
(INBOARD BENDING STRAIN)

Figure 28. SR-2C PROP-FAN TESTS WING/BODY/NACELLE NASA AMES
(INBOARD BENDING STRAIN)

Figure 29. SR-3C-3 PROP-FAN TESTS
WING/BODY/NACELLE
NASA AMES
(INBOARD BENDING STRAIN)

Figure 30. SR-3C-3 PROP-FAN TESTS WING/BODY/NACELLE

NASA AMES
(INBOARD BENDING STRAIN)

APPENDIX I

ZERO TO PEAK TOTAL VIBRATORY STRAIN

 AMPLITUDE TABULATION BY RUN NUMBERAND STRAIN GAGE NUMBER (MICRO-STRAIN)

SR-2C	MODEL
SR-3C-3	MODEL

	$\begin{aligned} & \text { JUB I.D.: SR2AME DATE: 14-MAR-85 } \\ & \text { TITLE: SR2C FROP FAN MOOEL/WING/NACELLE E AMES } \end{aligned}$					
	FUN\#	BG:-1	85,3-1	853-2	BG3-4	
	3223	916.	848	518.	355.	
	3224	348.	848.	549.	331.	
	3225	955.	870.	579.	310.	
	3226	339.	866.	557.	398.	
	3231	784.	768.	438.	396.	
	3232	759.	715.	457	357.	
	3233	751.	790.	484.	333.	
	3234	716.	692.	452.	351.	
	3241	723.	773.	388	477.	
	3242	664.	675.	375.	426.	
	3243	612.	625.	358.	375.	
	3244	561.	574.	337.	355.	
	3251	756.	867.	326.	537.	
	3252	634.	694.	289.	454.	
	3253	568.	610.	259.	497.	
	3254	503.	545.	238.	354.	
	3261	896.	979.	347 .	529.	
	. 3262	739.	812.	350.	449.	
	3253	750	739.	351.	497.	
3	3264	673	572.	399.	377.	
	3271	342	913.	477.	405.	
	3272	945.	831.	484.	361.	
	3373	933.	373.	505.	348.	
	3281	764.	807	377	388.	
	3282	736	711.	393.	34.7.	
	3283	720.	677.	402.	304.	
	3291	655.	704.	309.	374.	
	-3232	532.	596.	329	348.	
	3293	563.	564.	335.	307	
	3.361	621	651.	263.	380	
	3302	562	564.	289.	341.	
	- 3303	519	517	283.	326.	
	3311	693.	709.	303	449.	
	3312	623	622.	335.	369.	
	3.313	566.	565.	309.	404.	
	352!	1127.	1992.	586	573.	-
	3322	1171.	1024.	759.	425.	
	3323	1236.	1076.	783.	486.	
	3.351	981.	946.	571.	54.5	
	3332	866.	849.	5.37.	466	
	3335	890	781	566.	399	
	3.334	973	832	517	469	
	3341	798.	954	469	558.	
	3342	734.	785.	420.	482.	
	3.343	719.	680.	454.	422	
	3344	746	631.	445.	415.	
23	3345	739.	687.	475.	367.	
	3346	682.	656.	444.	393.	
	352	969.	837.	619.	434.	
	3.35 .3	929	879.	582	495.	

JIOB I.D.: SR2AME DATE: 14-MAR-85

970

FEAK DETECTOR SAMPLEO DATA：XBAR＋					
$\begin{aligned} & \mathrm{jOS} \text { I. } 0 . \\ & \text { TITLE: } \end{aligned}$		SECAME SREC PEDP	OATE：14－MAR－25		
		an mode	WIMGAN		
Futi\＃	EG1－1		E5．3－1	653－2	863－4
3.561	765	916.	$3 E 2$	6可：	
3582	695	758.	318	497	
3.363	689	674.	350.	443.	
33 E 4	657	564.	321.	424.	
3．3E	575	可可．	3 i 7 ．	उत́．	
3．3E6	516	561.	293.	379	
3.571	896	960.	319	564	
3572	7 T ？	310.	$25 i 5$.	555.	
5773	E77．	678.	229.	474.	
5374	679.	673.	250.	438	
3575	612.	$6: 5$.	252 ．	393.	
3376	55%	572	259.	322	
こ581	1098.	1140	443	693	
3.352	905	970.	412	561.	
3.53	335	853.	539	493	
2384	224	851．	3き5．	475.	
3.585	891.	844	431.	475.	
3565	827	885	411.	479	
E46！	952.	1969.	423.	679．	
3402	739	812.	393.	511	
3495	728.	727.	374.	434	
74E4	652	660.	343.	375	
5405	592	6：1．	331.	349	
3411	9 EE	958.	5.39.	547	
3412	$8 \div 5$	523.	503.	465	
3413	8 E 1.	792.	435.	465	
3414	322	787.	471	372	
3415	752.	748.	445	375	
T 421	1033.	972.	591	473	
3422	1854.	323.	629	493.	
3423	1日8：．	979.	625	384.	
3424	1954.	971.	503	425	
3425	999.	952.	564.	497.	
3435	974.	1166.	412	718	
34.35	834.	835.	30.3.	554	
3437	731.	728.	306.	47.5	
3438	$60^{6} 7$.	514.	285.	383.	
3439	561.	562.	294.	359.	
3441	1910.	981.	491	560.	
3442	907.	863.	390	481.	
3443	894.	777	371	415.	
3444	741	711.	345	403.	
2451	354	1879.	484	676.	
3452	895.	814	381	505.	
34.53	732.	721	35.5	435.	
34.54	659.	655.	336.	371	
3455	6 61．	600.	331.	367.	
3461	846.	937.	495.	551.	
3452	751.	855.	387.	505.	
345.3	719.	690.	382.	405.	

$\begin{aligned} & \text { Joe I.D.: } \\ & \text { iITLE: } \end{aligned}$		SREAME	OATE: 1	4-MAR-35
		CP PROP	and mocel	WING/Níc
RUN\#	B61-1	80.3-1	853-2	8153-4
3551	1004.	949	357	573
3563	775	836	340.	558.
3563	652.	647	255	4.31.
3564	644.	571.	23.3.	332
3565	683.	580	256	351.
3.565	711	578.	275.	351.
5.71	$1 \overline{263}$	1145.	481	$50 \bar{c}$.
3572	969	997.	411.	592
5573	371	782	359.	452
3574	876	727	354.	416.
5575	945	741.	422	419
3575	979	770.	469	452.
3581	715	689.	273.	448
3582	796.	599	244	393
3583	722.	551.	246.	360.
5554	672	5.55	271.	331.
3565	663.	593	254.	379
3531	735.	715	355	431
3592	783.	652.	353	391
2593	749.	598.	337	350
3594	733.	584.	337.	324
3595	756.	593.	373	411
3691	912.	756.	457	411
3692	926	725	452	380
3533	975	731.	505.	379
3504	19.39	755.	535	347
3505	1012	788.	518.	465
3 E1:	724	794	244.	453.
3512	645.	619.	229.	422.
3513	631.	564.	229.	391.
3514	629.	554.	254	347.
3615	581.	512	259.	391.
36.1	895.	876.	373.	494.
3622	650.	893	365	451.
3625	842.	725.	352.	405.
3624	886.	727.	361	402
3625	867.	725.	357	458.
363:	661.	585.	257.	325
36.32	627.	545.	290.	325
363.3	538	436.	297	236.
3641	769	652.	3.35.	315
3642	731	613.	34.5.	396
3643	734	583.	367.	232.
3551	911.	762.	433.	358
3652	946.	749	452	328.
3553	979.	746.	465	297
3661	697.	578	253	347
3662	675	525	268.	331
3663	528.	451.	263.	341
3671	691.	714.	336	401


```
JOE I.D.: SREGME DATE: 14-MAR-85
TITLE: SR2C PROP FAN MODEL/WINGNHCELLE Q AMES
```

RUAT\#	E01-1	E63-1	E63-2	603-
3763	631	653.	343.	346
3754	705	65.	320.	391.
3771	552	595.	321.	367
3772	544	570.	326	338.
3773	559	542	335.	381
5774	533.	55 c .	346.	335.
3781	710	675.	411	357
3782	719	673.	425.	324
3763	749	679.	454	295
3754	779	693.	451	332
3751	397.	831.	569.	351
3792	318.	842.	53.5	3.35
3793	247.	951.	553.	513
37.94	968.	866.	555.	340
3795	921	835.	539	3.35
3791	521	557.	274.	323
3792	487.	514.	274	315
3793	463.	434.	287	299.
3591	513.	562.	284	343
3302	475.	519.	281	336
380.3	445.	465.	249.	320
3311	584	698.	332	341
3312	550	646	317	321
$38: 3$	6.32	612.	312.	308
5321	564	563.	328.	277
3822	557	543	335.	275
3825	555.	537.	352	259
38.31	755.	663.	495	274
3832	713.	566.	423.	265
3835	723.	665.	432	258
3541	893.	827.	521.	300
3842	899.	827	523.	303
3543	928.	832.	541	289

STOF --
BOOT RKG:
RT-11.5J VO4.000


```
JOE I.D.: ERJAME DATE: EQ-MAR-ES
TITLE: SRSC FROP FAM MODELFWIGGNMEELEE E AHES
```


4911	745.	738.	5.39.	237
$4{ }^{4} 12$	449	749	564	395

4 413 419. $620 . \quad 415 . \quad 516$
4014 452. 553. 333. 543.

$4616819.857 .625 . \quad 533$
4621 820. 885. 594. 379
4022 535. 626. 64!. 4!1.
$4023595 . \quad 709 . \quad 500.564$.
4624538.619 .672.
4025 679. 743. 566. 591.
4 225 980. 393. 743. 576.
467650 617. 472 . 305.
4032 454. E45. 483. 316.
453379 535. 375. 452.
4634 407. 516. 559 501.
$4534598 . \quad 529 . \quad 410$. 497 .
4 535675 - 555 E16. 423.
403? 895. $939 . \quad 795 . \quad 610$.
4541792 717. 559. 358.
4542558 . 729 . 567.
4643 466. $574 . \quad 476$. 497.
4844514 . $555 . \quad 455$ 466.
4445565 525. 464. 465.
4546729 554. 551. 364
4047 906. 856. 730 . 456.
4051 893. 841. 637. 417.
4952 659. 853. 693. 470.
4053587 . 689. 593. 591.
4554535 . 643 564. 507.
$4555576 . \quad 698 . \quad 597 . \quad 448$.
405680 . 761.655 .619.
4061 445. 668. 473. 455.
4052455 525. 395 . 545.
4063 538. $563 . \quad 430 . \quad 545$.
4064 740. 775. 531. 538.
4565 911. 975. 729. 794.
4071 456. 715. 546. 440.
4072 474. 593. 421. 573.
4073 573. 688. $456 . \quad 574$.
4074 857. 852. 624. 545.
4081 552. 777. 533. 393.
4022 613. 767. 546. 585.
4053 722. 768. 531. 572.
40341042 . $991 . \quad 766$. 686.
491511.675 506. 441.
4092 493. 536. 434. 532
4093 597. 534. 467. 541.
$4094894 . \quad 703 . \quad 594 . \quad 620$.
$\begin{array}{lllll}4191 & 647 . & 735 . & 672 . & 434 .\end{array}$

7	PEak detector sampled data: xbar +2 * sigma JOB I.D.: SR3AME CATE: 日9-MAP-85				
	RUPN	B64-1	864-2	B68-1	EC8-3
	4102	629.	693.	559	632.
	4103	671.	631.	562.	571.
	4104	828.	735.	514.	608.
	4111	792.	882.	886.	563.
	4112	759.	834.	685.	717.
	4121	471.	661.	479.	532.
	4131	591.	681.	593.	518.
	4132	688.	645.	539.	445.
	4133	944.	725.	666.	548.
	4141	555.	650.	477.	531.
	4142	631.	544.	597.	483.
	4143	919.	843.	642.	447.
	4151	626.	764.	526.	519.
	4152	745.	762.	584.	513.
	4153	1054.	1609.	783.	526.
	4154	687.	739.	563.	507.
	4155	747.	676.	598.	598.
	4156	985.	723.	728.	569.
	4151	899.	966.	689.	551.
	4162	721.	695.	579.	448.
,	4191	414.	504.	341.	286.
,	4192	E11.	618.	444.	238.
	4193	431.	678.	435.	371.
	4194	358.	589.	379.	517.
	4195	465.	540.	399.	542.
	4196	516.	500.	431.	522.
	4197	582.	747.	537.	456.
	4198	917.	1159.	842.	756.
	4291	596.	548.	410.	278.
	4202	727.	696.	499.	323.
	4203	444.	719.	533.	415.
	4254	497.	619.	420.	544.
	4205	478.	602.	498.	551.
	4265	592.	793.	498.	666.
	4207	843.	863.	626.	524.
	4211	589.	583.	472.	315.
	4212	839.	886.	595.	359.
	4213	538.	849.	649.	477.
	4214	517.	714.	512.	6 65.
	4215	539.	673.	593.	6.37.
	4215	722.	815.	691.	758.
	4217	1825.	977.	756.	$5 \geqslant 9$.
	4221	444.	441.	347.	317.
	4222	623.	555.	432.	38 B .
	4223	473.	647.	489.	333.
	4224	491.	580.	418.	503.
	-4225	432.	539.	395.	454.
-	4231	546.	498.	431.	379.
	4232	588.	605.	503.	359.
	42.33	584.	746.	6 6 1.	497.

JOB I.D.: SR3AME DATE: 日9-MAR-35
TITLE: SR3C PROP FAN mODEL/WING/NACELLE e ames

PEAK	OETECTOR	SAMPLED	data:	$850 \mathrm{R}+2 *$ SIGMA	PAGE 4 OF 6
$\begin{aligned} & \mathrm{JOE} \mathrm{E} \\ & \text { IITLE } \end{aligned}$	$\begin{aligned} & \text { D. }: 583 \\ & : \quad 583 \end{aligned}$	ame C erop	DATE: Gg an model	-MAR-85 Wing-Nacelle e ames	
RUN:	E604-1	E64-2	868-1	868-3	
4234	513.	641.	526.	527.	
4235	556.	610.	50.	419.	
4236	60.	547.	511	373.	
4237	785	681.	579	383	
4241	677	533.	543.	4.34.	
4242	839	731.	630.	424.	
4243	723	882.	733	513.	
4244	632	722.	522.	619.	
4245	660	68.	6 ¢ 5.	413.	
4245	725	$62_{5} 5$.	623.	356.	Anern un-t is
4251	E87.	917.	642.	399	OF POOR QunLITY
4252	438	601.	44.	496.	
4253	489.	552.	398.	633.	
4254	574.	626.	476.	622.	
4235	882	823.	694.	617.	
4251	718.	979.	746	392.	
4262	463.	719	518.	551.	
4253	478.	624.	420.	627.	
4254	624.	720.	594	648.	
4205	920.	924.	664.	601.	
4271	599.	854.	626.	556.	
4272	622.	721.	552.	678.	
4273	733.	737.	60.	759.	
4281	715.	913.	734.	403.	
4282	488.	619.	511.	520.	
4283	517.	599.	459.	614.	
4234	626.	594.	501.	579.	
4285	828	757.	621.	607.	
4291	519.	722.	6.38.	625.	
4292	642.	701.	577.	653.	
4293	697.	671.	590.	577.	
4294	877.	835.	654.	589.	
4381	772.	841.	784.	761.	
4362	790.	832.	714.	722.	
4311	524	690.	561.	519.	
4312	578.	654.	495.	620.	
4.313	683.	639.	537.	495.	
4314	792.	685.	607.	492.	
4321	509.	770.	563.	501.	
4322	540.	651.	473.	652.	
4323	629.	670.	569.	556.	
4324	763	725.	532.	417.	
4331	522	545.	673.	453.	
4.332	638	753.	549.	656.	
4353	746	782.	605.	616.	
4341	E56.	745.	691.	573.	
4342	663.	737.	574.	535.	
4.343	765.	669.	617.	581.	
4351	773.	698.	588.	606.	
4361	621.	898.	559.	595.	

```
FEAK DETECTOR SAMPLED DATA: XBAR + 2 * SIGMA
```

```
JU8 I.D.: SR3AME DATE: 09-MAR-85
```

JU8 I.D.: SR3AME DATE: 09-MAR-85
TITLE: SR3C PROP FAM MODEL/HIMG/NACELLE E AMES

```
TITLE: SR3C PROP FAM MODEL/HIMG/NACELLE E AMES
```

PAGE 5 OF
RUN\# BG4-1 BG4-2 B68-1 5G8-3
4362 6.36. 798. 556. 576.
4373 494. 743. 367. 282.
4374 391. 609. 429. 353.
4375 358. 558. 353. 487
4376 442. 559. 374. 528.
4377 599. 627. 422. 543.
4378 674. 751. 513. 477.
4379 828. 913. 655. 552.
4381 592. 592. 436. 289.
4382 426. 708. 532. 411 .
4333 410. 628. 415. 529
4384 474. 559. 407. 550
4385 596. 845. 431. 658.
4386 811. 868. 603. 521.
4391 659. 620. 507. 314.
4392 521. 829. 638. 451.
4393 495. 690. 593. 582.
4394 571. 66日. 491. 634
$4395718.788 . \quad 589.691$.
4396 966. 958. 715. 574
4401 456. 431. 349. 261.
4462 395. 627. 420. 310.
4403 335. 491. 342. 427.
4404 383. 465. 341. 425.
4405 467. 474. 375. 361.
4465 611. 537. 452. 374
4407 570. 637. 502. 407.
4411 535. 481. 410. 314.
4412 431. 529. 516. 348.
4403 432. 536. 438. 436.
4414 470. 510. 427. 379.
4415 513. 478. 437. 339.
4416 658. 598. 593. 335.
4417 730. 651. 547. 387.
4421 643. 560. 506. 352.
4422 504. 744. 610. 422.
4423 529. 629. 529. 516.
4424 564. 578. 514. 376.
4425 613. 528. 535. 322.
4426 740. 655. 535. 365.
4431 466. 674. 519. 381
$4432381 . \quad 513.390 .324$.
4433 408. 475. $349 . \quad 523$.
4434 592. 548. 405. 519.
4435694.597 .525 .530.
4441 482. 747. 591. 365
4442 499. 529. 449. 449 .
4443 416. 520. 363. 532.
4444 523. 600. $421 . \quad 547$.
4445 7e2. 780. $566 . \quad 525$.
JOE I.D.: EREMME DATE G9-MAR-35
TITLE: SRJC PROP FAN MODEL/WIMGNACELLE E AMES

Rusi	E04-1	E54-2	858-1	663-3
4445	547.	329.	673.	351
4451	513	712	543.	433.
4452	533.	541.	479.	551
4453	538.	637.	480.	561.
4454	8.1	582	533.	633.
4455	319	358.	668.	613.
4461	569	722.	533.	376.
4462	429.	549.	463.	418.
4465	449.	516.	392.	586.
4464	537	494.	425.	568.
4465	738.	644.	545.	580.
4471	594.	794.	679	376.
4472	539.	621.	553.	435.
4473	563.	615.	524	585.
4474	607.	575.	514.	5 5
4475	654.	594.	5413	479
4481	515.	562.	454.	438
4482	505.	538.	448.	599.
4483	596.	559.	473.	418.
4484	734	624.	558.	453.
4501	478.	565.	431.	451.
4502	487.	613.	416.	589.
4503	552	566.	443.	478.
4504	749	687.	535.	35:.
4511	576.	687.	514	449.
45.2	698	741.	512.	535.
$45: 3$	635.	583.	535	496.
4521	533.	745.	551	50 E .
4522	596.	711.	588	513.
445.3	648.	599.	527.	506.
4524	725.	50 O .	567.	459.
4531	696.	813.	618.	555.
4532	737.	798.	622.	562.
4541	571.	675.	493.	474.
4542	637	631.	535.	430.
$\sqrt{4} 2 \underline{2}$	711	665.	522.	419.
4220	802	762.	599.	472.

APPENDIX II

P-ORDER STRAIN (MICRO-STRAIN) AND

OPERATING CONDITION TABULATION BY

RUN NUMBER, STRAIN GAGE AND P-ORDER

11 －
－bigef comronents

4

 SE LC RGOF FAN
WING／EOMY NACELE TESTS

$\begin{aligned} & \text { Filun } \\ & \text { NO. } \end{aligned}$	MACH NO．	$\begin{aligned} & \text { Hose ind } \\ & \text { arr Tunt } \\ & \text { neg } \end{aligned}$	Malit： ANGLE LEEG	$\begin{aligned} & \text { FFirf } \\ & \text { sFEEA } \\ & \text { FiPM } \end{aligned}$	Shat I NW	FOWE： COLFA	Hin ine gage：
3223	0.799	0.010	55.600	\therefore M，	$\therefore . .18$	0.042	161 1－1
							$163-1$ $\cos 3-2$
							8 CO 34
3294	0.603	0.000	55.600	761\％	76.64	0.526	1611
							$863-1$
							16is\％
							［143－94
3225	0.80%	0.060	65.600	8014.	184.19	1.046	EG1 1
							EG3） 1
							HG3） 2
							$1463-1$
31.26	0.303	－1．060	55.600	14．5\％，	209.35	1．412	RG1－1
							$\mathrm{ECO}-1$
							H63 2
							$\operatorname{Hisan} 1$
3231	0.80%	0．93\％	55.600	1062．	5.22	0.043	1861.1
							$1403-1$
							1603 1603 1634
3232	0.798	0.94 .5	56.600	2603.	\％6．83	0.523	16.1 － 1
							E6S3 1
							1633－2
							1633－4
3233	0.80%	0.945	56.600	B025．	1×3.31	1.050	1631 10.31
							16032
							16334
3234	0.996	0.946	55.6000	646%	601．12	1.442	1 Gl 1
							101301
							1：1， 5 \％
							Bilis－ 1
3241	0.801	1.951	55.600	ッ\％\％。	4.21	0.056	116101
							B633－1
							\＄163．3
							10，3－4
204	0.998	1．964	56．000	\％\％\％．	85．0．3	＊－63＇	1661
							103 ${ }^{\text {a }}$
							16332
							1863
3243	0.798	1.955	55.600	20\％）	189.73	1．00\％	［ici 1
							163） 1
							103.32
							11634
3244	0.794	1．からい	55.600	8443.	300.33	1．4si	Jif1－1
							Fin3 1
							11033
							$1033-4$

ORICHRL

OE POOR QUALITY

riof
Illable
ANGi
and
0.039

0.586	$\underset{\sim}{2}$
-	
-	
-	

8
8
\div
\therefore
\therefore
7
\vdots
\vdots
$=$
$=$
$=$
$=$
Giof BHAF
GFEED
3
1.49
8
$\dot{3}$
$\underset{3}{3}$
$\stackrel{3}{3}$

$\stackrel{\square}{8}$ 89.14
1×3.35
 $\begin{array}{llll}\stackrel{3}{4} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \dot{B} & \vdots\end{array}$昜者 nef $\therefore .961$ 2.963

$\stackrel{\overline{\mathcal{c}_{2}^{2}}}{2}$

0.003 0.801
0.800 8
\therefore
\therefore
\because
8
8
8
8
8 55.600
55.500
55.600会

$\underset{2}{2}$

＋

NO．

$\overrightarrow{8} \quad \stackrel{3}{4}$

∞

0

人

8

 CREVEA F $\because 3$ OF FCOR C:BY

SK 2O FROF FAN
WING/ROMYACEILE TESTS
NASA AMES

3	\vdots
\therefore	\vdots

\vdots
\vdots
\vdots
2
2
2

3
0
0
i
2
8
8
8
\vdots
\vdots
$\stackrel{\pi}{7}$
$\stackrel{7}{\square}$
 FFOF
STEM
8330.

$\dot{\square}$
$\stackrel{\dot{8}}{8}$
\therefore
$=$
8
8
0
0
8
8
8
8 $\begin{array}{ll}8 & 0 \\ 8 & 0 \\ 8 & 6\end{array}$兰
 6.0.4:
 2
-
$\begin{array}{ll}8 & \approx \\ \stackrel{0}{8} & 6 \\ \vdots\end{array}$ 0
0
8 3

-
\cdots

n
n 2 3363
336.4

3365

3366
3371
3371

8
\therefore
\therefore
2
2
\therefore $\begin{array}{lllll}0 & 0 & 8 & 2 & \vdots \\ 0 & \vdots & \vdots & 0 & \vdots \\ 0 & \vdots & \vdots & \vdots & 0\end{array}$

2 $\begin{array}{lll}\therefore & \vdots & \vdots \\ \therefore & \vdots & \vdots \\ \therefore & \therefore & \vdots\end{array}$
$\stackrel{\mathrm{N}}{\mathrm{N}}$

3373
3374
3375
∞

GR 2C FFOF FAN
WING／BOHY／NACEILE TEGT nasa ames
-64
-208
303

$$
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 0 \\
& 8
\end{aligned}
$$

SHAT
FOWER
thw

60.38
6.69 $\begin{array}{ll}8 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

2
\square
-2
：
－
36 ？－G $\stackrel{F}{5}$

GLALEE FROF	
ANGLE	
DEEG	GFEM

－
8319
615%
$\dot{8}$
$\underset{\sim}{*}$
$\stackrel{i}{i}$
$\frac{8}{8}$
$\dot{3}$
$\dot{3}$
$\dot{3}$
$\underset{\sim}{2}$
8
\dot{z}
8
-
-
5
0
\therefore
HLALE
ANGLE
GIEG
$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 3\end{array}$ $\begin{array}{ll}8 & 8 \\ 0 & 8 \\ 0 & 6\end{array}$
8
8
8
8
8
8
8 8
0
0
0

8	8	8	8
0	0	0	8
0	0	0	8

ATI TURE
MEG里
．906
2.986 3.985 $\underset{i}{i}$ $\stackrel{\#}{シ}$

\approx

 8 $\begin{array}{ll}8 & \because \\ - & 3 \\ -\end{array}$ \qquad $\begin{array}{ll}3 & 8 \\ i & 8 \\ i\end{array}$要
0
0
\vdots
0 0.698 $\begin{array}{ll}0 & \vdots \\ 0 & \vdots\end{array}$
 0.707
0.793 0.797 0.790
 $\stackrel{2}{\vdots}$ $\frac{3}{2}$ 훌

 $\begin{array}{r}--8 \\ 3 \\ \hline\end{array}$ $7 \because$
$3=$

3 | $-4+$ |
| :--- |
| -2 |
| -2 | g 3

象 16

silan 1 10WLI: NW
5.31
130.3\%
253.44
362.94
4.64
16. 3
124.80
241.01
Stion
11.47
13.29

$\dot{\theta}$
 56.600 E 56.600
8
8
8

8	8	8
\vdots	\vdots	8
8	0	8

	\%	\pm	Z	\because	3	7 \vdots \vdots	\%	$\stackrel{i}{i}$	3	$*$ $\stackrel{\circ}{*}$	0 0 0
E	3	\%	\%	5	\pm	8	\%		$\begin{aligned} & \ddot{8} \\ & \vdots \end{aligned}$	$\stackrel{ \pm}{5}$	E

0
 F. okiek cumplonents +
楊 M

 ORIGINAL PRSE IS OF PCOR CUQLity

事	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \infty \\ & n \\ & 2 \end{aligned}$	8	\underline{z}	$\begin{aligned} & 0 \\ & \because \\ & \ddots \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$			$\begin{aligned} & = \\ & \div \end{aligned}$			\because
	\dot{E}	\therefore	$\dot{\hat{2}}$	\square \vdots		\therefore		\therefore	E	\because	\because \because \square	\%
	$\begin{aligned} & 8 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & \vdots \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 8 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	8	$\begin{aligned} & 2 \\ & 2 \\ & 8 \end{aligned}$	8	$\begin{aligned} & \bar{y} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	8	3
	8	-	$\begin{aligned} & \therefore \\ & \therefore \\ & - \end{aligned}$		$\begin{aligned} & i \\ & = \end{aligned}$	\cdots	$\begin{aligned} & \because \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 5 \\ & \vdots \\ & 5 \end{aligned}$	7 \vdots \vdots	$\begin{aligned} & \bar{Z} \\ & = \end{aligned}$	-	3
\bar{E}	5	5 5	\%		$\begin{aligned} & E \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \ddot{2} \\ & \stackrel{2}{\circ} \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \\ & \vdots \end{aligned}$	-	E $=$ $=$	-	E
$\frac{z}{i} \dot{\bar{z}}$	20	3	$\frac{8}{3}$	$\frac{9}{6}$	$\frac{5}{5}$	$\frac{2}{2}$	$\begin{aligned} & F \\ & \therefore \\ & \therefore \end{aligned}$	8	\%	\#	\%	2

cont

$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	8

8
52.500

8	8
8	8
8	8

8	8
8	8

8至至 $\stackrel{?}{=}$ 1.095
1.906 1.806
1.2% $\begin{array}{ll}8 & 3 \\ - & -\end{array}$
8
3

5	\％		
$\stackrel{\square}{\circ}$	；		$*$
:---			
	\qquad 8		

8 $\dot{5} \dot{\bar{z}}$ $\begin{array}{ll}0 \\ 0 & 8 \\ 0\end{array}$ 8 6
6 2
8
\square
\vdots
\vdots $\begin{array}{ll}\hat{8} & 8 \\ \vdots & \vdots\end{array}$ 2
8
88
8
8

3532
3533
3534 35,35
36,36

3	$\bar{\square}$	9	\pm	4			i
\％	8	2	A	8			2

3533
3534

 ORGGMA PIGEIT
WING/BODY, NACEI LIE TESTS

SK 2C PROF FAN
WTNG/BOHY/ NACELLE TESTS
NOGM AMES

 -
-••••••••••••••••••
10

4

 CRMMAS PIE B
OF Nósm ames
POWER HLADE

$\begin{aligned} & \text { kun } \\ & \text { NO. } \end{aligned}$	MACII NO.	fusel age altuture HEG	El Alle ANGLE: HEG	FROF SPEED FFFM	silaft FOWEF NW	POWEF COEFF
3653	0.800	0.045	52.500	800\%.	33.95	0.196
3653	0.003	-0.054	52.500	B622.	138.813	0.665
366.1	0.787	2.993	52.500	7684.	6.09	0.041
3662	0.806	2.992	52.500	9944.	34.73	0.20 .3
3663	0.804	2.994	52.500	8413.	125.30	0.620
3671	0.797	3.980	52.500	765\%	-6.20	0.041
36%	0.794	5.783	52.500	8065.	65.65	$0.3 / 1$
3673	0.797	3.984	52.500	8406.	144.00	0.721
3693	0.59%	1.90\%	50.800	616.	4.60	0.060
93604	0.590	1.9\%4	50.800	0.3\%	3.300	1). 29
3683:	0.591	1.956	50.600	2011.	96.29	$0 \cdot 6 \%$
36,46,	0.508	1.ッツ!	50.800	523.	179.09	1.042

 Fowes matie FOWER GOME
COEF
 - - - - - -
F ORAEF COMFONINTS
+

m

\underline{E}	
5	
Σ^{2}	
	m

 37 7

							$\begin{array}{r} \mathrm{SB} 2 \mathrm{C} \\ \text { NG/ mobi } \\ \text { Nrisi } \end{array}$	HOPFAN CCELIE TESTG ARIES
	$\begin{aligned} & \text { HiUN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { HO. } \end{aligned}$	$\begin{aligned} & \text { FOSEL ABE } \\ & \text { ATHOM } \\ & \text { DEG } \end{aligned}$	IIL ALIE ANGLE: DEG	FROM: STET HFM	$\begin{aligned} & \text { Shaf I } \\ & \text { FOWE: } \\ & \text { KW } \end{aligned}$	FOWEK coct	HI ALIE: Gribi:
2.29	3667	0.5,88	1.900	50.800	99%	274.67	1.330	[16) 1 16331 1663 $1403 \cdots 4$
	36808	0.590	1.995	50.800	8383.	371.55	1.564	$161-1$ 163
								$\begin{aligned} & 163.2 \\ & 103 \end{aligned}$ $[46] \cdots 1$
	3691	0.586	2.982	50.800	6110.	4.24	0.046	
								16032 $1163 \cdots 4$
	3642	6. 586	$\because .963$	50.600	6516.	54.50	0.310	Hili, 1
								10631 1032
								10ic3 a
	369.3	0.088	$\therefore 9834$	50.800	1020.	91.63	0.693	R61. 1
								$\begin{aligned} & 163 \quad 1 \\ & 1063 \% \end{aligned}$
$\stackrel{\ominus}{\boldsymbol{\circ}}$								10,3 ${ }^{1}$
	30.44	u.6.0	$\therefore 206$	50.800	76\%	17\%.72	1.1037	Hitil 1
								lini. 5 , 1
								$\begin{aligned} & \text { liti, } \\ & \text { lit, } \end{aligned}$
	30\%	11.036	$\therefore \times 34$	W,	(10.0.	$\therefore \%$,	1.6	But
								163 Lus Lus
								643-4
	$36 \% 6$	0.08%	2.984	50.1000	304.	32.s1	1.564	1ili 1
								16, 31
								$\begin{aligned} & \text { Li, } 1.3 .2 \\ & 10 \% .24 \end{aligned}$
	3701	0.58%	3.83%	80.800	61:11.	3.9	(104)	101 1
								10.31
								14038
	sin.	6, ${ }^{\text {a }}$	$\therefore \cdots \%$	50.60?	$\therefore 10$.	- 013	1.4.1
								$10 \therefore 1$
								line
	3\%0.3	0.680	1.00%	50.800	$0 ッ \% 1$	101.7\%	0.73	$1 / 61$
								16.31
								1103
	3704	0.981	4.00\%	50.8000	8.4.	18.5	1.08\%	
								(iti) 3

$$
\circ
$$

$$
+
$$

a

 M合䆚家 $\dot{\mathrm{a}} \dot{\mathrm{B}} \dot{\mathrm{x}} \dot{\mathrm{m}} \dot{\mathrm{O}}$
 －合 ジゥ ธ 부웅 불 Bis
 5
 SK－2C PROP FAN
WING／GOLY／NACELLE TESTS
NASA AMES

FOWEF	blade
COEFF	Gage

FOWER FROF
SRER宸岂范 \cdots 50.000 8
$\stackrel{8}{8}$
8 8 50.800 50.800 50.600 8
8
8
8 8
8
8
8 50.800 50.800 \circ
$\stackrel{\circ}{\circ}$
B 50.800 8
8
8 Fuget abe
aititure \＃ $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}$

1.0 .38 1． 10.36 0.596 2
8
0 0.596 0.596 0.597 0.596 \％
8
8 i
0
0
0 0
0
0
0 0.696 0.696

\cdots	4	0	0	7	0	M
\cdots	\cdots	\cdots	－	∇	8	5
λ	N	N	N	N	N	\bigcirc
m	－	－	N	m	9	9

 c cremg prge is
SK 2C FROF FAN
WING/BOHY/NACELLE TESTS nasa ames

伿

 $\stackrel{4}{4}$

-	
\rightarrow	

FOWER
COEFF

4	8
8	0

8
0
0
0
3

$\stackrel{M}{\stackrel{M}{2}} \stackrel{1}{-1}$
$\stackrel{\pi}{8}$
8
9
8
$\stackrel{\rightharpoonup}{3}$
7
8
0
SHAFT
FOWER
KW
5.99

9
\square
\square

0	0
0	0
8	8
8	

FROF
GFEEM
FFM

ELLALIE
ANGLE
DUEG
UEG
50.600

0
0
0
0
0
8
0
0
0
0
8
0
0
0
0
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8024.
$\stackrel{\dot{+}}{\stackrel{+}{ \pm}}$ a
Fuselage
Art Tune
neg
2
0
0
0
0
3
3
3
6
2
8
0

8
8
8

$\stackrel{3}{8}$
8

8
-

$\stackrel{7}{7}$
$\stackrel{3}{8}$
3
$\stackrel{3}{2}$
-

1.069
1.971
$-$

至室

3
\vdots
0
$\stackrel{T}{8}$
$\stackrel{8}{8}$
$\stackrel{3}{8}$
$\stackrel{3}{8}$
\circ
\vdots
\vdots
$\stackrel{2}{8}$
2
8
8
4
0
0
0
7
$\stackrel{7}{8}$
5
E
5
8

$\vec{\omega}$
\cdots
i
3782 3783

3784

3792
3793

- 0

∞

 SK 2C PROF-.FAN
WING/BOLY/NACELLE TEGTS
NASA AMES
- NASA ame tel
FOWER BLALEE
COEFF GAGE:
CTMM YROE I

$$
\mathbb{C} \text { HO }
$$

$\dot{0} 00000 \times 00000$

\cdots	

cower ulat
5
$\frac{3}{4}$
8
8

	$\begin{aligned} & \text { kill } \\ & \text { Nou. } \end{aligned}$	MaCh NO	$\begin{aligned} & \text { FUSELAGE } \\ & \text { ATr rune } \\ & \text { HEG } \end{aligned}$	hil Alie angile HEE	Fiow sfter kify	Bhaf - OINE Jiw
	3841	0.740	1.059	50.800	7825.	124.\%1
2.76	3842	0.751	1.050	50.600	7905.	123.32
	3843	0.753	1.056	50.800	8427.	236.10

		－	$\stackrel{0}{5}$	5	\sim 0 -1	$\stackrel{e}{1}$	N	J	$\stackrel{5}{2}$	N	∞	$\stackrel{\sim}{\sim}$	n
	\pm												
	E												
	䂞	$\begin{aligned} & 3 \\ & \vdots \\ & \vdots \end{aligned}$	8	3	8	\％	8 0 0	-1 $=$	$\stackrel{8}{3}$	$\stackrel{2}{7}$ $\stackrel{1}{2}$ $=$	\＃	5	\％
	3	\＃	$\stackrel{3}{8}$	－	－	－	च	$\underline{8}$	8	3	\cdots	\because \vdots	7
		3	8	$\dot{8}$	8	3	8	$\dot{\square}$	\％	\％	－	8	\％
	号	$\underset{B}{2}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	8	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\stackrel{8}{2}$	8 8		$\underset{B}{E}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	8		8 $\#$
		3	2 -2	－	－	$\stackrel{\square}{8}$	3	E	\％	\％	\square \vdots	8 8	$\ddot{7}$
	产	3 3 8	\％	8	8	\％	$\begin{aligned} & 8 \\ & \vdots \end{aligned}$	\％	\％	8	E $=$	2	$\bar{\Sigma}$ \vdots
	$\underset{z}{z}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\hat{e n}}$	$\stackrel{M}{8}$	8	$\overrightarrow{\text { F }}$	\equiv	$\stackrel{2}{\approx}$	F	$\overrightarrow{\#}$	\％	$\overline{3}$	\％

a $\quad \dot{3} \dot{\sim}$ －maner cimponems

 Re 3e MGor fan
Wingromy／nacerle rests
Mósa anies －hable
rumes：habe：

$\frac{5}{3}$		$\begin{aligned} & \dot{\theta} \\ & \dot{\theta} \end{aligned}$	$\vec{~}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & \therefore \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \end{aligned}$	9	$\begin{aligned} & i \\ & \vdots \\ & \hdashline \end{aligned}$	$\dot{\dot{\theta}}$	$\begin{aligned} & \because \\ & \because \end{aligned}$	3	$\begin{aligned} & \pm \\ & \vdots \end{aligned}$
5	8	$\stackrel{\square}{8}$	$\dot{8}$	$\dot{\theta}$		$\dot{3}$	\cdots	3	$\dot{8}$	E	8	
号吴	8	8 8 8 8	8	8	$\begin{aligned} & 8 \\ & 8 \\ & \text { B } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	B	8	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	8	8	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & \text { E } \\ & \text { 是 } \end{aligned}$	\％	$\stackrel{\stackrel{0}{8}}{\stackrel{0}{8}}$	2	3 8	5 - -	：	3	8	\％	3	－	3
空	\％	$\stackrel{8}{8}$	8	8	2 \therefore	8		$\stackrel{-}{8}$	8 8	8	8	8 8
$\underset{z}{\dot{z}} \dot{\bar{z}}$	8	0	$\underset{6}{6}$	$\stackrel{2}{2}$	-	$\vec{\pi}$	$\underset{\sim}{\vdots}$	$\overrightarrow{8}$	8	8	8	8

DESIL l: Comfone
₹ m

								m			
	\checkmark	N	\cdots	\cdots	0	\geq	－	\sim	0	σ	0
m	F	$\underline{\sim}$	N	－	－	－	－	！	N	$=$	
\sim	－	1	1	1	1	1			1		

sitafi
10.34
10.3%

$$
\begin{gathered}
\text { OFMEK COMFONENTS } \\
\text { An SRFAIN } \\
3
\end{gathered}
$$

我

$$
\underset{1}{\sim} \quad \frac{\square}{2}
$$

$$
=\frac{\pi}{2} \quad \frac{1}{1}
$$

$$
\frac{0}{-}
$$

Hosa mese
fowen mame

- $\dot{\sim}$

OFIER CUMFONENTS
MSTIAIN
3

$\begin{aligned} & \text { rilln } \\ & \text { NO. } \end{aligned}$	MACHNO.	$\begin{aligned} & \text { CUGE age } \\ & \text { ATTI TURE } \\ & \text { DEG } \end{aligned}$	BI. ALIE ANGLE: riEG	NHOF SFEL FiFM	SHAN: 1 FOWEF kW	SK: 3L PROF FAN WTHG/hony/NACELLE TESTS Natsa ames		
						FOWEK cotri	ELAntil: Bage:	
4063	0.702	1.976	60.700	6000.	$6 \% .81$	10.875		
40804	0.697	1.977	60.700	6500.	113.10	1.11\%	16893 1641 6642 1698	-127
4065	0.700	1.975	60.700	c800.	143.74	1.235	16881 $1688-3$ 1064 164	-133
							16492 1689	
4071	0.092	$\therefore .997$	60.700	4830.	-3.19	-9.0.04\%	16893 1694 164 1642	-151
4012	0.692	2.996	60.700	5560.	33.88	0.560	$\begin{aligned} & 168-1 \\ & \operatorname{B68} 3 \\ & \operatorname{lig} 91 \\ & 1642 \end{aligned}$	-156
4073	0.697	2.945	00.700	-000.	68.86	0.86 .3	1068.1 $1668 \cdots 3$ 1664.1	-161
							$\begin{aligned} & \operatorname{B64} 2 \\ & 160 \% 1 \end{aligned}$	
+0\%	0.702	枵単	60.700	Sow	11\%02	1.111	10863 1604 064	-190
							B6,	
4081	0.693	4.016	60.700	93%.	1.92	0.045	16881 1683	110
							$\begin{aligned} & 14 ; 4 \cdots 1 \\ & 16 \omega 4 \geq \end{aligned}$	
4083	0.701	4.017	60.700	5500.	34.84	0.6.1.	106831 1068.3 110.4 10.3	113
4083	0.100	4.018	60.700	60\%0.	$\therefore .40$	0.36%	16093 164 164	112
							kba? ? 1468 1	
4084	0.702	4.018	60.700	6800%8000.	117.835	1.170	1683 1081	130
							1048	
							$\begin{aligned} & 1689 \\ & 1668 \end{aligned}$	
	0.64	0.943	60.700			-0.046	1169	

－
 $\begin{array}{lll}N & \sim\end{array}$

品总	 												
늘	0	$\begin{aligned} & \ddot{0} \\ & 0 \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\stackrel{8}{\square}$	$\begin{aligned} & \text { W } \\ & \mathbf{~} \\ & \dot{0} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{8} \end{aligned}$	$$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\oplus}{\stackrel{\oplus}{N}} \stackrel{+}{\circ}$	
$\begin{aligned} & \text { ㄴ } \\ & \frac{4}{4} \\ & \frac{1}{3} \\ & \frac{1}{4} \end{aligned}$	$\stackrel{0}{-1}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \underset{9}{9} \\ & \underset{-1}{9} \end{aligned}$	$\stackrel{\text { w }}{8}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathbf{Q} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \vdots \\ & \ddot{0} \end{aligned}$	$\underset{i}{i}$	$\begin{aligned} & M \\ & M \\ & M \end{aligned}$	$\stackrel{8}{\square}$	$\begin{gathered} n \\ \dot{e} \\ \text { even } \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	
妾药	$\begin{aligned} & 0 \\ & 0 \\ & 47 \end{aligned}$	8	$\begin{aligned} & \dot{0} \\ & 8 \\ & 60 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & 8 \\ & \dot{8} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \mathrm{w} \\ & \dot{c} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 60 \end{aligned}$	$\begin{aligned} & \dot{u} \\ & \text { eid } \\ & 0 \\ & \text { ou } \end{aligned}$	$\dot{8}$	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & 8 \\ & 0 \end{aligned}$	8	
	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & \dot{8} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	
	$\begin{aligned} & \stackrel{0}{*} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 2 \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \mathrm{m} \\ & \stackrel{8}{6} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \hat{6} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8	$\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	
$\frac{\bar{C}}{E}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \approx \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & - \\ & \stackrel{\circ}{8} \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{3}{8}$	$\begin{aligned} & \stackrel{N}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\vdots}{\mathbf{N}} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & i \\ & 0 \end{aligned}$	
$\underset{\Delta x}{\stackrel{z}{z}}$	8	$\begin{aligned} & \infty \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \\ & \text { O } \end{aligned}$	$\underset{\sigma}{5}$	$\frac{8}{8}$	$\stackrel{m}{8}$	$\stackrel{8}{8}$	$\stackrel{\square}{7}$	$\stackrel{\square}{\square}$	$\stackrel{\vec{v}}{\vec{\sigma}}$	$\stackrel{C}{\pi}$	$\stackrel{N}{\sim}$	

10	0	0	0	0
0	0	\vdots	7	0
\vdots	0	\vdots	\vdots	0

\mathfrak{F}	8
\rightarrow	$=$

\square	4	2	$=$	\pm
5	$\stackrel{0}{2}$	\%	8	\because
$\stackrel{0}{6}$	$\stackrel{5}{5}$	\pm	\bigcirc	
S			-	

SHAFT
FOWEF
NW
05
\square

| 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| \vdots | 0 | \vdots |
| 0 | 0 | \vdots |
| 0 | 0 | 0 |

8	\bigcirc	\square	$\vec{\square}$	Q	2	\cdots
?	\because	3	3	\because	3	7
3	0	0	N	-	0	2
8	4	:		\sim	\cdots	3

 (
FOWEF
COEFF

4	8	\cdots	$\stackrel{1}{0}$	\cdots	$\stackrel{3}{4}$	18	9	\bigcirc	\because	*
-	$\stackrel{\square}{*}$	$\stackrel{ }{2}$	\geq	\%	\cdots	\pm	8	8	3	5
\square	\rightarrow	\cdots	-	\bigcirc	\bigcirc	6	$-$	$\stackrel{-}{-}$	$-$	\pm

$\begin{aligned} & \text { fiUn } \\ & \text { NO. } \end{aligned}$	MACH NO.	$\begin{aligned} & \text { FUSEL AGE } \\ & \text { ATTTTUNE } \\ & \text { WEG } \end{aligned}$	IIL ADE ANGLE HEG	FROF SPEEI HFM	SHAFT FOWLE NW
4224	0.593	0.989	62.700	5040.	62.40
4225	0.592	0.988	62.700	55600.	96.95
4227	0.592	0.980	62.700	6550.	202.22
4228	0.593	0.937	62.700	620.	223.76
4231	0.592	-0.021	62.700	3800.	$\cdots 0.28$
4232	0.594	-0.020	62.700	4000.	0.12
42.33	0. 59.3	-0.0\%\%	62.700	45, 50.	33.37
4234	0.592	0.0 .020	62.700	5000.	62.38
4235	0.592	0.019	62.700	5500.	100.48
4236	0.585	-1.020	62.700	6025.	$1+6 . \%$
4237	0.596	-0.021	62.700	6000.	190.66
4241	0.596	-1.058	62.700	3600.	0.26

Filin NO.	MACH NO.	$\begin{aligned} & \text { FUSE AGE } \\ & \text { ATHITHLE } \\ & \text { MEG } \end{aligned}$	HL ANE: ANGLE: LIEG	FROF SFEEH FFF	shaft POWER NW	SE-3C FROF FAN WIng/hohy/Nacelle rests NósA AMES	
						FOWEI: COEFF	HLALE: Grabe
4242	0.596	1.036	62.700	4000.	8.49	0.330	$\begin{aligned} & \operatorname{mo4} 1-105 \\ & \text { B64 } \\ & \text { BSB } \end{aligned}$
4243	0.547	1.047	62.700	4500.	32.15	0.878	$\begin{aligned} & 5601 \\ & 16843 \\ & 16642 \\ & 1642 \end{aligned}-109$
							HGO 1 608-3 $\mathrm{HO} 4-1 / 4$
4244	0.596	1.046	C.2.700	50.50	66.76	1.284	181342
							${ }^{1689}$
4245	0.598	1.048	62.700	5500	100.94	1.511	$168-3$ 1641 1642
							16881
4246	0.59%	1.049	62.700	6000	145.28	1.674	${ }_{868-3}^{668}-134$
							$\mathrm{BCH}_{3} 2$ [6B-1
4251	0.700	1.983	62.700	4450.	1.59	0.049	B64 2
							1688-1
							BGQ 3 $\operatorname{s64}-103$
425	0.6%	1.94	62.700	Soun.	33.12	0.714	Bici 2
							mide 1
							16883 $164-122$
4253	0.702	1.\%\%	62.700	5530.	09.10	1.105	16442
							His. 1 Mode3 125
$4: 54$	0.69%	1.977	63.700	601\%.	107.51	1.336	11341
							mida
							$\begin{array}{ll} 1068 & 1 \\ 1: 1,8 & 3 \end{array} 116$
435	0.700	1.9,	02. 100	6. 0.0	156.54	1. $\cdot 1$	1i64 $1^{\text {- }}$
							$\begin{aligned} & 101.4 \geq 2 \\ & 16,08 \end{aligned}$
							Hot 1
			62.700		0.46	0.014	$\begin{array}{lll}1688 \\ 164 \\ 164 & 1 & 6 \%\end{array}$
4261	0.6% 里	2.984		+406.			1119.9
							116%
				5030.		0.684	$\begin{array}{lll}1686 \\ 164 & 3 \\ 164 & 1\end{array}$
426	0.692	2.963,	62.700		52.12		1684%
							F6S 1
							1683

							$\mathrm{NG} / \mathrm{BOHY}$ Na	Nor acelae regts ames						
	Fill	Mach	Fugetage	BLALIE	FRHM	Bhat 1	FOWE：	II．ADE：			MEF	MNENTE		
	NO．	NO．	$\begin{aligned} & \text { m r } 1 \text { rune } \\ & \text { he } G \end{aligned}$	ANBLE IUEG	$\begin{gathered} \text { EFEn } \\ \text { AFHO } \end{gathered}$	FOWER HW	conet	Cincte	1.	2	3	4	8	6
96	4263	0.697	2.936	62．700	SLO．	25.5	1.001		4% 61.	24% ．	121．	20.	86.	26．
								168－	62.	195.	145.	27.	5.	0.
								1683	58.	40.	144.	79.	102.	55.
	4264	0.702	2.983	62.700	S040．	110.35	1.30 .4	1614183	60.	41.	0\％．	21.	5.	0 ．
	4.04	0．702	2．	62.200	boro．	Ho．ss	1．30n	$\operatorname{Lios} \%$－	67.	361.	150．	37.	\％．	39.
（ 11								（10） 1	\％ 1.	310.	96.	21.	\％	8.
								Min $3=0$	62.	33.	154．	7 \％．	119.	96.
	4265	0.706	2.986	62．700	651\％．	155.98	1.547	$\mathrm{Hg4} 1220$	76.	649.	97.	35.	12.	9.
								M64 2	84.	Sc9．	97.	57.	65.	30.
\cdots								H68－1	84.	408.	90.	35.	\therefore－	12．
								1683	72.	122．	139.	27.	137.	134.
	4271	0.093	4.016	62.700	3010．	24.03	0.635	1：144 1 94	152．	275.	158.	44.	16.	0.
								16492	124．	259.	5%	121.	113.	27.
								（1）${ }^{\text {－}} 1$	158.	238.	230.	40.	20.	0.
								108\％ 3	127.	96.	131.	57.	89.	37.
	4272	0.701	4.017	62.700	5500	65.76	1.093	1361102	16\％．	264.	132.	27.	0.	0.
								1842	125．	248.	245.	64.	91.	25.
								109－ 1	173.	216.	163.	27.	\bigcirc ．	\bigcirc ．
								1683118	1.42.	39.	159.	71.	115.	50.
	4273	0.700	4.018	62.700	6000.	105．30	1.327	$164 \cdots 118$	193.	437.	98.	22.	8.	0.
								164）2	144.	369.	1\％．	55.	57	23.
								B6a 1.	198.	336.	109.	21.	6.	0.
								$16083-113$	171．	33.	173.	95.	116.	89.
	4281	0.697	0.983	62.700	4500.	3.10	0.042	$1664-1-113$	251.	148.	500.	13.	11.	0.
								104 2	160.	132.	613.	31.	15.	62.
								169－1	227.	124.	360.	11.	11.	7.
								668－3－105	154.	53.	91.	46.	10.	62.
	4282	0.700	0.986	62.700	5050.	36.41	0.765	Risa－1－105	234.	156.	116.	28.	9.	0.
								1134 2	134.	149.	262.	112.	87.	26.
								1688	210.	134.	176.	35.	12.	0.
								$1083-114$	177	66.	121.	83.	72.	50.
	4283	0.699	0.987	62.700	6s＋0．	\％ 1.64	1.140	$11631-114$	252.	224.	112.	24.	9.	0.
								HG4 2	145．	213.	196.	69.	77.	26.
								4683 1	225.	179.	132.	30.	6.	0.
								libe 3	179．	49.	124.	86.	109.	60.
	4294	0.690	$0 \cdot \%$ \％	62．100	$\therefore 6.6$	111．4\％	1．360	$111.4-1-12$	268.	295.	76.	32.	8.	0.
								1：154：	158.	26.5	122.	42.	6o．	25.
								Liter－ 1	242.	215.	87.	30.	0.	0.
								16.68	186.	39.	113.	86.	118.	74.
	420：	0.699	0.96%	02.100	s．00．	10.76	1．tst	$1641-120$	256.	477.	80.	29.	0.	11.
								1694	16\％	409.	93.	78.	39.	26.
								1：0\％ 1	$\bigcirc 41$.	se4．	82.	35.	0.	6．
								（1tic）${ }^{\text {a }}$	134．	93.	31.	83.	62.	103.
	4291	0.10 .3	いいいい	$6 \% .100$	5，0\％	37．03	0.97		386．	16% ．	110.	27.	12.	0.
								litia 2	231.	162．	239.	104．	93.	21.
								1081	349.	140．	161.	33.	20.	0.
								1：03\％ 3	274.	60.	125．	B2．	77.	43.

－
\cdot

 NMSA DME：S

$$
\begin{aligned}
& - \\
& =- \\
& =-
\end{aligned}
$$家妾 \qquad

Min
$6!18$ \sim
\approx
\approx忈 $\underset{\sim}{2}$ $\stackrel{2}{2}$
 $\begin{array}{r}- \\ -\underset{Z}{2} \\ \hline\end{array}$ ——
$\therefore=$
$\therefore=$
 1.141 1．401． $\begin{array}{ll}0 & - \\ i & = \\ i & -\end{array}$
 $\begin{array}{lll}0 & \because & \vdots \\ -i & \vdots & \vdots \\ - & \vdots & \vdots\end{array}$ $\begin{array}{ll}\vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots\end{array}$ BURI
FOWL：
KW $\underset{y}{=}$ \pm
 8
3
3

3 $\begin{array}{rrr}3 & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots\end{array}$ \begin{tabular}{l}
$-i$

-2

-

\hline
\end{tabular} $=$

\vdots
\vdots $\begin{array}{ll}2 & \vdots \\ \therefore & \vdots \\ \therefore & \vdots\end{array}$ 0
\vdots
\vdots

$$
\begin{aligned}
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
$$

$$
5
$$

2
z $\dot{2}$ \vdots
\vdots
\vdots $=$
\vdots

 $\begin{array}{lll} & \overrightarrow{2} & \hat{2} \\ \dot{E} & \vdots & \vdots \\ \vdots & 0\end{array}$ $\begin{array}{ll}\because & \vdots \\ \vdots & \vdots\end{array}$ $\begin{array}{ll}z & \vdots \\ \vdots\end{array}$ 2
2
2
$\stackrel{7}{3}$ $\underset{\sim}{\square}$ z
$0 \stackrel{1}{1}$

色		N \sim \sim	$\begin{aligned} & J \\ & \underset{\sim}{3} \end{aligned}$	$\frac{1}{1}$	$\begin{gathered} 6 \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 0 \\ & 1 \end{aligned}$	\sim σ 1	$\frac{0}{0}$	0 1 1	E \sim 1	\cdots	\pm	0
震	䂞	$\stackrel{2}{2}$	9	$\frac{\pi}{8}$	8	8189	8	8	2 8 8	8	3 3 -	8	8
	宕 ${ }^{3}$	H	$\stackrel{\square}{2}$	$\stackrel{3}{3}$	$\stackrel{8}{3}$	8	3	8	4 -4	$\stackrel{\square}{8}$	3	\％	2
	$\frac{B}{4}$	$\dot{5}$	$\dot{8}$	$\dot{8}$	$\dot{8}$	$\stackrel{8}{8}$	$\dot{3}$	3	$\stackrel{8}{8}$	8	8	8	8
		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	8	8	8	8	8	8	8	－	8	8	8
		\％	\pm	7 0 0	$*$ \vdots	\％	－	$\stackrel{3}{3}$	3 8 8	3 3 -	O	－	2
	要	8	$\stackrel{3}{8}$	0	8	$\stackrel{8}{8}$	－	$\frac{2}{3}$	－	8	2 8	8 8 8	8
	를̇̇	$\begin{gathered} \mathrm{M} \\ \mathrm{M} \end{gathered}$	9	$\stackrel{\overrightarrow{7}}{\underset{4}{4}}$	$\stackrel{\stackrel{8}{4}}{\underset{4}{4}}$	$\stackrel{\%}{\square}$	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{7}{\sigma} \end{aligned}$	8 8	$\stackrel{7}{8}$	$\stackrel{+}{4}$	$\stackrel{8}{7}$	$\stackrel{8}{8}$	$\stackrel{2}{2}$
139													

10

 Sk 3e frop fan
wing, bour nacel fe: tests

$-$
Taf

$\begin{aligned} & \text { Fill } \\ & \text { NOO. } \end{aligned}$	$\begin{aligned} & \text { MACH. } \\ & \text { NO. } \end{aligned}$	FUSE: ABE altitune HEC	HL AME: ANGIE: HEG
4414	0.592	0.020	61.900
4415	0.592	-0.019	61.900
4416	0.595	-0.000	61.900
4417	0.596	0.029	01.900
4421	0.596	-1.038	61.900
4422	0.596	1.0.36	61.900
4423	0.597	1.041	81.900
4424	0.596	1.046	61.900
4225	0.598	1.048	01.900
4426	0.597	$1 \cdot 0.4$	51.900
44.31	0.700	1.963	61.900

4

cromm page is

SK 3C PROF FAN
WING/ROMY/WACELEE TESTS WING/EASA AMES
FOWER MLALE COEFF
 SHAF I
FOWER
NW 3

- $\dot{\text { wita }} \dot{\sim}$

(

A

 Hosmantes

$\begin{aligned} & \text { FILN } \\ & \text { NO. } \end{aligned}$	Mach NO.	custame All Ithat: HE C	MADE ANGLE De:	$\begin{aligned} & \text { FEOF } \\ & \text { SFEEB } \\ & \text { BEM } \end{aligned}$	$\begin{aligned} & \text { BHA r } \\ & \text { row : } \\ & \text { NW } \end{aligned}$
4455	0.693	1.01%	01.900	6520.	133.46
4461	0.697	0.983	61.900	4\%11.	0.39
4462	0.700	0.906	01.900	5000.	15.65
4463	0.699	0.987	61.900	5540	5.20
4464	0.698	0.986	61.900	6010.	92.20
4465	0.699	0.9131	61.900	6550.	139.40
4471	0.203	0.030	61.900	4060.	0.01
4472	0.701	0.635	01.900	5040.	19.80
4473	0.699	0.0.3.3	61.900	5630	53.40
414	0.700	$\cdots 0 \%$	0.9000	$\therefore 30$.	43
44\%	0.702	0.034	61.900	0300.	$0 \% 17$
4481	0.793	1.910	61.900	5250.	4.61

APPENDIX III

RESOLUTION OF IRREGULARITIES WITH SR-3C AND SR-2C BLADE RESPONSE FINITE ELEMENT MODELS

BY: PETER J. ARSENEAUX

> HAMILTON STANDARD DIVISION
> UNITED TECHNOLOGIES CORPORATION
> WINDSOR LOCKS, CT 06096

DECEMBER, 1985

NASA contract NAS3-24088 calls for the calculation, and comparison to test data, of vibratory stresses for the SR3C-3 and SR2C model Prop-Fan blades (2 ft . diameter). The $S R-3 C-3$ and $S R-2 C$ finite element models were supplied by NASA, and are shown in Figures Al and A2, respectively. These models were originally developed by NASA using COSMIC NASTRAN format with CTRIA2 elements. NASA later reran them using MSC NASTRAN with CTRIA3 elements for this work. Calculations to date (SR-3C-3) have indicated overprediction of $1 P$ strain, slow convergence of the finite element solution, and erratic element-to-element variations in calculated strain response. Additionally the NASA-supplied SR-2C finite element model was found to be too stiff (relative to test) when analyzed with MSC/NASTRAN. A contract add-on was received to investigate these problems before continuing with the analyses. Four specific items (discussed below) were to be investigated. This memo reports resolution of these problems.

The lp analysis for Run 204 (NASA-Lewis wind tunnel tests) was chosen, with NASA concurrence, to investigate the influence of finite element model changes. This was a case at $8508 \mathrm{RPM}, \mathrm{Mn}=$ $0.8 ; \operatorname{SHP}=565$, inflow angle $=2.06^{\circ}$. Previous calculation showed strains too high relative to test (477 u in/in calculated versus 321 u in/in measured at root bending gage \#1) as well as calculated strains which varied erratically element to element, particularly the shear strain near the tip (see Run A of Figure A3). The following changes were investigated:

Plate Normal Stiffness (SR-3C-3)
A parameter exists in MSC/NASTRAN (versions 63 and higher) which adds artificial stiffness about the direction normal to the plane of a plate element, to alleviate problems associated with singularities of the finite element stiffness matrix. In past calculations, stiffness terms were added to the diagonal of the assembled stiffness matrix to avoid singularity problems. A recently completed study demonstrated that a value of the parameter K6ROT of 10,000 avoided the singularity problems and gave responses which were smoother on an
element-to-element and node-to-node basis. Calculations of centrifugally induced deflections of an SR-5 blade in a vacuum (without airloads) compared favorably with measured values.

Run B in Figure A3 shows the effect of using K6ROT $=10,000$ for the same SR-3C-3 finite element model as was previously used without the K6ROT parameter (Run A). The steady state portion of the calculation (solution 64 in NASTRAN) used to obtain the centrifugal stiffening effects converged in six subcases, instead of the previous 25, and gave much reduced element-to-element strain variation. The calculated strain for gage \#l reduced from 477 to 407 u in/in (closer to the test). As discussed later, variation of K6ROT from 1000 to 100,000 did not significantly affect the calculated response. It is noted that the most element-to-element strain variation occurred between triangular elements that are the most obtuse.

Transverse Shear (SR-3C-3)

During the analysis of a Lockheed-Georgia one foot diameter graphite Prop-Fan model blade, with a geometry designated $S R-7$, Hamilton Standard found that the computer analysis would run successfully only when transverse shear flexibility was included. This was thought to be a possible problem with the SR-3C-3 model. It was decided to investigate adding this flexibility to the $S R-3 C-3$ model. This was done by using MAT8 material cards (instead of MAT2) and assuming that the transverse shear moduli ($G_{x z}$ and $G_{y z}$) were equal to the inplane shear modulus ($G_{x y}$). Run C in Figure A3 shows how the strains vary element-to-element. Comparison to Run B shows the same tendency for strain variations between badly shaped (obtuse) triangles. The root strain did go up 5% but this is probably because the frequency of the model was lowered (closer to IP excitation frequency, causing higher dynamic magnification due to more flexibility in the model). It was concluded that transverse shear should not be included in future analyses because 1) the response is not significantly improved, 2) we do not know the actual transverse shear moduli, and 3) the material properties were adjusted to approach test frequencies.

Airload Variation (SR-3C-3)
Variation of the chordwise distribution of $1 P$ aerodynamic loads is known to significantly affect the calculated response at the blade tip. Run 204 was rerun with an assumed center of pressure of the aero loads near the trailing edge (90% chord) instead of the previously calculated center of pressure nearer the leading edge (about 30% for $1 P$ loads). Run D in Figure A3 shows some change in root strain but very large changes in strains further outboard. While this is a significant effect, and certainly the load distribution has a strong influence on our correlation with strains, the tendency for element-to-element strain variations (especially for obtuse triangles) is still there. While more accurate calculations of airload distributions may improve correlation, there is no justification for changing the procedures currently used on the basis of this study.

Finite Element Type (SR-3C-3)

The NASA-supplied finite element model was constructed using CTRIA3 elements with properties adjusted to approximate the test frequencies at zero rotational speed. MSC/NASTRAN recommends the use of CQUAD4 elements for this type of application with CTRIA3 elements to be used only for transition regions. It is also known that more nearly square CQUAD4 elements, or more nearly equilateral CTRIA3 elements, behave better than oddiy shaped elements. Because of the way the original finite element model was set up (see Figure Al) triangles near the tip (and some near the root) were very obtuse. Two new models were derived from this one using the same grid point locations. A modified CTRIA3 model was set up (see Figure Al) with the triangles laid out to be more nearly equilateral, and a version of mostly CQUAD4 elements was also set up. In order to set up these models, several steps were necessary.

The material properties were averaged for "pairs" of triangles to be converted to quadrilaterals (or a different "pair" of triangles). Additionally, the material axis direction was recalculated for each element based on a new direction of the local element coordinate system. Run E of Figure A4 shows the strains calculated using the original triangle configuration but merely averaging the properties for pairs of triangles. This was done in order to see the influence of material property variation on the strain distributions. Runs F and G were then made with the new models. Review of Figure A4 shows that the element-to-element variation problem was in fact due largely to the obtuse triangles in the original model. Material property averaging had only a small effect.

Both the modified CTRIA3 model and the CQUAD4 model showed similar and much "smoother" response than the original model. Since the CQUAD4 element is the recommended element, it is felt that the CQUAD4 model is the one to use for future calculations. Zero RPM frequencies were calculated using the CQUAD4 model for this model to compare to tests. The first mode frequency was calculated as 203.6 Hz . The test frequency was 193 Hz . It was decided, consistent with previous procedures, to soften the blade to match test frequencies, in order to obtain correct values of dynamic magnification when performing vibratory analyses. This was done by multiplying all of the stiffness values on the MAT2 cards by a factor of 0.9. Figure A5 shows the calculated frequencies. When the stiffnesses are adjusted to give a first mode frequency of 193 Hz the other modes become reasonably consistent with test values. Calculated and measured mode shapes are shown in Figure A6 and are seen to be in reasonable agreement. The value of K6ROT was also varied (1000; 10000; 100000) to show that frequencies and response is not significantly changed with the variation of this artificial plate normal stiffness. It is also noted that predicted strains are not significantly affected by changes in K6ROT.

Using the CQUAD4 model (with K6ROT and adjusted stiffness) the calculated strain for the root bending (Gage l) became 423 u in/in instead of the original 477. This is shown in Figure A5. This is better with respect to the test value of 321 u in/in (Run 204 -NASA-Lewis wind tunnel tests). The other gages do not compare as well. It is noted, however, that the strains at these locations are very sensitive to the assumed chordwise load distribution.

SR-2C

The NASA-supplied SR-2C finite element model (CTRIA3 elements) is pictured in Figure A2. Because the blade is not swept, there is not the problem with obtuse triangles (except at the tip) that there was for the $S R-3 C-3$. For this reason, it was decided not to modify this model. Additionally, since the model was originally set up as a CTRIA2 model in COSMIC/NASTRAN, the elements have constant thickness. This would mean averaging thicknesses (as well as material properties) when converting to quadrilaterals. Note that, in general CTRIA2 COSMIC elements are stiffer than CTRIA3 elements. When a frequency check of this model was made, a first mode frequency of 160

Hz was found (zero speed). Measured values of 134 , 139, and 140 have been reported (see Figure 7). It was decided, consistent with previous procedures, to soften the blade to match measured frequencies, in order to obtain correct values of dynamic magnification when performing vibratory analyses. This was done by multiplying all of the stiffness values on the MAT2 cards by a factor of 0.752 . As noted in Figure 7, this gave a first mode frequency of 139 Hz . Correlations of the higher modal frequency calculations with test values, previous calculations using an FSD beam model, and an older SR-2C finite element model (COSMIC/NASTRAN) were also improved. Figure A8 shows that the calculated mode shapes are in good agreement with those measured using holography.

Conclusions

1) The strain variation difficulty found with the NASA supplied SR-3C-3 finite element model was caused by the use of obtuse triangular elements. The element-to-element strain variations became much "smoother" when the triangles were made more nearly equilateral or when the triangles were eliminated and CQUAD4 elements were used.
2) The use of K6ROT to add artificial plate normal stiffness significantly reduced the unrealistic element to element strain variations of the calculated SR-3C-3 finite element model response. Additionally the nonlinear steady state solution converged much faster than when older procedures were used. A value of K6ROT $=10,000$ was shown to give good results for the SR-3C-3 and SR-2C models.
3) Use of the CQUAD4 elements (with K6ROT) improved the agreement between predicted and measured 1P inboard bending strains. However the material properties had to be softened by about 10% to obtain a model with frequencies and mode shapes which matched test.
4) The introduction of transverse shear flexibility did not significantly change the character of the $1 P$ response calculations and need not be considered for the SR-3C-3 model.
5) Although the chordwise distribution of IP airloads has a significant effect on calculated strains (especially near the tip), the influence of airload distribution was not the cause of the noted irregularities in the $S R-3 C-3$ model response.
6) The NASA-supplied SR-2C finite element model was too stiff (relative to tests), but softening the material properties by about 25% resulted in a model with good frequencies and mode shapes.
1. Use the CQUAD4 model, with adjusted stiffness, for future SR-3C-3 vibratory response calculations.
2. Use the CTRIA3 model, with adjusted stiffness, for future $S R-2 C$ vibratory response calculations.
3. Redo previous calculations (five other SR-3C-3 points) to quantify the improvement in correlation with test.
4. Consider the use of CQUAD4 elements in future modeling.
5. A trend has been noted that we generally overpredict vibratory response for composite blades, whereas the trend has been for underprediction for solid metal blades ($S R-3, S R-5$). It has been recently found that the influence of aeroelasticity on the $1 P$ aero loads tends to decrease response. Perhaps the composite blades behave more "aeroelastically" than the metal blades. As a first approximation to modeling the effect of aeroelastic behavior, we do have the ability to study the affect of response attenuation due to lP blade untwist in NASTRAN. I recommend that this be done for the $S R-3$ and $S R-3 C-3$ blades, to see if the noted trends can be explained.

$\left.\begin{array}{l}\text { Model to } \\ \text { be used for } \\ \text { vibratation } \\ \text { andilysis } \\ \therefore \text { Stiffiness } \\ \text { onmarz cards } \\ \text { nultiplied } \\ \text { by } 0.9\end{array}\right]$

$$
()^{*} \bmod _{\text {CTRIA } 3 \text { model }}
$$

model sof tened to match finst mode frequiency

Figurea5 Effect of kbfot Parometer on calculated frequeacies ard gaal stroins (and comparison to tests) for SR-3C-3 model

model to
be used for (stiffness (onmAT2 cords) multiplies (by 0.75
vibration a na lysis
\downarrow

Figure A 7 Effect of KbROT Parameter | on caleslatedo frequencies (and |
| :--- |
| Comparison to test ls) for SR2C model |

mode

434 hz

± 4599

tho hz
hz d and Measured Mode
SR2C and Frequencies
SR 2 atters

139 hz

[^0]: -For sale by the National Tecnnical information Service. Springlieid. Virginia 22161

