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1. INTRODUCTION

In the few years following the launch of HEAO-C with its two large cosmic

ray experiments on board, we have seen significant progress made in our

understanding of the origin of energetic particles in the galaxy. This progress

was made with large, high resolution instruments above the atmosphere for

extended periods. It was Frank McDonald's foresight which led to the initia-

tion of the HEAO project and his energy which helped to lead it to a suc-
cessful conclusion. It is fitting that on the occasion of Frank's sixtieth birth-

day we should review our understanding of the problems associated with the
origin of cosmic rays, problems which have been so central to his scientific
interests and to the solution of which he has contributed so much. These con-

tributions have come not only through his own scientific work, but also through

his tireless efforts in promoting space flight opportunities and in the develop-

ment of new scientific talent. This is evidenced by the range of papers in this

volume, and by the impact of the HEAO satellites and their experiments on

the discipline of high energy astrophysics. In particular, the role played by
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HEAO-3andtheDanish-Frenchexperimentin furtheringour understanding
of cosmic rays will be evident in this paper. C. J. Cesarsky introduced the

oral presentation of this paper as follows:

I started working on cosmic rays in 1969. By then, Frank McDonald

was already famous, and I was of course very intimidated to meet

him at my first colloquium, which was at Goddard in 1971. I was

surprised to find that this man was so unassuming and easy to talk

to. Over the years, with scientific meetings, and his frequent trips

to France where I had located, a friendship developed, based on
common interests: cosmic rays, space experiments, good food, and

art. So it is a great pleasure to be here on this occasion.

Heavy elements in the galactic cosmic rays were discovered almost forty years

ago now [Freier et al., 1948; Bradt and Peters, 1948], and a large number
of balloon and satellite observations have been made in the succeeding years.
It is rather remarkable that most of these observations can be understood in

the framework of a rather simple theory. It is based on the minimum assump-

tion that there is one type of source and one confinement region in which

particles are contained by one mechanism. It also assumes that all species,

namely electrons, protons, helium, and the heavier elements which we observe

are a consequence of the same processes. We will see that recent observations

are making this point of view more and more difficult to maintain. This should

come as no surprise. For the first time we have highly accurate data--in some

cases the principle errors are coming from uncertainties in cross-sections rather

than from the cosmic ray data itself. As the level of detail in our observa-

tions increases, in effect we are observing the phenomena in "higher and higher

resolution". In fact the remarkable thing is the large number of observations

which are understood from the perspective of this simple theory.

The Danish-French experiment on HEAO-3 has provided us with our first

detailed observations outside the Earth's magnetosphere of particles above

1 GeV/amu. These observations have shaken the simplest interpretations so

that we probably cannot even claim to know the spectrum which is produced

by the acceleration mechanism(s), much less to understand the mechanism(s).
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An accompanyingpaper[Binnset al., 1987,thisvolume]discussestheelemen-
tal andisotopicabundancesandwhattheycantell usaboutthemechanisms
for nucleogenesisof cosmicraysandthesitesin whichtheyresidebeforeac-
celeration.Muchnewhasbeenlearnedheretoo, but therearemanygaps.
Themechanismbywhichthegalaxyisableto concentratesomuchof itsenergy
resourcesin so few of its constituentsis the problemof the acceleration
mechanism.Thefuturewill seeit approachednot onlyby workingour way
backwardfromtheobservations,butalsobyworkingourwayforward from
whatweknow aboutthe sitesand mechanismsof nucleosynthesis.

Thispaperwill discussthe observationsandtheir interpretationin context
of thephysicalprocessesinvolved.Suggestionsfor futureobservationswhich
canbe usedto attemptto resolvethe outstandingquestionswill form the
conclusion.

2. GENERALBACKGROUND

Energeticparticlesareubiquitousin astrophysicalplasmas.Weseethemin
thesolarsystemasa resultof plasmaprocesseswherevertherearemotions
andmagneticfields.Theyareacceleratedin themagnetospheresof theEarth
and Jupiter.Theyareacceleratedby the Sunin magneticfieldsassociated
with solarflares.Weseesynchrotronradiationwhichtellsusthat electrons,
andby implicationnuclei,arebeingacceleratedin supernovaremnants,in
pulsarmagnetospheres,andin quasars.At thesametimeweobserveparticles
atEarthwhichareextremelyhomogeneousinspaceandtime,apparentlycom-
ing to us from the galaxyat large.

Historicallytherehavebeenanumberof ideasaboutthesite(s)in whichthe
accelerationof cosmicraystakesplace:in thegalacticmagneticfields,in super-
novaremnants,in pulsarmagnetospheres,etc.,but neitherthe sitenor the
accelerationmechanismis wellunderstood.Muchtheoreticalworkhasbeen
donerecentlyonshockaccelerationmechanisms,andexamplesof shockac-
celerationareknownto beatworkin thesolarsystemwheretheycanbestudied
in situ, but whetherthesemechanismscanoperateona scalesufficientto
accountfor thegalacticcosmicraysis still uncertain.Moretheoreticalwork
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is neededon the transportof particleson a galacticscale.The mechanism
mustbecontinuousoverat leastfive or sixordersof magnitude,from GeV
energiesto perhaps100or 1000TeV.

OntheotherhandobjectssuchasCygnusX-3areapparentlyproducingair
showersinitiatedby gammaraysof 1to 1000or moreTeV energy.There
is sufficientpoweravailablefrom this sourceto fill thegalaxywith cosmic
raysof 100TeVor more.Accretiondisksandbinarystellarsystemsmaybe
ableto accelerateparticlestoo. Any environmentinvolvingmagneticfields
andmotion is a candidate.It maybethat a numberof differentprocesses
accelerateparticleswhichbecomethe cosmicraysobservedat Earth.

At energiesof 100TeV andabovethecosmicrayair showersareisotropic
to a fewpartsin 10 4 as shown in Figure 1. This implies that the particles are

confined in a large column and that particles are not streaming past the solar

system at velocities more than a few tens of km/sec. From the radio con-

tinuum observations, we know that cosmic ray electrons are present over much

of the galaxy and extend beyond the galactic disk into a halo above and below

the disk. The radio map of NGC891, an edge on galaxy seen at 21 cm, is shown

in Figure 2 superposed on a photograph from the 200-inch telescope from

Allen, Baldwin, and Sancisi, 1978. This intensity profile is similar to that which
an extragalactic radio astronomer would see if observation were made of our

galaxy from a similar perspective. Cosmogenic nucleides in meteorites, nuclei

which have been transformed through the bombardment by energetic cosmic

ray nuclei during their exposure in space, can be used to estimate the average
flux of cosmic rays over their exposure history. This has been done over time

scales of 400, 9 x 105, and 10 9 years. These results say that, within a factor

of 2, the cosmic ray intensity has been constant over the last billion years.
There is some indication that it may have been a factor of two lower on the

10 9 year time scale, and periodic fluctuations of larger amplitude cannot be

ruled out. Most of the particles responsible were in the energy range .3 to
3 GeV/amu, so changes in the slope of the well-known observed power law

spectrum cannot be ruled out by these observations either.

These considerations led Ginzburg and Syrovatskii [1964] to posit that the

galaxy was filled with energetic particles accelerated within the galaxy which
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Figure 1. The observed anisotropy is shown as a function of energy. A Comp-

ton Getting anisotropy corresponding to a streaming velocity of 20 km/sec

is indicated as is the anisotropy which would be expected from a diffusion

coefficient varying as the square root ofrigidity [from Ormes, 1983, adapted

from Hillas, 1984].

diffuse throughout the galactic magnetic fields, thereby remaining trapped

for times which are long compared to their straight line travel times across

the galaxy. The low anisotropy led them to propose that the galaxy had a

halo of turbulent plasma and magnetic fields which acted as the containment

volume for cosmic rays. As a result, a steady-state picture arose in which cosmic

rays are produced at a given rate and are lost at a given rate, leaving the galaxy
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Figure 2. A radio continuum map of the edge on Spiral galaxy NGC891 from 
the Westerbork Synthesis Radio Telescope at 21.2 cm (1412 MHz) from Allen, 
Baldwin, and Sancisi, 1978. The contours are shown superposed on a 
photograph from the 200-inch Palomar telescope courtesy of Hale 
Observatories. 
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with a constantor nearlyconstantdensity(andintensity)of energeticpar-
ticlesoverits lifetime.This ledto thephenomenologicalmodelwe refer to
asthe "leaky-box" model:

Q + spallation -- escape + interaction + decay

where the steady injection of particles from sources and the spallation of

heavier nuclei to lighter ones is balanced by the loss of particles from the galaxy

or their loss due to interaction or decay.

a. The "Leaky-Box" Model

As cosmic ray nuclei spiral through interstellar space, they suffer inelastic
collisions with interstellar gas and the "primary" cosmic ray nuclei emitted

by sources break up into lighter "secondary" nuclei. The amount of interstellar

matter traversed by cosmic rays can be estimated by measuring the abundances

of species expected to be rare in the source abundance spectrum. The most

prominent of these are lithium, beryllium, and boron, created primarily by

the fragmentation of carbon and oxygen nuclei, and the nuclei with atomic

numbers 21 to 25, the so-called sub-iron nuclei.

At energies greater than a few GeV/amu, the effects of solar modulation and

of Coulomb interactions in the interstellar medium are negligible and the cross-

sections of the spallation reactions affecting the cosmic ray composition are

nearly energy-independent.

Assuming the interstellar gas consists only of hydrogen, and that the energy

is high enough (greater than - 10 GeV/amu) so ionization losses can be

neglected, the flux fi of a species i (where i is the atomic number) is simply

related to the source term Qi(cm-3s - l) and the mean escape length )_e(gcm-2)
through

f Qi f"
, _ + EtS.. _

kef f mn H i ,,j m

1 1 1 1

where Xeff Xi + _--e + P/_Cri

(1)
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ki are the nuclear destruction lengths for species i due to interactions on in-

terstellar material, r i is the decay lifetime for radioactive species (= oo for
stable nuclei), p is the mean density in the storage column, and 6.. is the

1,J

cross-section for producing nucleus i from nucleus j (ki decreases when i in-

creases, e.g., kHe = 17 g cm -2, kc = 7 g cm -2, XFe = 2.5 g cm-2).

For purely secondary species, such as the light elements lithium, beryllium,

and boron, Qi = 0 and the knowledge of the flux fi and of the nuclear cross-
sections involved is sufficient to determine the mean escape length k; it is

found to decrease as energy, or rigidity, increases: )k e O_ R -°'6-+°'1, as we will
detail later. [Juliusson, Meyer, and Muller, 1972; Smith et al., 1973; Ormes

and Protheroe, 1983; and Koch-Miramond et al., 1983]. (Rigidity is defined

as the momentum per unit charge: R--pc/eZ).

As discrepancies are found between this simple picture and data, additional

parameters are added to the phenomenological models to maintain agreement

and improve understanding. One of the more widely used of these is the nested

leaky-box model, really a two parameter leaky-box. In the original version

of the nested leaky-box model [Cowsik and Wilson, 1973; Meneguzzi, 1973],

cosmic rays are trapped both near their sources and at the boundaries of the

galaxy, with a finite probability of escape from each. The assumption made

by these authors is that k s, the pathlength traversed in the sources, but not
that near the galactic boundary, is rigidity-dependent. The composition and

the spectra of primaries and secondaries are essentially undistinguishable from

those obtained with the energy-dependent leaky-box model, but in this case

the galactic proton spectrum is identical to the injection spectrum, no matter

what form ks(R ) has.

In the leaky-box model, the distribution of pathlengths around the mean is

exponential. In contrast, the nested leaky-box model predicts a deficiency of

short pathlengths. At high energy (E>1.5 GeV/amu), results of the HEAO3-C2

experiment, together with earlier results, can be accounted for with an ex-

ponential distribution of pathlengths [Protheroe, Ormes, and Comstock, 1981;

Koch-Miramond et al., 1983]; however, lower energy data may require a trun-

cation of the path length distribution [Garcia-Munoz et al., 1984].
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b. CosmicRayDiffusion and InterstellarTurbulenceSpectrum

It canbeshownthat theleaky-boxmodelisequivalentto a diffusionmodel
with a halo, providedthe characteristicdimensionof thestoragevolumeis
significantlylargerthanthegalacticdiskwheretheparticlesarepresumably
accelerated.

In mostdiffusionmodels,theelementalcompositionof cosmicraysisdeter-
minedalmostexclusivelyby one parameter,Xe,relatedto the amountof
mattertraversedby the particlesbeforeescape;in general,X is inversely
proportionalto thediffusioncoefficient_:(inone-dimensionalmodels,or in
three-dimensionalmodelswith scalardiffusion)or to thecomponentof the
diffusiontensorperpendicularto thegalacticplane.Theconstantof propor-
tionality containsall the informationon thedistributionof thesourcesand
on theboundariesof the containmentregion.For instance,let usconsider
one-dimensionalmodels,wherethecosmicray sourcesareembeddedin the
gasdiskof uniform densitynoandof heighth; cosmicraysof velocityv dif-
fuseoutwardthrougha halo of heightH >> h [Ginzburg, Khazan, and

Ptuskin, 1980]. The diffusion coefficient _ is assumed (probably incorrectly)

to be constant in space. Then k: is related to the mean escape length X,
calculated with the leaky-box Formula (1) by:

= (noHhvm)/k _. (2)

In terms of diffusion models, variations of the elemental composition of cosmic

rays could be interpreted as implying that either _ or the size of the confine-

ment region varies with particle energy (rigidity).

The biggest uncertainty is what to assume for one size of the halo. Using H = 6

kpc and taking n = 0.5 atoms/cm 3 and Xe = 7 g/cm 2 (the value at about
1 GeV/amu) gives a diffusion coefficient _ = 1028 cm2/sec. Assuming that

the particle transport is diffusive, what is responsible for the interactions which

scatter the particles so effectively? Fermi [1949] has pointed out that moving

inhomogeneities with a scale larger than the particles gyroradius in the magnetic

field reflect particles of large pitch angle. This scattering process can lead to

both diffusion and acceleration of cosmic rays. But the Fermi acceleration
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mechanismhasdifficulties in satisfyingthe energyrequirementsand in ex-
plainingtheobservedabundancesof secondarynuclei.In the last tento fif-

teen years, the work on cosmic ray propagation has mostly concentrated on

another process: resonant scattering of cosmic rays by hydromagnetic waves

whose scales are comparable to their radius of gyration [Wentzel, 1974, and
references therein]. This scattering leads to cosmic ray diffusion along the

magnetic field lines; there is some energy exchange between cosmic rays and

the hydromagnetic waves, but only to higher order in VA/C, where v A =
(B24_-p*) '/2 - is the Alfven velocity, where p* is the density of ionized mat-
ter. The Alfven velocity is in the range of tens of km/sec.

Let us define F(k) as the energy density in hydromagnetic waves per logarithmic

bandwidth d(log k), relative to the ambient magnetic energy density (B2/8_-).

Then, in the framework of the quasi-linear theory (applicable if F << 1), the

diffusion coefficient along field lines of particles of rigidity R and velocity

v is given by:

4 v R/Bc R
(R) - , wherer = --- (3)

3r F(k=re-I ) e Bc

The spectrum of hydromagnetic turbulence F(k) in the interstellar medium
is extremely difficult to determine. Various methods exist that can lead to

estimates or upper limits of the density spectrum of irregularities in the distribu-

tion of thermal electrons. Presently available results have been compiled by
Armstrong, Cordes, and Rickett, [1981]. These authors conclude that the data

are consistent with a power law spectrum of fluctuations, with an index of

- 3.6 _+0.2. If the hydromagnetic wave spectrum had the same slope, this would

be equivalent to:

F(k) _ k -0'6-+0"2. (4)

A spectrum of this type may be the result of a cascade of turbulent energy

in the interstellar medium from long scales to successively shorter scales; the

turbulence at long scales is fed by cloud motions, which in turn are regenerated

by supernova explosions. Kraichnan [1965] has argued that a cascade in an

incompressible, weakly turbulent magnetized fluid, leads to a spectrum F(k)
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otk-°-s.Sucha cascade is energetically feasible in the hot phase (T - 106 K,

n - 10 -_ cm -3) of the interstellar medium. If F ot k -°-s there, then we see

from the Formula (3) that the cosmic ray diffusion coefficient is _ ct vR°'S;

this is very close to the dependence required to account for the observed varia-

tions of the ratio of secondary to primary nuclei with energy. Thus, the pres-

ent observations of elements heavier than He, at energies lower than - 1000

GeV/amu, are well accounted for by a model where cosmic rays are scattered

by resonant hydromagnetic waves related to the general interstellar turbulence

[Cesarsky, 1975, 1980].

All the models discussed in this section assume that the only energy changes
that cosmic rays undergo between production and detection are ionization

losses in the interstellar medium and adiabatic losses during solar modula-

tion. If cosmic rays are accelerated (or decelerated) by some additional

mechanism while propagating, secondary particles get transferred to higher
(lower) energies, and the secondary/primary profile as a function of energy

is altered [e.g., Fransson and Epstein, 1980; Silberberg et al., 1983; and Simon,

Heinrich, and Mathis, 1986]. The fact that the data at rigidities above a few

GV are well explained by a variety of models indicates that new discriminators
must be found to determine whether re-acceleration or deceleration is an im-

portant effect.

3. OBSERVATIONS OF COSMIC RAYS

With this theoretical picture in mind, let us turn to the observations made

at Earth on the cosmic rays themselves.

Calorimetric and emulsion chamber devices have now measured [Grigorov,

et al., 1971; Ryan, Ormes, and Balasubrahmanyan, 1972; and Burnett et al.,

1983] the proton spectrum up to 100 TeV directly, and find that it obeys a

power law dN/dE = kE -_ with ,y = 2.7 _+0.1. There is no evidence of, but

rather poor limits on, possible structure in the form of bumps, wiggles, or

bends in the spectrum. This data is summarized in Figure 3. The proton dif-

ferential spectrum does not appear to suffer any drastic change of slope be-
tween 10 and 10 6 GeV. The significance of these proton observations--the

most abundant species of cosmic ray--is that the lack of structure implies
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Figure 3. Direct measurements of cosmic ray spectra between 10-106 GeV

as a function of total energy per nucleus. Measurements of the primary pro-

ton and hefium spectrum are shown. The total particle spectrum is also shown

[from Webber, 1983].

the mechanism(s) responsible for determining the shape of the proton spec-

trum is (are) continuous over this very large energy range.

In the leaky-box model, the mean confinement time of particles, z, is pro-
portional to Xe. Neglecting nuclear losses, the cosmic ray density f is related

to the source term Q through fi = Q%" Under the plausible assumption that

the source spectrum is a power law, %(R) must also be a power law at least
up to _ 10 6 GV. This is a severe constraint on acceleration and propagation

models as these two processes are presumably responsible for determining this
spectral shape.

Several balloon measurements of cosmic ray composition at energies up to

150 GeV/amu have shown that the ratio of secondary to primary abundances
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decreasesastheenergyincreases[Juliusson, Meyer, and Muller, 1972; Ormes

and Freier, 1978, and references therein]; also, the observed spectra of heavy
primary species are flatter than those of lighter ones. More recently, the French-

Danish spectrometer (C2) on the satellite HEAO-3 has provided extremely

accurate data on the cosmic ray elemental composition from boron to zinc

in the energy range 0.8-25 GeV/amu [Koch-Miramond, 1981].

Using these data, Formula (1) makes it possible to calculate Xe as a function
of R, at least in the context of the leaky-box model. K0ch-Miramond et al.

[1983] have corrected the low energy part of their data for the effects of solar

modulation, assuming a modulation parameter _ = 600 MV, which is ap-

propriate for the time in the solar cycle at which the measurements were made.

They find that, at R>5.5 GV, and escape length ke =22 R-°'6g/cm 2 of pure
hydrogen accounts for the secondaries of C, O, and Fe. Ormes and Protheroe

[1983] obtained a similar result. These analyses are limited by knowledge of
cross-sections rather than by statistical uncertainties.

Many of the cross-sections have now been (or are currently being) measured

and the resulting escape length is shown in Figure 4. Note its decrease with
increasing energy, implying that the higher the energy, the more easily par-

ticles can escape the storage region. We now have confirmation that this

decrease continues beyond a hundred GeV/amu. The data from the HEAO-C

ultraheavy experiment were presented recently [Jones et al., 1985]. This ex-

periment contained a complement of large area detectors designed to iden-

tify trans-iron nuclei. It had excellent statistics and could study nuclei heavier

than calcium. Taking advantage of the relativistic rise of signals in the ioniza-

tion chambers of their instrument, they obtained results on the abundances

of several elements from 10 GeV/amu up to an energy > 100 GeV/amu. Their

results are consistent with those of the French-Danish group in the range (10-25

GeV/amu) where both experiments apply; at higher energies, the HEAO3-C3

data indicate that the power law dependence with energy of the ratios (iron

secondaries/iron) derived by the HEAO3-C2 data extends to about 100

GeV/amu, or rigidities of about 200 GV.

Streitmatter et al. [1985] reported that the iron spectrum itself has a slope

of 2.65 in the energy range beyond 50 GeV/amu as expected in the leaky-box
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Figure 4. The mean escape length as a function of rigidity for a modulation

parameter 4_= 600 MV [from Koch-Miramond et al., 1983].

model. What happens at even higher energies, or rigidities, such as R > 1000

GV? The ratio of secondary to primary element abundances have not yet been

measured at such rigidities. Soon, results from the flight of the University

of Chicago's Spacelab 2 experiment [L'Heureux et al., 1985] should solidify

and extend these results. At still higher energies, in the decades on either side

of 1015 eV or 10 6 GV, the only method for learning about the spectrum and

composition is through ground-based air shower studies. Hillas [1981] reviewed

the situation of these energies a few years ago, and Linsley [1983] reviewed

it more recently. Alternative points of view have been discussed in recent papers
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by Balasubrahmanyan et al. [1987] and Streitmatter et al. [1985]. The situa-

tion is confusing. Some experiments indicate a gradual enrichment in the abun-

dances of heavy nuclei, others do not. Some experiments indicate a harden-
ing in the all particle spectrum above 1014 eV, others do not. New direct

measurements in this energy range are surely needed.

a. Radioactive Secondary Nuclei

Measurements of the abundances of unstable secondary nuclei, such as l°Be

(with a mean lifetime for decay at rest of rd = 2.2 × 106 yr), 26Al(rd ---- 0.85
X 10 6 yr), and 35C1 (r d = 0.45 x 106 yr), can bring some information on

the mean age of cosmic rays, and/or help to determine the mean density in

the storage volume, thus characterizing the different models.

In the framework of the leaky-box model, such measurements, combined with

the determination of )_efrom the elemental composition, permit us in prin-
ciple to estimate the mean escape time of cosmic rays and hence the mean
gas density in the box. However, because most measurements are done at low

energies, solar modulation again complicates the interpretation of the data.

Assuming that X is energy independent, and using their own estimates of
solar modulation effects, Wiedenbeck and Greiner [1980] deduce from their

satellite data on l°Be at 60-185 MeV/amu a confinement time of 8.4 (+ 4.0,

-2.4) Myr, and a mean density n H = 0.33 (+ 0.13, -0.11) cm -3. The mean
age from 26A1 is 9 (+ 20, --6.5) Myr [Wiedenbeck, 1983], and a6C1 leads to

a lower limit to this age of 1 Myr [Wiedenbeck, 1985]. Since, in the solar

neighborhood, the interstellar density (averaged over - 1 kpc in the disk)

is estimated at 1-2 cm -3, these results are generally interpreted as imply-
ing that galactic cosmic rays circulate in a low density halo which is at least

3 times thicker than the disk. However, they could also indicate that cosmic

rays are preferentially trapped in low density regions of the disk between the
clouds.

In diffusion models with a halo, radioactive isotopes formed in the disk often

decay while passing through the halo. In that case, the average confinement

time of particles in the galaxy may be much larger than the observed "mean
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age" [Ginzburg,Khazan,and Ptuskin, 1980].For instance,in the one-
dimensionalmodeldescribedearlier,theabundancesof secondaryradioac-
tive elementsof decayperiod z d are determined by two combinations of

parameters: (nj" d) and (H/h). In principle, observations of the energy
dependence of the abundance of isotopes of mean life at rest of - 10 6 years,

at energies > 1 GeV/amu, should help constrain these parameters [e.g., Cesar-

sky et al., 1981].

b. Electron Spectrum

According to several recent measurements, the electron spectrum is parallel

to the proton spectrum in the energy range 2-10 GeV; in this range, the elec-
tron flux amounts to - 1% of the proton flux. At higher energies > 50 GeV,

the spectrum steepens, but electrons are still present at least up to 2000 GeV

[Tang, 1984; Nishimura et al., 1980; Prince, 1979 and references therein].

A steepening of the high energy spectrum is expected, since the lifetime of
a 30 GeV electron against radiation losses in the interstellar medium is - 107

years.

The observed electron spectrum does not impose strong constraints on the

models proposed to explain the cosmic ray composition. It is important to
remember that the equations describing the behavior and the energy changes

of high energy electrons diffusing through the interstellar medium cannot be

approximated by results obtained using the leaky-box model. In diffusion
models, the distribution of the sources plays an important or even a predomi-

nant role. In addition, the injection spectrum of electrons is not known and

can generally be adjusted to ensure that a given model fits the data.

4. ORIGIN AND PROPAGATION OF DIFFERENT COSMIC RAY

SPECIES

a. Source Spectral Index, Composition and Energetics

After so many years of active research, there is not yet a firm answer to the
question: where do cosmic rays come from? The main problem is, of course,
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that the arrival directionbrings little or no information on the source.
Astrophysicists are then left with a less direct set of clues: spectrum, com-
position, energetics, anisotropy.

Observations must first be corrected for propagation effects; this is usually

done in the framework of the galactic leaky-box model. Once _'e is derived,
at various rigidities, by applying Formula (1) (or its equivalent, including ioniza-

tion losses, at energies < a few GeV/amu) to secondary species, it becomes

possible to derive the source abundances Qi by applying the same formula
to primary species. In this way, Engelmann et al. [1985] have derived source

spectra of primary species with Z > 5 from the HEAO3-C2 data. Assuming

H and He nuclei behave like the other species, the observed spectrum must

be divided by X(R) in order to correct for propagation. The source spectra
thus obtained are displayed in Figure 5. Data from other experiments are also

represented. In the range R__2 - 20 GV, Engelmann et al. [1985] found that

the spectra are generally steeper than previously thought. This leads to a rather

surprising conclusion that the source spectra of the heavy nuclei are steeper

(index 2.4) than those of the more abundant protons (index 2.1). Unfor-

tunately, this is based on an experiment which only covers a narrow band

of energy--the lower end of which may be complicated by solar modulation

effects--and the experiment itself may be subject to systematic effects at the

high energy end. Therefore, the results need confirmation. However, they are

suggestive that there may be more than one "source" or mechanism operating

to produce the locally observed cosmic rays.

The implications of this result have not yet been studied in full detail. Essen-

tially all of the published work on cosmic ray origin continues to assume that

protons and alpha particles originate and propagate as the other species, and

that the )_e derived from studies of heavy nuclei can be used to estimate the
energetics. For the local Kpc 2 in the galactic plane, cosmic ray energetics is

derived using the fact that, on the average, cosmic rays escape at a rate

c)_ ./)_, where _, . is the column density of matter across the galactic disk.
_.gm e gm

The energy requirement to maintain the cosmic ray pool is then - 1038
erg/Kpc 2 sec. (Alternative derivations, using the cosmic ray "age" derived

from secondary radioactive isotopes, yield similar results). If we retain the

same leaky-box model for all species, the results of Engelmann et al. [1985]
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Figure 5. Observed spectra compared with various source spectra. Proton and

possibly helium are consistent with source spectra with indices 2.1. Heavier

nuclei, on the other hand, may require steeper source spectra. [This figure

is from Engelmann et al., 1985. Original references can be found therein.]

imply that the local cosmic rays consist of two components: a flat compo-
nent, with source index - 2.1, and a steep component, with source index

2.4. At rigidities below - 100 GV, most of the nuclei heavier than He

would belong to the steep component, while at all energies the flat compo-
nent would be dominant in the proton flux.

The leaky-box formalism, as we have seen, accounts well for the observa-

tions relating to the steep component which is rich in heavy nuclei. But there

is no compelling reason to believe that the flat component, which is relatively
proton-rich, has the same history. The steep component may be just local,

and transient; the determinations of Xe and of age from radioactive isotopes
only relate to this component. But the proton-rich component is the only one

that counts when discussing energetics, constancy in time of the cosmic ray
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flux, and isotropy.Theabundancesof secondaryelementswith Z )>2, at
energies<(100GeV,maysimplynot be relevant when studying it!

Some light can be focused on this problem by refining the spectra of hydrogen

and helium, and studying carefully their secondaries 3He, D, and
antiprotons.

b. Antiprotons

The general picture of cosmic ray storage and propagation in the galactic

magnetic fields described above has been based largely on the abundances

of heavy nuclei. However, recent observation of the antiprotons has thrown

this unified picture into disarray.

Secondary antiprotons are generated in the inelastic collisions between high

energy nuclear cosmic rays and interstellar medium particles. The flux of galac-

tic antiprotons has been measured recently by Golden et al. [1979 and 1984],

by Bogomolov et al. [1979] and by Buffington, Schindler, and Pennypacker

[1981] at various energies (Figure 6). The data of Golden et al. seem to be
on solid ground and to be confirmed by the lower statistics observation of

Bogomolov et al. The low energy point of Buffington et al. is more startling

and unfortunately on less stable ground experimentally [Stephens, 1981].

Buffington, Schindler, and Pennypacker [1981] measured the flux of cosmic

ray antiprotons in the range 130-320 MeV, which corresponds after demodula-

tion to a mean interstellar energy of - 800 MeV. The data are compared

with the calculation based on the leaky-box model where antiprotons are as-
sumed to be secondaries produced by collisions of protons and heavier nuclei

with interstellar matter. The Buffington et al. point falls well below the

kinematic cutoff but indicates that there is a high flux of low energy antiprotons

present [Buffington and Schindler, 1981]. Even ignoring this data, the mean
target thickness to produce the intensity observed by Golden et al. must be

three or four times that of the heavier cosmic rays. This is discussed at length

in the paper by Balasubrahmanyan, Ormes, and Streitmatter (this volume)

where the various models which have been advanced as an explanation have

been presented. Combined with the finding that the source spectra of heavier
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Figure 6. The observed antiproton to proton flux ratios [Golden et al., 1984,

vertical bars; Bogomolov et al., 1979, open circle; and Buffington, Schindler,

and Pennypacker et al., 1981, solid circle] compared with the antiprotons pro-

duced by a shell of matter surrounding a strong shock acceleration region

[from Lagage and Cesarsky, 19851.

nuclei may be different from protons and helium, these data may indicate

that the origin of the protons and/or their history after acceleration is dif-

ferent from that of heavier nuclei.

It may be that this unexpectedly high abundance of antiprotons is an addi-

tional indication that the history of all cosmic rays does not follow from the

abundances of secondary nuclei alone. Golden et. al. [1984], showed that within
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the framework of an energy independent leaky-box model (source spectral

index = 2.6), 21g/cm 2 of material is required. Alternately, Lagage and

Cesarsky [1985] showed that the high energy observations of antiprotons could

be accounted for if all cosmic ray protons had a source spectrum of index
2.1 and traversed 7g/cm 2 in their sources before escaping into the galaxy, or

if a fraction x of the cosmic rays traversed a slab of width X at the source,

with xX = 7g/cm 2 [Lagage and Cesarsky, 1985]. (This 7g/cm 2 is energy-

independent and should not be confused with the 7g/cm 2 traversed by heavy

nuclei at 1 GeV/nucleon.) As noted by these authors, a problem with this
"thick-source" model is that, in addition to the antiprotons, neutral pions

are produced, which decay into gamma rays. The total galactic gamma ray

flux predicted by this model exceeds that observed by COS-B by a factor - 3.

If protons have a different history from heavier nuclei, what about helium

nuclei? There are data from a balloon experiment indicating that at high energy

the helium nuclei may have traversed a target intermediate between that of

protons (21g/cm 2) and heavier nuclei (7g/cm2). This result [Jordan and

Meyer, 1984] is sensitive to the assumed shape of the helium spectrum and
remains controversial. Further data on the 3He and deuterium abundances

at high energy are needed to resolve this issue: is the matter traversed a con-

tinuous function of atomic number, or is there a discrete difference between

protons and all heavier nuclei? If the latter, to which camp do the helium

abundances belong?

c. Anisotropy

We have been taking the point of view that abundances of the elements are

indicative of cosmic ray propagation. An alternative point of view has been

taken by Hillas [1984], who uses the anisotropy as the main indicator on the

propagation. This can only be done at energies above a few 100 GeV, since
at lower energies the trajectories of the cosmic rays are perturbed by the solar

wind. Hillas notes that, at energies > 103 GeV, the amplitude of the first har-

monic of the cosmic ray anisotropy is, very roughly proportional to the prod-

uct (cosmic ray differential flux. E 2-47) (reference Figure 1). Now, if _ is the

confinement time, the anisotropy is expected to be - t/r, where t is the time
for escape in a straight line. Hillas proposes a simple interpretation of Figure

1: that the source spectrum is a power law of index 2.47 over the whole energy
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range,andthat all the featuresin the spectrumaredueto propagationef-
fects.At 103GeV,theamplitudeof intensityvariationis of - 0.06%.If the
boundaryof thecosmicrayconfinementregionis at y kpcs,re(103GeV) __
5y Myr. Since the spectrum of protons does not appear to change significantly

between 5 and 10 3 GeV (see Figure 3), the mean age at 5 GeV would be -

(1000/5)2"7-2"47 "/'e (103 GeV)__17 Myr (where 2.7 is the observed index of the
proton spectrum at these energies). This is comparable to the age derived from

radioactive secondary isotopes, so the global energetics of galactic cosmic rays

is not very much changed in this picture.

d. Cosmic Ray Sources

We summarize by listing the requirements on cosmic ray sources.

i) Energetics: the order of magnitude of the power required to replenish
cosmic rays "within" a cylinder of base 1 Kpc 2 within the galactic disk,

of height 1 to - several Kpc, is - 1038 ergs/sec.

ii) Source spectrum: most probably a power law, at least in the range from
a few GeV/amu to - 10 6 GeV/amu, perhaps up to 10a or even 10 9 GeV!

Spectral index: 2.17 2.4? or 2.7? Or somewhere in this range.

iii) Source composition: well determined now, for most elements, in the

GeV/amu range. May give clues to the origin of the cosmic radiation or

at least, as we have seen, to a component of it.

Within a radius of 3 kpc from the Sun, the average energy input from super-

novae is estimated to be - 10 39 erg s -1 kpc-2; supernovae are widely be-

lie_,ed to be the main accelerators of cosmic rays. Stellar winds expend -

103a erg s-1 kpc-2 in the interstellar medium, and they may also contribute

to cosmic ray acceleration. [Cesarsky and Montmerle, 1983]. Composition

arguments have often been invoked to eliminate pulsars as a candidate source,

but the debate on the role of pulsars in cosmic ray acceleration is not closed.
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5. ACCELERATION MECHANISM

We require(probably)an accelerationmechanismcapableof producinga
powerlaw spectrum.

a. FermiAcceleration

Thebasicconceptof accelerationof particlesviaencounterswith "moving
magneticwalls" wasintroducedby Fermiasearlyas1949.Fastparticlesof
velocityv that encountermagneticwallsareseparatedby a meandistance
moving at a velocityV. The walls reflect the particlesand enhancetheir
energies.

dE 2V 2
- E = oeE (4)

dt cX

This process has enjoyed an enduring popularity among astrophysicists because

it predicts that the energy spectrum of the colliding particles should be a power
1 ), where r is the mean time spent by a par-law: N(E) a E -v, 7 = (I- _---_ e

ticle in the accelerating region.

b. Particle Acceleration by Parallel Shocks in a Scattering Medium

This attractive mechanism must have been in the air several years ago, as it

has been discovered simultaneously by astrophysicists all over the world [Krim-

sky, 1977; Axford, Leer, and Skadron, 1977; Blandford and Ostriker, 1978;

and Bell, 1978]. This is somewhat surprising, as the tools used in the various
derivations, and the motivation, have been around for a much longer time.

Let us consider a strong shock, propagating at a velocity V in the direction

of the magnetic field lines. We assume that V = vA, where v k is the Alfv6n

velocity. In the shock frame, the gas is flowing in at a velocity u 1 = V. At
the shock, the gas is compressed by a factor r, so that the velocity downstream,

relative to the shock, is u 2 = V/r.

The presence of scattering centers of cosmic rays is postulated, so that cosmic

rays diffuse on both sides of the shock; the diffusion coefficient is, in general,
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a functionof space,particlemomentum,andtime. In anycase,thescatter-
ingcentersactascosmicraytraps,ensuringthattheparticleswill bereflected
backandforth acrosstheshockalargenumberof times.Everypassagethrough
theshockisequivalentto runninghead-onintoa "magneticwall" of velocity
V = uI - u2 = V(1 - I/r); averagedoverall incidenceangles,thereis a
meanenergygainper traversalof the shockgivenby

AE = (4/3) (V/c) (1-1/r)E (5)

Taking proper account of the probability of particles escaping the system leads

to the time-independent spectrum:

N(E) c_ E -x, # = (2+ r)/(r-1) (6)

For strong adiabatic shocks, r = 4 and u = 2. Weaker shocks generate steeper

spectra.

The remarkable property of this mechanism is that, in the time-independent
limit, the slope of the power law it generates depends only on the shock

strength, and not at all on the diffusion coefficient (assumed "small enough")

or the dimensions of the scattering region (assumed "large enough").

The study of shock acceleration of cosmic rays is now an active area of

research. A fundamental review of the subject has been written by Drury

[1983]. A detailed application of the mechanism to the acceleration of galac-

tic cosmic rays is given in Blandford and Ostriker [1980]; see also Axford

[19811.

Many aspects of this mechanism have been studied since, and it is impossible

to review this rich field here. Let us just emphasize some of the main prob-
lem areas:

i) This problem has always been treated in the framework of the quasi-

linear theory, which assumes that the turbulent energy in the hydrodynamic

waves acting as particle scatterers is much less than the energy density of

the magnetic field. However, the anisotropies induced by supernova shocks

in the pre-existing population of galactic cosmic rays are sufficient to render
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thesewavesextremelyunstable;thewaveamplitudespredicted by the qausi-

linear theory are too high to be fully consistent with this theory.

ii) If cosmic rays extract so much energy from the shock, their pressure

can become the dominant one. For instance, this will inevitably occur if

cosmic rays are getting accelerated by a strong shock, to a spectrum E -2,

for a sufficiently long time. Even if the shock is not so strong (r < 4), the

cosmic ray pressure can become dominant if the rate of injection of par-

ticles in the system is sufficiently rapid. The expectation is that, eventually,

the cosmic rays broaden the shock, making it a less efficient particle ac-

celerator. If the shock becomes wider than the particle mean free path )_,

all particles of a given energy obtain the same amount of adiabatic accelera-

tion as they cross the shock region. Ellison and Eichler [1985] have studied

these problems and find that this mechanism still produces a universal spec-

trum which is very similar to a power law of index - 2. The efficiency

of cosmic ray acceleration by this mechanism is very high, of order 25%.

iii) An important problem of the theories of shock wave acceleration is
that the maximum energy that can be attained is limited, either by the lifetime

of the shock itself or by its curvature radius. This problem was treated in

detail by Lagage and Cesarsky [1983, 1985]. In the case of supernova shocks,

the limiting factor is the shock lifetime; under most optimistic assumptions,

the maximum energy Em=, for particles of charge Z, is only - 105
Z(B/10 -6 gauss) GeV, where B is the strength of the magnetic field in the

most diffuse phase of the interstellar medium.

This result holds whether the shock is linear or cosmic ray dominated. Tak-

ing into account the nonlinearity introduced by the fact that, upstream, the

Alfven waves are generated by the cosmic rays, so that the diffusion coeffi-

cient is space- and time-dependent, Em_x is limited to values which may be
as low as 2000 Z (B/10 -6 gauss) GeV. Invoking supernova shocks pro-

pagating in the galactic halo does not alleviate the problem [Lagage and Cesar-

sky, 1987].

The possible acceleration of high energy cosmic rays by stellar wind terminal

shocks is still controversial. If shock acceleration is operating there over long

times, stellar winds have the advantage that the shock is a standing shock,
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whichremainsstrongfor longertimesthansupernovashocks.Themaximum
energyis thendeterminedby the shockcurvature,andthe strengthof the
magneticfield:Emax - 5.105Z(B/10-SG)(D/5 pc)GeV,whereD is theshock
radius.In a recentpaperKazanasandEllison [1986]attemptto modelthe
binaryX-raysourceCygnusX-3,whichmaybeemittingultrahighenergygam-
marays[SamorskiandStamm,1983;Lloyd-Evansetal., 1983;Watson,1985
andreferencestherein],andthusbea sourceof cosmicraysof energyup to
107-108GeV.Assumingthe presenceof a collisionless,sphericalaccretion
shockaroundthe compactobject in CygnusX-3, and assumingthat the
magneticfield strengthis in equipartitionwith the accretionflow, Kazanas
andEllisonarguethat protonsof energyashighas7.106GeVmaybe ac-
celeratedby the shockin this system.

Whiletheseproblemsareseriousandarebeingworkedtheoretically,it isclear
thatshocksin theinterstellarmediumdoaccelerateparticles.Shockaccelera-
tion remainsthemostpromisingmechanismfor producingthepowerlawspec-
tra observedin thegalacticcosmicrays,at leastin theenergyrangefrom 1
to 106GeV.

6. SUMMARY

Thestudyof systematictrendsin elementalabundancesis importantfor un-
folding thenuclearand/or atomiceffectsthat shouldgoverntheshapingof
sourceabundancesandinconstrainingtheparametersof cosmicrayaccelera-
tion models[for reviewsseeCasse,1984;Simpson,1983].Theseissueswere
discussedin therapporteurpaperby J. P. Meyer[1985].Theisotopiccom-
positionand elementalabundancesof trans-ironnucleihavemuchto con-
tributeaboutthenucleosynthesis,sites,andtimescalesfor theoriginof cosmic
rays. [SeeBinnset al., 1987,this volume.]

In principle,wecanalsolearnmuchabout the large-scaledistributionsof
cosmicraysin thegalaxyfrom all-skygammaraysurveyssuchasCOS-B and

SAS-2. Gamma ray intensities are proportional to the line integral along the

line of sight of the product of the cosmic ray flux and the matter density.
However, because of the uncertainties in the matter distribution which come

from the inability to measure the abundance of molecular hydrogen, the results
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aresomewhatcontroversial.A debateexistsasto whetherona scaleof 0.5
to 1kpctherearemorecosmicrayswherethereis morematter. [See paper

by Fichtel, 1987, this volume.] Questions exist about whether the cosmic ray

intensity falls off in the outer galaxy or remains about the same. Because
around 100 MeV there are almost as many gamma rays from the

bremsstrahlung process as from _r° decay, resolution of these issues will await

the improved energetic gamma ray experiment telescope (EGRET) on GRO.

Very high energy ground-based cosmic ray telescopes will help in understand-

ing the role that sources like Cygnus X-3 play in accelerating cosmic rays.

High resolution radio observations of external galaxies [e.g., Duric et al., 1986]

may provide clues about the role of shocks and spiral density waves in parti-
cle acceleration.

As we have seen, the leaky-box model accounts for a surprising amount of

the data on heavy nuclei. However, a growing body of data indicates that

this simple picture may have to be abandoned in favor of more complex models

which contain additional parameters. For example, an energy-dependent

modification of the exponential path length distribution, natural to the sim-

ple leaky-box model, has long been invoked to explain differences between

the escape length derived from sub-iron secondaries and the Li, Be, and B

components [Guzik et al., 1985]. The shape of the high energy electron spec-

trum led Tang and Muller [1983] to favor the nested leaky-box model. The

spectral differences at the source and the antiproton observations lead us to

postulate a separate origin for protons and heavier nuclei. Acceleration by

weak shocks may lead to a reinterpretation of the observed element ratios

in terms of material traversed. Observations of anisotropy, the consistency

of the flux in time, and the gamma ray distribution tell us primarily about

properties of protons, and nothing about those same quantities for heavier

nuclei. Age measurements have been made for low energy nuclei and possibly

for electrons, but their interpretations are model-dependent. In short, the obser-

vations still leave us in some confusion and greatly in need of further
observations.

Future experiments on the Spacelab and Space Station will hopefully be made

of the spectra of individual nuclei at high energy. Antiprotons must be studied

in the background free environment above the atmosphere with much higher
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reliabilityandprecision(theworld's observed antiprotons number of order

60) to obtain spectral information.

Isotopic composition needs to be measured over more elements and over an

extended energy range. Ultraheavy abundances beyond tin in the periodic table
must be measured with single element resolution and the abundances of ac-

tinides determined.

The future for these observations includes the Heavy Nuclei Collector cur-

rently being constructed for an exposure on NASA's Long Duration Exposure

Facility and the Particle Astrophysics Superconducting Magnet Facility (Astro-

mag) being planned for NASA's Space Station. The Gamma Ray Observatory
is scheduled for launch in 1990. If all these plans are brought to fruition, the

next two decades should see tremendous progress made in unraveling the pro-

blem of the origin of cosmic rays.
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