Performance and Loads Data from a Hover Test of a Full-Scale Advanced Technology XV-15 Rotor

Fort F. Felker, Larry A. Young and David B. Signor

```
(AASA-TM-86854) EERFCBMANCE AND LOADS DATA NE7-244Cy
fecm a hoveb test cf a full-scale acvanced
TECHNCLCGY XV-1E FOTCa (NASA) 35Y P
```


Performance and Loads Data from a Hover Test of a Full-Scale Advanced Technology XV-15 Rotor

Fort F Felker,
Larry A. Young,
David B. Signor, Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

PERFORMANCE AND LOADS DATA FROM A HOVER TEST OF A FULL-SCALE ADVANCED TECHNOLOGY XV-15 ROTOR

Fort F. Felker, Larry A. Young, and David B. Signor
Ames Research Center

SUMMARY

A hover test of a full-scale, composite, advanced technology XV-15 rotor was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center The primary objective of the test was to obtain accurate measurements of the hover performance of this rotor system. Data were acquired for rotor tip Mach numbers ranging from 0.35 to 0.73 . The rotor was tested with several alternate blade root and blade tip configurations. This report presents data on rotor performance, rotor-wake downwash velocities, and rotor system loads.

NOMENCLATURE

A	rotor disc area, $\pi R^{2}, \mathrm{~m}^{2}$
a	speed of sound, m / s
C_{P}	rotor power coefficient, $C_{P}=C_{Q}$
$C_{P, \text { corrected }}$	rotor power coefficient corrected for wind, $C_{P, \text { corrected }}=C_{Q, \text { corrected }}$
$C_{P M}$	rotor pitching moment coefficient, pitching moment $/ \rho A R V_{t i p}^{2}$
C_{Q}	rotor torque coefficient, torque $/ \rho A R V_{t i p}^{2}$
$C_{Q, \text { corrected }}$	rotor torque coefficient corrected for wind, See text for equations
C_{T}	rotor thrust coefficient, thrust $/ \rho A V_{t i p}^{2}$
C_{Y}	rotor side force coefficient, side force $/ \rho A V_{t i p}^{2}$
$C_{Y M}$	rotor yawing moment coefficient, yawing moment $/ \rho A R V_{t i p}^{2}$
C_{Z}	rotor normal force coefficient, normal force $/ \rho A V_{t i p}^{2}$
$F M$	rotor figure of merit, $C_{T}^{3 / 2} / C_{Q} \sqrt{2}$
$F M_{c o r r e c t e d ~}$	rotor figure of merit corrected for wind, $C_{T}^{3 / 2} / C_{Q, c o r r e c t e d} \sqrt{\text { r }}$
$M_{t i p}$	rotor tip Mach number, $V_{t i p} / a$

 dynamic pressure, \(\rho V^{2} / 2, \mathrm{~N} / \mathrm{m}^{2}\)
 rotor radius, \(m\)
 blade radial station, \(m\)
 ideal induced hover velocity, \(V_{t i p} \sqrt{C_{T} / 2}, \mathrm{~m} / \mathrm{s}\)
 ideal induced velocity, \(\mathrm{m} / \mathrm{s}\)
 rotor tip speed, \(\Omega R, \mathrm{~m} / \mathrm{s}\)
 wind speed, \(\mathrm{m} / \mathrm{s}\)
 ideal induced hover velocity ratio, \(V_{h} / V_{t i p}\)
 ideal induced velocity ratio, \(V_{i} / V_{t i p}\)
 lateral wind velocity ratio, \(-V_{w} \sin \psi_{w} / V_{t i p}\)
 axial wind velocity ratio, \(V_{w} \cos \psi_{w} / V_{t i p}\)
 air density, \(\mathrm{kg} / \mathrm{m}^{3}\)
 rotor solidity ratio
 wind direction relative to rotor axis, deg
 rotor rotation speed, radians/sec

INTRODUCTION

Hovering flight is a critical operating condition for VTOL aircraft, since hover performance usually determines the maximum payload of the aircraft. The payload is typically 30% of the gross weight of the aircraft, and small changes in the hover performance can have a large effect on the size of the payload. Hover performance is particularly important for tilt-rotors, since their basic rotor design (disc loading, solidity ratio, etc.) is a compromise between the requirements of hovering and cruise flight. Analytical predictions of tilt-rotor hover performance have not been sufficiently validated to provide a high level of confidence in the predicted performance.

An experimental investigation was recently conducted at Ames Research Center to measure accurately the hover performance of three tilting prop-rotors (refs. 1-2). The rotors tested in this investigation were: the original metal blades for the XV-15 Tilt Rotor Research Aircraft; a set of composite, Advanced Technology Blades (ATB) for the XV-15; and a 0.658 -scale model of the proposed V-22A Osprey (JVX) rotor. All rotors had three blades, and a diameter of 7.62 m .

This report presents the data obtained with the XV-15 Advanced Technology Blades. The ATB rotor was tested with seyeral alternate blade-root and blade-tip configurations. These alternate configurations included extended trailing edge blade-root cuffs, blade-root cuffs off, swept-tapered blade tips, and square blade tips. Data are presented on rotor aerodynamic forces and moments, rotor wake downwash velocities, and rotor loads.

The authors gratefully acknowledge the efforts of the many people at Ames Research Center, Boeing Vertol Co., and Bell Helicopter, Textron, who made this test possible. Thanks also to Robert Faye, for his assistance in the preparation of this report.

DESCRIPTION OF TEST APPARATUS

Outdoor Aerodynamic Research Facility

The test was conducted at the Ames Outdoor Aerodynamic Research Facility, which consists of a 30 m square concrete pad, a below-ground-level frame for attaching model support struts, and an underground control room with a complete data acquisition system. The facility is sufficiently remote from other buildings so that there is no aerodynamic interference (except with the ground), and accurate near- and far-field acoustic data can be obtained. An aerial photograph of the Outdoor Aerodynamic Research Facility with the Prop Test Rig installed is shown in figure 1.

Prop Test Rig

The Ames Prop Test Rig was used to power the rotors with a maximum power output of 1864 kW at 625 rotor rpm. A three-view drawing of the Prop Test Rig with the ATB rotor system installed is shown in figure 2, and a photograph of the Prop Test Rig with the ATB rotor installed is shown in figure 3. The rotor axis of rotation was horizontal to minimize interference effects between the ground and the rotor. The rotor shaft was 6.71 m above the ground (1.76 rotor radii). Note that the Prop Test Rig and its supporting structure provided very little blockage of the rotor wake. This minimized the influence of the test apparatus on the rotor wake, and ensured that high-quality isolatedrotor performance data could be acquired.

Balance Systems

A new rotor balance system was designed and built for this test program. The general arrangement of the balance system is shown in figure 4. This balance system was designed to be very sensitive to rotor thrust and torque, with minimal interactions caused by other forces, moments, or thermal effects. An instrumented drive shaft was installed inside the rotor balance, between the gearbox and the rotor mast, to accurately measure shaft torque. This design provided two load paths for thrust: through the rotor balance, and through the instrumented drive shaft. The drive shaft was not as stiff in the axial direction as the rotor balance, and only about 3% of the rotor thrust was carried by the shaft. The
shaft was instrumented to measure this axial load. The gages on the balance system were thermally-compensated to minimize errors which were due to thermal effects. (The rotor balance and instrumented drive shaft were designed by J. Mayer and H. Silcox of the Boeing Vertol Co.)

Careful laboratory calibrations were performed on the balance system. The rotor thrust balance was accurate to within 50 N up to $50,000 \mathrm{~N}(0.1 \%$ error relative to fullrange), with no measureable interactions caused by other forces or moments. The shaft axial force gage was also accurate to within 50 N , and the data was corrected for shaft torque interactions. The instrumented drive shaft was accurate to within $70 \mathrm{~N}-\mathrm{m}$ of torque, which is less than 0.3% of the maximum capacity of the shaft, $28,500 \mathrm{~N}-\mathrm{m}$. The shaft torque data were corrected for interactions caused by shaft axial load. Because there were two bearings between the instrumented drive shaft and the rotor, the rotor torque was obtained by subtracting the bearing torque (measured by the rotor balance) from the shaft torque.

A set of load cells were installed between the Prop Test Rig and its support system to provide redundant thrust and torque measurements (see fig. 2) These loads cells were not as accurate as the primary balance system, and were used as a backup. The measurements of the two balance systems were compared throughout the test to ensure that both systems were working properly at all times.

Check loads were performed periodically during the test to assess installed balance system accuracy under simultaneous thrust and torque loading, and to check for adverse effects caused by operational thermal loads. These check loadings demonstrated that the installed balance system was accurate to within 200 N of thrust $(0.3 \%$ of maximum thrust of test) and $70 \mathrm{~N}-\mathrm{m}$ of torque (0.3% of maximum torque of test)

Rotor System

The rotor was tested on a Bell Helicopter Model 300 rotor mast and gimballed hub (similar to the mast and hub of the XV-15 aircraft) The ATB rotor system had three blades with a diameter of 7.62 m . A summary of the rotor system characteristics is provided in table 1. The rotor blades were designed to replace the original metal XV-15 blades. The rotor system had a solidity ratio of 0.103 . The twist distribution, thickness distribution, chord distribution, and airfoils used on this rotor system are shown in figures $5,6,7$, and 8 , respectively. Further information on the characteristics of this rotor system is provided in references 3-4.

Alternate Rotor Configurations

The planforms of the alternate rotor configurations are shown in figure 9. The twist distribution, thickness distribution, and airfoil distribution of the rotor blade was the same
for all configurations (except for root cuffs off). When the root cuffs were removed, the blade structure was exposed. This structure had a rectangular shape, and the lift forces that it produced were small. The baseline cuff configuration had a blunt trailing edge (the airfoil was truncated at 80% chord). The truncated airfoil was required for adequate rotor/airframe clearance on the XV-15 aircraft. The extended trailing edge cuff provided a more conventional airfoil shape with a sharp trailing edge. The cuffs extended from the spinner $(r / R=0.09)$ to $r / R=0.30$.

Three different tip configurations were tested. These were: the baseline tapered, unswept tips; swept-tapered tips; and square tips. All tips extended over the outer 10% of the blade. The swept-tapered tip had a taper ratio of 0.66 , and the baseline tip had a taper ratio of 0.36 . The swept-tapered tip had a quarter-chord sweep angle of 23° The square tip had a taper ratio of 1.0 and no sweep. Figure 10 is a photograph of the rotor with swept-tapered tips and figure 11 is a photograph of the rotor with square tips. The extended trailing edge cuffs were used during all testing with the alternate tips.

Wake Rake

The distribution of total pressure and static pressure in the rotor wake was measured with a wake rake. The location of the rake relative to the rotor was chosen to be representative of the location of the wing of a typical tilt-rotor aircraft. The wake rake is visible behind the rotor in figure 3. The dynamic pressure and velocity distributions in the rotor wake were computed from the total and static pressure data. Two types of pressure probes were used on the wake rake: pitot-static probes, and 5 -port directional probes. There were 13 pitot-static probes and 9 directional probes. The static pressure data obtained with the pitot-static probes were more accurate than those obtained with the directional probes. Therefore, the dynamic pressures and velocities computed from data obtained with the pitot-static probes are more accurate than those computed from the directional probes. Data obtained with both sets of probes are presented in this report.

TEST CONDITIONS

Data were obtained with rotor tip Mach numbers ranging from 0.35 to 0.73 . Cyclic pitch was used to trim the rotor to gimbal angles of 0.1° or less for all data points. Most of the data were obtained with winds of $1.5 \mathrm{~m} / \mathrm{s}$ or less, with a maximum wind speed of $4.5 \mathrm{~m} / \mathrm{s}$. The air density was computed from measured values of temperature, pressure, and humidity. A phototach was driven at the rotor speed and generated 1,024 pulses per revolution. The rotor rotation speed was computed from this signal.

WIND CORRECTIONS

Even very light winds can have significant effects on rotor hover performance (ref. 5) To minimize errors in the performance data caused by winds, all performance testing was conducted in winds of $1.5 \mathrm{~m} / \mathrm{s}$ or less. Also, the measured rotor torque was corrected for the effect of the wind using a correction procedure based on momentum theory. (The correction procedure was developed by W Johnson of Ames Research Center and M. A. McVeigh of Boeing Vertol.) The wind speed and direction were measured by a sensor located on the inflow side of the rotor plane approximately 16 rotor radii from the rotor hub at the same height as the rotor axis, and at an angle of 45° from the rotor axis. The location of the wind sensor relative to the rotor, and the sign conventions for the wind speed and direction are shown in figure 12. The following equations describe the wind correction procedure that was used:

$$
\begin{aligned}
C_{Q, \text { corrected }}= & C_{Q}+\left(\mu_{x} C_{T}+\mu_{y} C_{Y}\right)-K\left(\lambda_{i}-\lambda_{h}\right) C_{T} \\
& \lambda_{\imath}^{2}\left(\mu_{y}^{2}+\left(\lambda_{i}-\mu_{x}\right)^{2}\right)=\lambda_{h}^{4}
\end{aligned}
$$

Note that μ_{y} is positive in the same direction as C_{Y}, and μ_{x} is positive in the same direction as C_{T}. K is the ratio of actual induced power to ideal induced power a value of 116 was used here.

The magnitude of the C_{Q} correction was typically less than 3% for winds of less than $1.5 \mathrm{~m} / \mathrm{s}$. The correction procedure reduces scatter in the performance data caused by wind variations between data points, and reduces any bias in the performance data caused by consistent prevailing winds throughout the test. Rotor figure of merit as a function of thrust coefficient for the ATB rotor system, with and without wind corrections, is shown in figure 13. Data obtained with winds of $0.5 \mathrm{~m} / \mathrm{s}$ or less are presented in figure $13(\mathrm{a})$; data obtained with winds of $1.5 \mathrm{~m} / \mathrm{s}$ or less are presented in figure $13(\mathrm{~b})$; and all the data are shown in figure 13 (c). The reduction in data scatter due to the wind corrections can be seen in these figures. Both corrected and uncorrected data are presented in this report.

RESULTS

Tabulated Performance and Loads Data

Rotor performance and loads data are tabulated in Appendix A. A dictionary of the parameters in Appendix A is provided in table 2. The data are organized by run number,
and an index of the test conditions in each run is provided in table 3. Each run was divided into one or more thrust sweeps, where the rotor thrust was reduced to zero and then increased. Data points were acquired as the thrust was increased. The orientation of balance forces and moments, and the positive directions of the forces and moments are shown in figure 14. Thrust and side force are horizontal, and normal force is vertical.

Effect of Tip Mach Number on Rotor Performance

The effect of tip Mach number on corrected rotor figure of merit is shown in figures 15 and 16 for the baseline rotor configuration. The curves in figures 15 and 16 are polynomial curve fits of the data for various tip Mach numbers. These figures show that tip Mach number variations have a significant effect on rotor performance at high thrust coefficients, but very little effect at moderate and low thrust coefficients. $C_{P, \text { corrected }} / \sigma$ as a function of C_{T} / σ is shown in figure 17. $C_{P, \text { corrected }}$ as a function of $C_{T}^{3 / 2}$ is shown in figure 18. The solid curves in figures 16-18 are all polynomial curve fits of the data.

Effect of Configuration Changes on Rotor Performance

Rotor performance with the blade root cuffs off is compared with data obtained with the baseline configuration in figure 19. Rotor performance with the extended trailing edge cuffs is compared with data obtained with the baseline configuration in figure 20 . The effect on rotor performance of tip Mach number variations with the extended trailing edge cuffs is shown in figure 21. Rotor performance with the swept-tapered tips and extended trailing edge cuffs is compared with data obtained with the baseline tips and extended trailing edge cuffs in figure 22. The effect on rotor performance of tip Mach number variations with the swept-tapered tips and extended trailing edge cuffs is shown in figure 23. Rotor performance with the square tips and extended trailing edge cuffs is compared with data obtained with the baseline tips and extended trailing edge cuffs in figure 24.

Control and Loads Plots

C_{T} / σ as a function of collective pitch is shown in figure 25 . The collective pitch data were obtained from the collective actuator position, and some errors caused by control system geometric nonlinearities are present in the data. These errors are estimated to be less than $\pm 1^{\circ}$ The effect of rotor thrust on hub spindle flap bending moment is shown in figure 26. The hub spindle flap bending moment gage was at $r / R=0.06$. The effect of rotor thrust on blade flap bending moment at 0.1 R is shown in figure 27 . The effect of rowor thrust on pitch link load is shown in figure 28 for all three tip configurations. The distance from the pitch link to the blade pitch axis was 0.24 m . The effect of rotor
torque on hub spindle chord bending moment is shown in figure 29. The hub spindle chord bending moment gage was at $\mathrm{r} / \mathrm{R}=0.06$. The effect of rotor torque on blade chord bending moment at 0.1 R is shown in figure 30 , and the effect of rotor torque on blade chord bending moment at 0.2 R is shown in figure 31 . The bending moment gages at 0.1 R were located on the blade pitch housing, and the bending moment gage at 0.2 R was on the rotor blade.

Wake Rake Data

Data obtained with the rotor wake rake are presented in Appendix B. The location of the pressure taps is presented in table 4. A dictionary of the parameters in Appendix B is provided in table 5. The data are organized by run number. Plots of wake dynamic pressure as a function of radius for several rotor thrusts are presented in figure 32.

REFERENCES

1. Felker, F. F., Maisel, M. D., and Betzina, M. D.: Full Scale Tilt Rotor Hover Performance, presented at the 41st Annual Forum of the American Helicopter Society, Fort Worth, Texas, May 1985.
2. Felker, F. F., Betzina, M. D.; and Signor, D. B.: Performance and Loads Data from a Hover Test of a Full Scale XV-15 Rotor, NASA TM-86833, 1985.
3. McVeigh, M. A, Rosenstein, H.; and McHugh, F. J.: Aerodynamic Design of the XV15 Advanced Composite Tilt Rotor Blade, presented at the 39th Annual Forum of the American Helicopter Society, St. Louis Missouri, May 1983.
4. Alexander, H. R., Maisel, M. D.; and Giulianetti, D. J.: The Development of Advanced Technology Blades for Tiltrotor Aircraft, presented at the 11th European Rotorcraft Forum, London, England, Sep. 1985.

5 Piziali, R. A.; and Felker, F. F.: Hovering Model Helicopter Rotor Testing, presented at the AHS Specialists' Meeting on Helicopter Test Technology, Williamsburg, Virginia, Oct. 1984.

TABLE 1. - ROTOR SYSTEM CHARACTERISTICS

Number of blades 3
Rotor radius 7.62 m
Mean blade chord 0.411 m
Rotor solidity ratio 0.103
Blade twist -47° (nonlinear)
Blade precone angle 2.5°
Rotor airfoils V43030-1.58, VR7, and VR8

TABLE 2. - PERFORMANCE AND LOADS DATA PARAMETERS

Label
CB .1R
CB .2R
COLL
CPM
CPM/S
CQ
CQ, C
CQ/S
CQ/S,C
CT
CT/S
$\mathrm{CT}^{* *} 3 / 2$
CT/S**3/2
CY
CY/S
CYM
CYM/S
CZ
CZ/S
FB. 1R
FM
FM,C
HUM, \%
MTIP
NF,LC
NORMAL
P LINK
PITCH
PM,LC
POINT
POWER
PRESS
PSIW
Q,LC
RHO

Parameter
mean blade chordwise bending moment at $.1 R, N-m$
mean blade chordwise bending moment at $.2 \mathrm{R}, \mathrm{N}-\mathrm{m}$
blade collective pitch angle at .75 R , deg rotor pitching moment coefficient, $C_{P M}$
rotor pitching moment coefficient over solidity, $C_{P M} / \sigma$ rotor torque coefficient, C_{Q}
rotor torque coefficient, corrected for wind, $C_{Q, \text { corrected }}$
rotor torque coefficient over solidity, C_{Q} / σ
rotor torque coefficient over solidity, corrected for wind, $C_{Q, \text { corrected }} / \sigma$
rotor thrust coefficient, C_{T}
rotor thrust coefficient over solidity, C_{T} / σ
$C_{T}^{3 / 2}$
$\left(C_{T} / \sigma\right)^{3 / 2}$
rotor side force coefficient, C_{Y}
rotor side force coefficient over solidity, C_{Y} / σ
rotor yawing moment coefficient, $C_{Y M}$
rotor yawing moment coefficient over solidity, $C_{Y M} / \sigma$
rotor normal force coefficient, C_{Z}
rotor normal force coefficient over solidity, C_{Z} / σ
mean blade flapwise bending moment at $.1 R, N-m$
rotor figure of merit, $F M$
rotor figure of merit, corrected for wind, $F M_{\text {corrected }}$
relative humidity, percent
rotor tip Mach number, $M_{t i p}$
rotor normal force measured by load cells, N
rotor normal force, N
mean pitch link load, N
rotor pitching moment, $\mathrm{N}-\mathrm{m}$
rotor pitching moment measured by load cells, $\mathrm{N}-\mathrm{m}$
data point number
rotor power, kW
atmospheric pressure, kPa
wind direction relative to rotor axis, ψ_{w}, deg
rotor torque measured by load cells, $\mathrm{N}-\mathrm{m}$
air density, $\rho, \mathrm{kg} / \mathrm{m}^{3}$

TABLE 2. - continued

Label Parameter
RPM rotor rotation speed, revs/minute
RUN run number
SF,LC
SIDE
SPND CB
SPND FB
T,LC
TEMP
THRUST
TORQUE
TORQUE,C
VTIP
WIND
YAW
YM,LC
rotor side force measured by load cells, \mathbf{N}
rotor side force, N
mean blade spindle chordwise bending moment, $\mathrm{N}-\mathrm{m}$
mean blade spindle flapwise bending moment, $\mathrm{N}-\mathrm{m}$
rotor thrust measured by load cells, N
air temperature, deg celsius
rotor thrust, N
rotor torque, $\mathrm{N}-\mathrm{m}$
rotor torque, corrected for wind, N -m
rotor tip speed, $V_{t i p}, \mathrm{~m} / \mathrm{s}$
wind speed, $V_{w}, \mathrm{~m} / \mathrm{s}$
rotor yawing moment, $\mathrm{N}-\mathrm{m}$
rotor yawing moment measured by load cells, N -m

TABLE 3. - INDEX OF RUNS

RUN NUMBER	POINT NUMBEPS	MTIP	CT/S	UIND	CONFIGURATION
31	3	0.68	0.100	2.8	baseline
31	4-13	0.58	0.013-0.157	3.2-3.7	baseline
32	5-11	0.66	0.074-0.188	0.2-0.5	baseline
	12-17	0.56	0.079-0.175	0.4-0.8	baseline
33	3-8	0.66	0.082-0.183	0.9-1.5	BASELINE
	9-14	0.56	0.084-0.182	1.0-1.7	baseline
36	3-14	0.56	-0.002-0.178	0.6-1.5	baseline
	15-26	0.66	0.008-0.185	0.3-1.8	baseline
37	3-14	0.69	-0.004-0.181	1.7-2.6	BASELINE
	15-20	0.66	0.149-0.189	2.1-2.8	BASELINE
39	4-5	0.38	0.099-0.100	0.6-1.6	BASELINE
40	4-12	0.69	$-0.003-0.125$	0.6-1.4	BASELINE
41	3-10	0.69	-0.002-0.181	0.4-1.5	BASELINE
	11-19	0.69	0.002-0.183	0.2-1.3	BASELINE
	20-28	0.59	0.009-0.183	0.4-2.4	BASELINE
	29-43	0.35-0.67	0.098	1.2-2.5	baseline
42	3-5	0.67-0.73	0.093	4.0-4.4	BASELINE
43	3-5	$0.35-0.40$	0.108	2.1-2.9	baseline
44	3-14	0.73	$-0.003-0.165$	1.0-2.3	BASELINE
	15-23	0.73	0.004-0.162	0.0-1.6	BASELINE
	24-32	0.73	0.006-0.165	0.3-1.6	baseline

TABLE 3. - continued

	$33-10$	$\therefore .75$	$0.009-0.15 i$	n. 5 - 1.	GASEILIMC
	11-17	0.59	-6.001-0.162	1.3-2.1	FASELTIE
	$40-21$	0.75	0.001-0.081	1.4-2.5	EASFITIF
45	? - 11	0.70	0.002-0.182	0.3-1.0	saseltve
	12-26	0.72	$0.003-0.173$	$3.5-1.4$	LASFLINF
	21-29	0.72	$0.005-0.173$	0.7-1.と	has lime
	30-30	0.73	j.001-0.171	1.c-1.e	EASCLINE
	39-46	0.73	3.008-0.172	$0.0-0.5$	naselinf
	47-54	0.73	c.001-0.15i	0.1-1.0	TASELINE
	$55-63$	0.73	$0.007-0.171$	0.3-1.c	EASFLIME
50	3-12	0.00	$0.26-0.10 J$	0.4-1.2	צASELINE
	13-74	0.59	$2.026-3.265$	0.5-1.6	- selinf
	$2 \mathrm{c}-19$	30\% 9	c.033-0.214	$0.0-0.3$	bASFLINE
	$40-45$	S-ot	0.026-0.180	0.3-1.5	PASELISE
53	$5-20$	6.65	$3.020-0.190$	0.7-2.1	bASELINE TIOS, cUFFS CG:
54	s-*	C. 6.6	$2.44^{2}-0.175$	c.9-2.	
55	$5-14$	0.50	2.024-0.173		SAOFLINE TIDS, SXMFMDO CUFFg
	15-83	-. 65	3.027-0.192	0.5-2.3	
	26-76	-.n6	n.031-0.18)	v. $\mathrm{c}^{\text {- }}$ - 1.5	EASFLITE TI'S, EXTVMDED CUFFS

TABLE 3. - concluded

$36-46$	0.55	$0.034-0.189$	$1.1-1.7$
$50-57$	0.73	$0.024-0.132$	$0.4-1.5$
$3-7$	0.66	$0.024-0.154$	$1.2-2.0$
$8-14$	0.73	$0.022-0.164$	$1.6-2.4$
$5-10$	0.59	$-0.003-0.105$	$0.3-4.3$
$11-14$	0.73	$0.015-0.105$	$2.9-4.5$

EASELIME TIPS, EXTENDED CUFFS

BASELINE TIPS, EXTENDED CUFFS

GASELINE TIPS, EXTENDED CUFFS

SUEPT TIPS,
EXTENDED CUFFS
$5-13 \quad 0.56$
$0.030-0.147 \quad 1.0-1.1$
14-21 2.56
0.035-0.137 0.5-0.9

3-13 0.56
14-22 0.65
0.009-0.149 0.3-1.3

SWEPT TIPS, EXTENDED CUFFS

3-10 0.73
$0.025-0.138$
$0.7-1.5$
$0.025-0.119$ 1.6-2.4
SNEPT TIPS, EXTENDED CUFFS

$7-12$	0.55
$13-15$	0.65
$7-15$	0.66
$10-26$	2.66

$$
0.012-0.091
$$

$1.4-1.5$
SQUARE TIPS, EXTENDED CUFFS

SQUARE TIPS, EXTENDED CUFFS

TABLE 4 - LOCATION OF WAKE RAKE PRESSURE TAPS

Pitot-Static Probes

r / R	z / R
0.202	0.364
0.221	0.366
0.265	0.371
0.289	0.374
0.334	0.380
0.428	0.391
0.627	0.415
0.720	0.427
0.801	0.437
1.023	0.464
1.070	0.469
1170	0.482
1.220	0.488
Directional Probes	
r/R	z / R
0.205	0.292
0.507	0.329
0.655	0.347
0.756	0.359
0.806	0.365
0.858	0.372
0.905	0.377
0.956	0.384
1.107	0.402

TABLE 5. - PRESSURE DATA PARAMETERS

Label	Parameter
CT	rotor thrust coefficient, C_{T}
POINT	data point number
PRESS	atmospheric pressure, kPa
PSIW	wind direction relative to rotor axis, ψ_{w}, deg
PS	wake static pressure $, P_{S}, \mathrm{kPa}$
PT	wake total pressure, P_{T}, kPa
Q	wake dynamic pressure $, P_{T}-P_{S}, \mathrm{kPa}$
R $/ \mathrm{R}$	pressure tap radial station, r / R
RUN	run number
V	wake velocity, m / s
VTIP	rotor tip speed, $V_{t i p}, \mathrm{~m} / \mathrm{s}$
WIND	wind speed, $V_{w}, \mathrm{~m} / \mathrm{s}$

$\therefore 8=0 \mathrm{BE}$
 OF FUCR GUALITY

Figure 1. Outdoor Aerodynamic Research Facility with Prop Test Rig.

Figure 2. Prop Test Rig with Advanced Technology XV-15 Rotor.

Figure 3. Prop Test Rig with Advanced Technology XV-15 Rotor.

Figure 4. Rotor balance system.

Figure 5. Rotor blade twist distribution.

Figure 6. Rotor blade thickness distribution.

Figure 7 Rotor blade chord distribution.

Figure 8. Rotor blade airfoils,

Figure 9. Planform of alternate configurations.

Figure 10. ATB rotor with swept-tapered tips and extended trailing edge cuffs.

Figure 11 ATB rotor with square tips and extended trailing edge cuffs.

Figure 12. Wind sensor location
WIND $<0.5 \mathrm{M} / \mathrm{S}$ WITH WIND CORRECTIONS

J'W」
WIND $<0.5 \mathrm{M} / \mathrm{S}$ NO WIND CORRECTIONS

(a) wind $<0.5 \mathrm{~m} / \mathrm{s}$.
Figure 13. Effect of wind corrections on rotor performance, Baseline Configuration:
WIND $<15 \mathrm{M} / \mathrm{S}$ WITH WIND CORRECTIONS

(b) wind $<1.5 \mathrm{~m} / \mathrm{s}$.
Figure 13 . Continued.
WIND $<1.5 \mathrm{M} / \mathrm{S}$ NO WIND CORRECTIONS

$W \pm$

Figure 14 Rotor balance axis system.

Figure 15. Effect of tip mach number on rotor performance, baseline configuration.

(a) $0.585<M_{t i p}<0.595$.
Figure 16. Effect of C_{T} / σ on rotor performance, baseline configuration:
orwa

Figure 17. Effect of C_{T} / σ on $C_{P, \text { corrected }} / \sigma$, baseline configuration:

(c) $0.695<M_{\text {tip }}<0.705$.
Figure 17 Continued.

Figure 19. Effect of blade root cuffs on rotor performance
J'W.

------ BASELINE, MTIP $=0.73$
Figure 20. Concluded.

Figure 21 Effect of tip Mach number on rotor performance with extended trailing edge
cuffs.
Figure 22. Effect of swept-tapered tips on rotor performance:

Figure 23. Effect of tip Mach number on rotor performance with swept-tapered tips and extended trailing edge cuffs.

MTIP $=0.66$

Figure 26. Effect of rotor thrust on hub spindle flap bending moment at $0.06 \mathrm{R}, M_{t i p}=$
$\mathrm{MTIP}=0.66$

Figure 27. Effect of rotor thrust on blade flap bending moment at $0.1 \mathrm{R}, M_{\text {tip }}=0.66$, baseline configuration.

MTIP $=0.66$

MTIP $=0.66$

Figure 31 . Effect of rotor torque on blade chord bending moment at 0.2 R, $M_{\text {tip }}=0.66$, baseline configuration.

$$
\begin{aligned}
& \text { (2.4 } \\
& \text { (a) } C_{T}=0.0027
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (c) } C_{T}=0.0054 \\
\text { Figure 32. Continued }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (e) } C_{T}=0.0087 \\
\text { Figure 32. Continued. }
\end{array}
\end{aligned}
$$

APPENDIX A - TABULATED PERFORMANCE AND LOADS DATA

NN：	M5¢か	「F600	－80\％	べ○「が	mo9y
＊	○6mの	－NJ	Tony	－Gず心	－${ }^{\circ}{ }^{\circ}$
＊＊	807	CNMH	－3\％	8\％ザ	
U	$\therefore 0^{\circ}$	00°	00°	$\bigcirc 0^{\circ}$	00°

のホ心6os

 －

06

 30000「ペがッ
 $\rightarrow 000$

\square

mox 00 ${\underset{N}{i}}_{\infty}^{\infty}$

$1 N H 0 N$
$0 N$
100080
0080
000080
000010

$\begin{array}{ll}0 & m \\ 0 & 0 \\ 0 & 0 \\ N & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \\ 0 & 0\end{array}$

uvouvo 보ㄴㅗㅜㄴ

$\infty$$09$$00$cs es

cmamoc

N~カMFM NoinHo 20080%
-20000
020

-ambmo +m

$*$

$\frac{\square}{6} \underset{\sim}{6}$	
$09 \ldots$	
$\begin{array}{ll} a & a \\ i 2 & a \end{array}$	
$N \sim \underset{\sim}{x}$	
m_{k}^{m}	
E -	
\mathbf{U}	
上uvy	
\% ${ }^{6}$	
- Su	
$\bigcirc \underbrace{3}$	
$\operatorname{son} \operatorname{son} \cos$	
$y>x \geq 0$	
000 灾	

+

0
0
0
0
0.001518

$00 \rightarrow \infty$

\pm

crame med is
OF TOOR QUALTY

옹NNN
 1000 m
$N 0008$
000000
000000

$\underset{\sim}{10}$

OMn00t
 - ióo

 | $*$ | 0 | 0 |
| :--- | :--- | :--- | :--- |

no

NEORTO 8 m $\dot{C} N$
ON
ON

드렁준증융
てもち $100^{\circ} 0$
$900000^{\circ}-$
$801000^{\circ} 0$
201000°
$6 T 0000^{\circ}-$
$2 \forall \angle E 10^{\circ} O$

和

Nx¢x	\cdots	Oo	O 10.		
\cdots Nz	$\cdots 60$	Eono	F大日十	¢．mer	OH00
$\cdots \times 1$	ary	Uingo	0600	－19－10	NWrsm
＊${ }^{\text {＊}}$	O以N以	HENO		Nutin	NoOm
＊${ }_{0}$	OOMm	85%	－6TN	$\bigcirc 0^{\circ} 1$	O\％\％
0					
$\stackrel{5}{6}$	00	－0	00	\bigcirc	O
［0］6，	Nomoinc	＋5\％${ }^{\text {cher }}$		OTNON－	$\cdots 6 \mathrm{Nomom}$
픙융	FO O O N N	小心すm必 NにWHR	Ho	$\begin{aligned} & 0 \in \infty \\ & 6 \rightarrow \infty \end{aligned}$	कめNNFF
	$\begin{array}{r} 70000 \\ 700^{\circ} \\ 0.0 \end{array}$	$\begin{gathered} -\infty 00 \\ -0.0 \\ 0 \end{gathered}$	$\begin{gathered} \text { NOO } \\ { }^{\circ} 0^{\circ} 0 \\ 0 \end{gathered}$	$\underset{\sim}{\operatorname{mi}} \underset{\sim}{0} 000$	$-\mathrm{NBO}_{0}^{\circ} 0^{\circ} 0$
$\cos 0 \rightarrow \infty$	ungoma	∞ ¢NFmo	－¢－W－	$\cdots \infty m \sim+a$	OOUN以
		－momot	O5OONㅓN	N以MNN－	O－wamNa
隹要	NO8080	m8\％80\％	ज0－4W5	N－680 60	908088
－U	000000	708080	H088	-10000	-100000
	000000	$00^{\circ} 000$	$\therefore \circ \circ \circ \circ \circ \circ$	－00000	－10000
Exiss $\underbrace{2}$	NMTNM年	Fioman	ツ○ポ	ONGNNE	50¢0 0－1
	woodod	Hoocos	$\text { no }=-15$	EqMNAF	＋080애
	000000	m0000m	u0000m	100000	50006N
	ㅇㅇㅇㅇㅇ	H09000	－1080800	W08080	－90000
	－909？0	909090	9990	009000	989009
	000000	$00^{\circ} 00^{\circ}$	$\circ 0^{\circ} 0^{\circ} 0^{\circ}$	000000	－10000
F6x－x	－－－－	－	－．－		
	サ90\％	MロN以Nさ	¢上小mot		
二小さm＞0	¢世N－man	cNowno			OOMtmm
	～	$\bigcirc \rightarrow-\infty$	m -m	～NHN心	のM上mm
$\cdots \mathrm{z}$	$\cdots \mathrm{l}$	\％－	（n）N	in N	
טu000					
－	on－mmo	－itanis	－	No゙ヵ＋io	¢ Mo io
	onNサM二	NoO＊OH	－mNTEM	mmomがm	in 0×005
$\cos x=50$	¢N M M O	¢nNENの	FEFmEN	NOMFOH	¢in9000
－ 5 ¢ ¢ 0	－•M－	－－－	－mon		m •－$-\infty$
	－ 0^{∞}－	$\cdots \infty$	－${ }^{\infty}$ 为	－＋0，－－	$\cdots \infty$
$\begin{gathered} m a x+x a x \\ x \\ x \end{gathered}$	$0 \text { ORGN? }$	$0-15 \operatorname{mon}$	ONFWNO	$0 \text { in won }$	$+150-1 N$
zerxamu	上のに60	nommwo	uoinnmo	n－HNHLSO	mNanmo
	$\checkmark 10$.	＊！－－¢		$\bigcirc 0.0$	＊ $0 \cdot 0$
	inamo	マタmm	＊のmレ	＋on mo	momb
$0>\geq 0$	いなた	NNMM	Nロー～	N゙NH	Now
0	\cdots \％	$6 N 0$	$6 N 0$	$6 \mathrm{~N}$	$10:$

0^{n} NO
ONO
ONO
NO

6
0

NNax	Fo	∞	のや	10	＋゙m
\cdots N	moom	$m 0 \sim$	மm－m	$\rightarrow \infty \times 0$	06 ± 0
ツッ・ツ	1000	－W\％	NHto	\％	にの＊゙心
＊＊	Nom	8®5	$0 \% \quad \pi$	ON以	O5mo
＊	O6，	80	8 80	－\％	－ 01
E	\bigcirc	－	00	－0	0
ฯuヒリさせ	－－60の	かのa～	－ 0 con	－Nrom	－ONno
는）	N＋すか	$\operatorname{chn-6}$	$N-\infty+{ }^{+1}$	cinotmm	U0NONE
	HaNMon				
	－\％NNE5	－moonn	－mooti	N－00w	NNOO:0.
	$\begin{gathered} \operatorname{HiO} 0 \\ 0_{0}^{\circ} 00 \end{gathered}$	$\begin{aligned} & 0000 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 00 \\ & 000 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 000 \\ & 00 \end{aligned}$	$0_{0}^{0} 000$
cunosen	－mumom	－NNHE5	nnoonm	のNのOサm	O5－L
¢ ¢ ¢ ¢		criommm	HMWNNM	\％-6 ± 6 ¢	
¢ucz	¢008¢N	No8090	앙ㅇㅇㅇ	wos060	¢0¢080
ci	H00000	000000	00000	008000	000000
	$00^{\circ} 100$	OOO 0.0	O0i i 0	－0i i＇	$\bigcirc 0^{\circ} 100$
	の0小さmm	サnサNono			
ソヒロ	のサのボいせ			F－5\％－6	
		NH080	740808	1500000	－0080
	－00000	000000	－00000	000000	－00000
	90900	08900	090900	009090	009000
	Soiloo	000010	00110	001110	001100
	－－－．			－－．	
＜0－0 0	ORFFmo	¢amanin	－unの＊か		
¢－xtyo	nNmEが	かにな	moninam	∞ ¢ 5 ¢n 0	
	mmivo	onminme	MmHNHN	『NHMNT	かNNMmN
$\text { F } \overline{2} a \bar{b}$	$\underset{N}{N} 1-\underset{N}{N}$	in IN	の111m	$\underset{-1}{\sim} 111+$	${\underset{n}{n}}_{n} 11 \text { in }$
Uuucu0	－\cdot－		－ 0	$\cdots{ }^{\circ}{ }^{\circ}$	－
－1－4	ooommo		$\cdots 50$ nno	uns6unoin	N65以の
	$\begin{aligned} & \text { FonNN } \\ & \text { No } \end{aligned}$		∞	강№s	が円
$\pi \geq 2$	$\begin{array}{cccc} \\ N & \sim \\ N \end{array}$	$01 \cdots 1-N$	$\sigma 1 \quad-\cdots$	$\underset{\sim}{N} \quad \underset{1}{n}$	${ }_{-1} 1 \quad-\infty$
Q7xanco	－NOR	a．mob	O－mon	の＊NON	の－mon
Z	oo m	－06mN	－60＊～N	－inco	
$=a \leq \frac{\alpha}{x}$	$N+0$	$\text { ru } \quad 0$	$N \rightarrow 0$	$\sim+0$	$\cdots \quad+0$
＜$-2 \times a_{1} a_{n}$	ONW以NO	OMルN60		Ointioo	
2zammu	ルの．${ }^{\text {a }}$		いの・	いの．5．	的以．t．
	0×10	－0， 0	Oam	－¢ ¢＋	－a 0
$0=50$	¢Nom	¢ 06	Oon	O9t	O9n
		$10-10$	$1 n-1 \dot{0}$	$\text { r: }-10$	$n+0$

오NNNN サめNNMM 1000 006亿OSOOO $0 \infty \quad 0 \quad 0$

0 OHnno
0 N

 a

紋umen

\&
을 ふひ

NNTH-6

001000

 $\cdots 0^{2} 000^{6} 0^{n}$ 08800%

Hoon Ho

08

믕
¢

$\begin{gathered} \infty \\ 4 \sim \sim \\ \infty \end{gathered}$
묘
ance
かめ
NNO：
$ク$－
＊＊
\cup
0

$\dot{\operatorname{mio}}$	ベゥが
anir	ペ～が
$\infty=6 \mathrm{~m}$	OHFm
－60	$\infty \times 0$

Nがヅが
 900000

$N \sim \propto \underset{N}{N}$
* ¢ a
cis
0
$\stackrel{\leftarrow}{\bullet}$

$0 \times$
달
z
an

$N \underset{N}{N} \underset{\sim}{x}$
＊－
セめO
－

以心N

0
0
0
0
0
0
0
n
n
\sim

$n 0 \infty 10$
0
0

 $\infty+\infty$
ωN
ωN
$\stackrel{1}{n} \mathrm{~N}$

い＊ 0 ． $\begin{array}{lll}\text { m } \\ 0 & 0 & 0 \\ 0 & 0\end{array}$

$\infty \infty$
\bigcirc
z
-a
0 es

のNの子゚○ （n）

NED0HO
$m 16 \infty 90$
$N=N 60 \%$
$N 08080$
100000
0.0000

$\infty-\infty \infty \infty$

6NOMnm がNNN世N 88888～ 000000
000 $.0^{\circ} 0^{\circ} 0^{\circ}$

$6 \cdot 6 \infty$
 10 N

\cdots
Encos
U
U

\square 0

＊
－a
トの0
0
E

5サNM品

APPENDIX B - TABULATED WAKE DATA

 u ！o 0 ！！！！！

 mのin 5 ondingona

5
 $-4+4 \mathrm{man}-4 \mathrm{~m}+4 \mathrm{man}+\infty$
\approx Nmwownronmooo

R / R
 우NNNNNNNNㅇN

いの円mがかのo $\rightarrow \infty \rightarrow+10 \rightarrow N+\infty$ $N \mathrm{NH}$

$0 \infty 0 \infty 0 \infty$ －∞ un $6 \rightarrow \infty \infty \infty$
 $\rightarrow \rightarrow-\infty-4+\infty$
 E $\rightarrow \mathrm{NCH}$ $0 \infty \infty \infty \rightarrow \infty \rightarrow \infty$

 －00000000롱
cmñnNoam
$070 \infty \pi n m m$
 NMN－ MजmNNOOOG －00000000

Fomemguno －6 6 to to ano い6切がががす

 －••••• －NWH－NH－N

 오NASNGOMO － $0 \circ \circ \circ \circ \circ \circ \circ$

 0000000000000

いのmNい
 $\circ \circ^{\circ} 0^{\circ} 0^{\circ \circ} 0^{\circ}$ ODHEの5Noo

o000000000

 そuntwoontu 00000000 H

 No OM N M F －000000000000

 an HM．．NNTOOMOOO．
 GO20000000000
moutraguonuma
 $\underset{\sim}{0}$

\boldsymbol{x}

 $\circ 0^{\circ} 00^{\circ} 0000$

ザNOunontun かの心よ

2

R / R

 o NWNWNDM\＆NO88N $0 \infty 0 \infty 0000000$

\propto

 サーツツがッロ゚ー

8
 $-1-4+4+\infty+\infty$
 Nutom on on m $0 \infty \infty<\infty<\infty<\infty$

がいーのールッ

 HRMo00000

 NO． 00000000 A
\geqslant

LNONTNMN onmono mow

0 $\rightarrow \infty \rightarrow \infty \rightarrow \infty \in \infty$ －on ∞ un $0 \rightarrow+\pi$

E

$\infty \infty \infty \infty \infty \infty \infty$

$\underset{y}{x}$

OHNOMNOUNTNOR
 $\therefore 0^{\circ} \circ 0^{\circ} 0.0000000^{\circ}$

OOFNOGNFONONM

 0000000000000
m－to FNNNOMNNT ∞ NO
$\stackrel{4}{6}$

C कownwownowown

 $\therefore 00^{\circ 000} 0^{\circ} 1000^{\circ}$
anのunoomumanom

 0900000000000

ーののルー ○○下N
5

 NNNNMポFooonN

のmनtmonto
 NMmN
$\infty \mathrm{Nry}-10 \mathrm{~mm}$

mmomonono
 on $\rightarrow \infty$ かo o o

जunmoonvn
 mーONのかのOO

 Nmmか

 HFo
Q．
000800000
CHTHANHMN
स o omomnto

$\stackrel{(1)}{2}$
～下umex now
 $\therefore<\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ}$

PITOT－STATIC PROBES

 O＋＋9． －00000－400 i 10

 －Ma0の0000？ －OOOOO：io ＊aのorismmt かのにのーがもOO onNTwonoo
 000000000

 ＂NNR o a a aO

\approx Untinowinno
） $\sin _{6} \sin$ in $\circ \circ 000000$

$\tan \pi m=0$ $\infty \infty+\infty \times N \rightarrow N$ - 0 nowninin
 $-4 \mathrm{man}+4 \mathrm{~m}=\mathrm{m}+$
 0∞ a + in in in in
Fnnm*m N N
 000100000

 - 0 \& in in in in is -

 - No in in in in in

[
 0

 $\rightarrow-\operatorname{man}-4+4$
R / R
$\infty \infty \infty \infty+465$
 NmN

$\infty \infty \infty \infty<\infty<\infty$
$0 \rightarrow \infty \rightarrow \infty$

∞
 ONANNGOFNNNN
 0000000000000
 oonoonnmmmNmo

 RUN
OINT
CT
VTIP
UIND
PSIA
RESS

PITOT-STATIC PROBES

-000000000
$-4-4+4 \rightarrow-4 \operatorname{man}$
00000000 m

 $00^{\circ} 0^{\circ} 0 \circ 0^{\circ} 00^{\circ} 00^{\circ}$
 HO ONXN世INHNNN
 0000000000000

a

α

 in 060 K 600000 0000000000000
owninnvoonmonvo

 ＊ommamintmNNm anmmnoountn unnm NONNNKN世－N－HN

かNGかOSOEN

 900009000

ODNFOOMN．

E $4-4$
-4∞
 $0 \circ 0^{\circ} \circ 0^{\circ} 0^{\circ}$

 NmN

 OWOOHNNN
 －HmHmHMHm
○かのの心めoom ∞ in mannmm O サo tninnin

$$
\text { c. } 3
$$

wowndowootoo

○○のかんनOO oatminninio

mにनNONサーO －2888888\％
000000000 000000000
 ONDMNNNNONREN

かing insonon 001 i0000i

－osmmoののー かのかのがながす $\because \because \ln 0060$ がすからすがす。

 \square

37
5
0.002348
237.8
2.1
354.
101.7

munowonn\＃ Honowname

HJHनHNONO NN
$m \omega N m+m \rightarrow m o$ $\operatorname{mos} 0000000$ $\infty 0.1 .0$
－FNNGOMTK －0．000600 0 －6 क人

Mmonがmmmに のロNながホーシ a06060 060
 $\mathrm{m}-\mathrm{m}-\mathrm{H}+1 \mathrm{~m}-1 \mathrm{~m} \mathrm{~m}$
 00000000.
－NEMONNTE mngingrnmo Non

No omNNMNM

 ㅇonㅇNNOMOO

NFLn 0 O $\infty \infty \infty$我 0 $0 \infty 6606600$ O60 O6O OOO $\rightarrow-1 \times 4 \mathrm{man}+4 \mathrm{man}$

-

जの

$\rightarrow-\infty-\infty-\infty+\infty-\infty+\infty$

ZEAの日zes ＝

－ 0000000001 io

 0000000000000

 omam－6movin 10 N 5 m onNNmNo o to boo
 9000000000000

 NN

保

$$
000: 10000
$$

5 gryoongonow
－1000 Ho moo
intin O6 Wintor
 $00^{\circ} 00^{\circ} 00^{\circ}-1$

जmotnmotm

a
$\underset{x}{x}$

a

FOO OMMN15O\＄1015m

 0000000000000

Nountinouncono
 $\stackrel{\mathrm{F}}{\mathrm{F}} \mathrm{C}$ NNNNNNN～ー．－iN

サッサー円にののロ
 －．．．．．
 000000000

 OFinto600 ve

8

MwNomtanm \because minncron

 Onmonnmun NERGENGだN a • ．．．

$\infty \quad \infty \rightarrow \infty$ ○サかがかのび

OOO＝0000

 NNNNM* ㅇ№ OHN

DIRECTIONAL PROBES

 －mon mo

かuncmano NにがすかのがN

0
 $\infty \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$

un -10 n 0∞ in 0

 $\infty \infty<\infty<\infty<\infty$

 us on mon $0 \rightarrow$ in in m $\rightarrow 0 \rightarrow 0 \rightarrow 0+0 \rightarrow+0$

$-\infty \infty \infty \infty \infty$
R / R

 MNF NHNORN mimmin

NFOONMOLO －oneのammm
 $-\dot{-}-\dot{-i}-\dot{-1}$ 헝ㅇㅇㅎㅇㅓ
HーH゙NHMNHM
 onNmonNNM \uparrow To 0 Noin in in
5

ntnow mir 옹Nㅇ№ $\therefore \circ 0^{\circ} 00000$ ．

 ob \＆O

のののNサNNHकovr

${ }_{2}^{2}$

 －000000．00000．

NogmonNmimmmN

 HiomFFROMNmHFN कか क人 a

$0 \rightarrow 0 \times m \rightarrow m$ $10 \infty+\infty \infty 0 \times 4 \mathrm{~m}$
 $0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ $\infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$ $\mathrm{man}-4 \mathrm{mel}-4 \mathrm{mantra} \mathrm{ma}$
$\infty \infty \times N \infty+\infty$

 $\infty-\infty+\infty-\infty+\infty$

$0 \infty 0 \infty 0 \infty 0 \infty$
－OnNNMmm

ω $\rightarrow \infty+\infty \rightarrow \infty \times \infty$ $\rightarrow-4-\infty+\infty$

 －OH 6060
$\rightarrow-4-4+M+4$

-000 i ió

SG80Xd TYNOLJ23yIO
ONNONNNGM

 OOOOOOOOO

サounのmもmに NOWMTOHmm馹
 000000000
\propto
\Rightarrow

 ＊Fのザ MのOO 406vin in in 00
∞

च

$\infty$$\rightarrow \mathrm{mN}$
$\rightarrow \mathrm{mN}$

 かNMLFNOF OONHM
∞

DIRECTIONAL PROBES

 ＊TN $00^{\circ} 000000000^{\circ}$

ーN「ががッツoonmす

 OFF 000000000000

 ت－mmvincogeoo
$\stackrel{H}{a}$

pitot－static probes

a.

 $\rightarrow \infty \infty \infty \times \infty$ $+\infty \infty \infty \infty \infty$
$\rightarrow+\infty \rightarrow \infty+\infty$
$a \quad \ln 5106001065$
θ
Nu
$0 \infty \infty$
$0 \infty \infty$
p

$\rightarrow \infty \infty N \rightarrow 10 \times 10$
$0 \infty 0 . \quad 0 \quad 0$
$\cdots \infty \infty N 010 m \mathrm{~N}$

- 0 - 0 -

$-4-4 \cos -4-1-4 \mathrm{c}$
$1 \Omega \mathrm{~N} \rightarrow \infty \times \infty$
$\cdots N+\infty+\infty+\infty$ - \quad - $\quad \rightarrow \infty<0<0$

 $00 \infty 0 \infty 0 \infty$

MmoNかmmonmmm
 0000000000000

 NNODODM $\infty \rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$ $4 \times 4 \times \pi \times m+m$
 $\mathrm{NS}+\infty \infty=0<0$ $9 \rightarrow \infty+N \infty<$
 $m-4 \times-\infty=1-\infty$
 \pm $\ln \ln \infty$
0∞
0∞
 ＋omNMOMN

$\cdots \infty \infty \infty \infty \infty$ $\infty<\infty<\infty<\infty<\infty$ $-\infty+\infty \infty 0 \infty$
0

$-1-4-1 \times-4 \ln -4$
$\infty \infty N \mathrm{~N}+\mathrm{N} \boldsymbol{N}$ $\cdots \infty 14 \cup \infty+\infty$ $\rightarrow \infty \rightarrow \infty \rightarrow \infty<$

 SSAS
MISd
QNIM
dIJA
WD
WNIO
NOX

∞ सNONOHWHNWNな

4

 $-4+4-4+4+4+4+4+4$
R / R

Nmmunoono

 000000000 H-THAHMAT

Noworoinmo mintamoomm

$\stackrel{C}{6}$

 $\infty \infty \infty \infty \infty \rightarrow \infty$
 -00000000

$+\infty+\infty+\infty$

DIRECTIONAL PROBES

のmovinNunの ○manのボホの

－GMONTON MnNon＝Nono

$=$

3
$\therefore \circ \dot{0} 000000$
aoomminnon ast000000 NNOOHHTH？

 $\dot{O} 0 \dot{\circ} 00^{\circ} 00^{\circ}$

$$
\begin{array}{rr}
\text { RUN } & 44 \\
\text { POINT } & 39 \\
\text { CT } & 0.014178 \\
\text { YTIT } & 249.0 \\
\text { WIND } & 0.8 \\
\text { PSIW } & 284 . \\
\text { PRESS } & 101.1
\end{array}
$$

NOONRONTHNDON だOONNOONOOHF に上OONmNMOH？Nに

 NNNMNNTNONENN 00000000HनHH

R／R
nunnNoaOm NONWNOOSO －－ico io io
－HTN Wionor onmNoommo －ザmoso00n
 OOOOOOOOO

Motinogoso ovinnNoncm． $\stackrel{-}{-}$
－1000 Mo OOO

\propto
$-\infty<\infty$
$060 \mathrm{mon} \omega \mathrm{m} \mathrm{m}$
 NヌM

 जNサOFME5O ルTNNOOMH＝

$.000^{\circ} 00^{\circ} 0^{\circ}$

 COOOCOO IOOÓ
 －000000000
monm下onum

monmomonon

엉NOロットに 능 50800000

moooncundy

Sagced TVNOLJJ3甘1G

8

\geqslant

サCcuNGFいw

ズッチロのシャ －zunzan

 0 NNFササルNFO0000 0000000000000

 NNNNN～～NNNNNぁ

armminmomNmin or

$\stackrel{H}{a}$

NNNNNNNNNNNN

$\underset{\square}{a}$

4－4nnon060 のस $+\infty \rightarrow \infty 000$ － 0 ano 0000

 NONWNWNWNON $\rightarrow-4-\infty+\infty$

00 un winowo
 －0000000－

GONTmminm －1＂N

OOOSOOOMO
 サin 200000

000000000

－n onn nnoumminnu
 σ नNサルNORInoo006 0000000000000 NのNGMMNONHNWH

 Cthtarth o o 0000 Fontrroogo

○NルNルーがが

○mषット下mam

Fingmwonco Foundonago

$>$
Nonowntor

Nonmaincony whao Nodose

$-4-4+4+4+4$

zt－acsen

NNINMHOQNNNTかm
 $\because \rightarrow H-N H O \quad \infty \quad \alpha \pi \alpha \infty$
 mandmandandio

 NoNNNNNNNG耳NO

UONOHENOMOO－NN ○○円mNMontaonom NNNNNNNH－H－4 HNOOOMmザMNHa
 2 0000000000000

＊ $0 \times \infty \quad \infty \times \infty \infty$

$0010 \infty 10 \mathrm{NO}$

0000 NOEO

E matnorono
－

$\underset{2}{2}$
intinowinct
 ذÓO © © © ©－

zEA日

$$
\begin{aligned}
& \text { O-Nw } 0 \text { - } \\
& \text { inनrion } \\
& \begin{array}{c}
\infty \\
\infty \\
0 \\
0
\end{array}
\end{aligned}
$$

000000000110

TMONMOUNW $\infty 106 \pi$
0150808
000000 000000111

トサーロサNがの

－Trarnmmu Noホncicoma Noumogaのa
 OOOOOOOOO

 $\therefore 000 \circ 000$－

 NN＊ル060m0 000%
4 NNNiNNinNiNNN

 NNNNMサツNooOHT

$\underset{\sim}{\infty}$

 HNOMGLNEMGNNm

DIRECTIONAL PROBES

 aO \Rightarrow onina a

－NOWかんLNT －NTONOF
a onfgigogag
a

जのn－wnumm －OAvitaかoo
$\underset{\sim}{6}$
NoNNTHFN－

.

5のnounnomb

6 6

NNNDNGOMn Hoswomono

Saund TVNOLIJEHIO
がいい

- సヲNNTSOSOO
-OOO © © © ©

 －OㅇOBOOOOOOOO

 NNNNNNNWNNNNT

$$
p ?
$$

a NNNNNNNNNNNNA

 $\stackrel{\square}{-}$

$\rightarrow m \mathrm{~N}$
$\rightarrow m \mathrm{~N}$

 Not－2aの00
 음엉억응
$\underset{\infty}{\infty}$

 $\therefore 0^{\circ} 0^{\circ} 0^{\circ \circ} 0^{\circ \circ}$
－0，manのかonnum
 $00^{\circ} 0^{\circ} 00^{\circ} 0^{\circ} 0^{\circ} 00^{\circ}$ 0000000000000

のロRーNFのmゃmNmm

－Ho mooroumoo NサためのNHmもOOOO
 invicivi－ivin－

o NANEiningoigionio NNTinvo 080000

Q NNNNNNNGMNNN－ ooosoo owooodo
 NWOFFO NFFOONH

DIRECTIONAL PROBES

 －NMWেintingoo8品 －000000000000
 H\＃6NON NNNNNNNーNNNN NNSNNONFHNGNE 4－Oसnonoanomen MNommntionionsw
 NNNNNNNNNNNNN

R / R

Abstract

 $\circ 0^{\circ} 00^{\circ} 00^{\circ}$
romanmotron onsonnonoo
 2．NNHWH－NNN H－HMHTHFH

No－6moingin
 NサNoLitaon

0 onn onommonnon

 OOONOOOOOOOO

NNONHMONOMNO

$-\infty-4-4-4-4-4-4$

$\pi \infty+\infty \rightarrow \infty<\infty$ ONHONODOD $0 \infty \infty \infty \infty \infty$

\geqslant
$\cdots \infty \rightarrow \infty \rightarrow \infty$

$m \infty+0 \pi 40.0$ $N+N+\infty$
$\rightarrow \infty \infty$
 $\rightarrow \infty \infty \infty \infty<\infty<\infty<\infty<\infty$

 $\cdots+0 \cdot 0 \cdot 0$

R/R
 은NNNㅇNㅇN

 －0．00000．00000

 000009090000∞

FRTサーNNDRORNGR

 oodoono woondong

HNN6006010 －-10000000
0 NHOOOOOOO 000000000°

NH＊゙षHOMmN

NomotNTRN

OOOOOOOOO

$\underset{\sim}{2}$ Nintinolnolno

untmmmonam
？omon？MnN

0

C．

＊anomeooacmmm © NHNONENFOOSOM

oumunanmononnm
 u \because Nin： a．NNNNNNNWHm－NH OOOOOOOOOOOOO
 ontunmonnooson
 NNGNmmmmwnNNN

の
 －00000． 0.0000.

DIRECTIONAL PRORES
$5 \infty \pm 0$ 以 $-\infty+\infty$ ononmondo －•• • －00000000

ONE＊NNm＊
 rNHO 0 ono

 $0 \infty 000000$

 $\begin{array}{lr}\infty & \infty \\ 0 & 0\end{array}$

$0 \infty \infty 00 \infty 00$
Nomontmuo
H5NM以ONLS

a
OOOOOODOO
$\underset{\propto}{\propto}$

$\circ 0000000$ -

RUN	50
POINT	49
CT	0.019170
VTIP	2.5 .2
WIND	1.5
PSIW	3.
PRESS	102.0

ががががが。 ㅇNㅇํㅇㅇํ응 a

いんmoginmoo

 응ㅇㅇㅇㅇㅇㅇㅇ
\therefore insineosinco F／

Ninn incisiono

N゙NOOGNNNNNNN

$$
000 \circ 0 \circ-90000
$$

MNNNNNMWHNNH

RUN	54
POINT	6
CW	0.015753
VTIP	225.7
WIND	1.9
PSI	142.
PRESS	101.5

 $\therefore 0^{\circ} 00^{\circ} 00^{\circ} 00^{\circ} 00^{\circ}$
 $\infty m \forall i n 6 \pi \infty$
n－．．．．．．．

ONOHNHOOMのダさ のmintivionmtmず
 HTHNTHOHTHAN

R / K

のovNNHONO

4 in 1208088 －innoㅇㅇㅇ 000000100
nonnmnonm owaष゙mषッNm クリルNOm＊ザ
 000000000

 no fommonm

$\underset{\alpha}{\alpha}$

bonotroonninnoo

－ONNNNoonm－4N
 － $00^{\circ} 0^{\circ} 0^{\circ}+0^{\circ} 0^{\circ} 0^{\circ}$

R / R

DIRECTIONAL PRDEES
＋NNENON mo m in 00 onmy mot女tm＊＊

 －
-00 Ho Ho Ho Ho

NOOMNOUNM ザッホomoon

∞ NmせかせNm mかOMNNomm －도－－－ －00000000

$265 a \rightarrow$ ge

 in o o o o n in in un nn n！
 क00000000000

$\stackrel{H}{a}$

\propto
NOONFNOTG

の0世のNTNNN －inmanNNNN noninninin in
 oodo
 omnNmNNNN

4 on in un unin in in in

a い5uncounct
$\underset{\sim}{2}$

00000000°

 Mum
 ©OOOOOOOOOOOO
 FMmmNHmNNNNNを un in in in wn w thin in ！！m
a $-\infty$ 0000000000000

ONMENRNOO

N

OOLT OOLNW のMNHmNNNN in in in in wi in in in

－00000000
\rightarrow－1－1－N－1－1

-ONNDInNov

$\stackrel{-}{2}$

$00^{\circ} 0^{\circ} 0^{\circ \circ} 0^{\circ}$

O응ㅇㅇㅇㅇ응

6ownomominoon

 $\rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$

 Nomemmono トRomNせにがに

 9Min $\rightarrow 90$ Nin N゙ッツ゚

グロN゙ローボッ にmoサに サーN゙ oreが心ninin

 ㅇn

 －0000000்～

 NGETEGOKGNNNE

 on m n m und un un un
$\stackrel{\square}{0}$

$\begin{aligned} & m \\ & m \end{aligned}$

$0 N-\infty \infty \infty$ いがmだNNNN

a－－－－－•••••• 000000000

 oみngnNMNN
$\stackrel{F}{a}$

－HaHMH－HM

$-$
ntinctomanmo

$?$

$\rightarrow \pi 6 \pi 60 \% \pi-4$
noonnNunN －O in in 6 in in un

のサートのーのが万कलNmmNnN

$-1+4-4-100$

		$>$	 $N \backsim \rightarrow-\infty+\infty \rightarrow \infty m+$ NNmmm』サm		－	－5NNMOnnco von＋$+\infty+\cdots$ $N m+N \mathrm{~N}$
		0	ONENOMmの日ル m m NHContonnomoon m＊unsomanomon 		©	
いおの にNO． 10 ． 	U	0	∞ NONMOMNNWNm $-4-4-4-4-1+-1+0$ 000000000000		$\begin{aligned} & \infty \\ & 0 \end{aligned}$	
	is			0		
	－			¢		－momがom
	$\underline{0}$		$\cdots \infty$ ¢－minomin	0		
	0	$\stackrel{5}{6}$	- NNNNNNN-	0	بـ	000000000
	－1			$\underline{2}$		
	－			E		
	$\stackrel{+}{+}$			0		
	es			\square		
	6	\simeq		E	α	
	0	∇	ONWCMNNNONEN	6	∞	00 Nu0以0120
	4	α		$\underline{\sim}$	\propto	Nunomenom
	0		0000000004 Ha	0		－0000060
		$=$	un unonnoinontano －．．．．．．． 		－	m min moun N －••••• untrmaummn NMmNT
		C	nmmoninmmormwn のmNommomNoomo $\infty 00000-000000$		c	On OL N NHOOO m－$-\infty+0000$ 000000000
UnNTM			HonnocovinNNNT 			n mo o orvm－4m toin ononnN
		∞	 －．．．．．．．．		∞	wstrywin
		0			－	
	0					
	寧			0		
	0		ONUNかNmonntu	0		－MNOCon＋
	\square		WNOWNmMNNNMM	\square		
	0		$\cdots \mathrm{Nmmin} 0.0 \mathrm{mmu}$ un in	\sim		
co ${ }_{0}$	0	2		－	0.	
－	－		000000000000	\pm		00000000
0	6			\pm		
\bigcirc	－			\geq		
	5			0		
	1			E－4		
	6	∞		4	\propto	105170001700
Pzumzum	E	2		（1）	∞	
	a		oiosoo	－		00000000

－NORMN Mivt항ㅇㅇㅇㅇ $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
 －F W HNNNN yo intin ir in in

－00－aのかのo －moonNNNm $\stackrel{5}{5-1}$

 $\underset{\sim}{x}$

 Non

monomonNHF

 $\rightarrow \infty \infty \infty \infty<\infty<\infty$
$04-4 \pi \ln \infty$

∞

PS

oonomanm Novom

 moNTMOFOHEN incombutannonm

H－4OETMNOL －50HmmかmN
 어어어엉
 कौष onnrommin
ールサMNOいま゙

NmN

－momin omN－ Mットゥ

$\omega \rightarrow \infty \rightarrow \infty \rightarrow \infty$ MNOースーNース Mincunchininn －ロージロージロージ $\rightarrow \infty \rightarrow \infty \rightarrow \infty$
$川 \infty \infty+\infty+6$ のぱーN゙Nの rrinninnumin
0． 4 － 0 － $0 \infty 0 \infty \infty \infty \infty$

$=$

u） 0 mmm $0 \rightarrow+\infty$ $\cdots \underset{\sim \infty}{\sim} \infty \rightarrow \infty \in \infty$ －$+\cdots+\mathbb{N}$
 $-4-4-1+4-4 \infty$

 ○－

0

ーザ下にいmにが
 －ルローNNNのN

 －oopNiNNNN

$\underset{\sim}{2}$

 oninnininwin

 $\therefore 0$ ©00000：

 Ninning in moso8i

 －000000000000
甘ロNNmーのサのNNNす

 엉엉엉응응

 $00^{\circ} 0^{\circ} 0^{\circ 0} 0^{\circ}$
下 onv
 엉엉어엉

ダヴッグッペ～ ○夺Niñoñin

\qquad

m女anminnn N－0 0 ing 0 Nin

a \quad m 070.10000 000000000

6FHOサCOON OMOOHmNNN 5tink in winuld
 00060000

 3सmかNNrum
a．
ふN～心

 $00^{\circ} 0^{\circ} 0^{\circ}-40^{\circ} 0^{\circ} 0^{\circ}$

ナiomにmintaun サionocNonN
 －60000600

 NowmNoonN
 OOO OOOOOQ

ォーがorrano

osoderano

にのmmmmNNH

 000c心3000 －1－1－1－1－1－1－1

 0000000006

जNNONmMNOMNNU
 o 0 o 000 in un in un
 －

R / R
 かinaniontoman
 NNNNNMN

 000000000000
$\infty 5 * \operatorname{con}+0 \times \infty+\infty$ owndomnuono OANNNN onin in in in in

000000000000

 ＋oomrinNin NNH

 －0 $0 \infty 0 \infty 0 \infty$

α
α
0
－N10No $\circ 0^{\circ} 00^{\circ} 00^{\circ} 0^{\circ}$
 NN

Nino

－NFNMホMー゙m －in ingonana －i－1－－－－－$-\dot{-1}$ 000090000

 o onnoninun

$\rightarrow \infty<\infty<\infty<\infty<\infty$

「mののoーotに

のかのローがーザ

OたN゚NのロNー
 NHNOH
 $-4-4 \rightarrow-4 \rightarrow+4$

O0000600

जagombmrmmona

a	
$\stackrel{\leftarrow}{c}$	－a onarmmmm
	\rightarrow
α	
	NMNNMJtNo
	000

のキNのONFDO mm＊onnNNm nサMMNMNNM 헝ㅎㅇㅎㅇ $\rightarrow-\operatorname{Han}-\mathrm{m} \rightarrow-$

M $\because \sim \infty-\infty \rightarrow+15$ かNOONMNNN
\qquad

 －はのヘM～のmm 4mNMmmmmm

 トrmmッツ！n？
R / R

 ∞ MHNNNMNM

 $10 \log 00000$
000000000
$-\infty-\infty \infty$ のmレ ～ommanmmm ！ 1 MットMMm？
 サแOにの母のNN مnのmmmmmm

oonincoinษNmm＊！ にFHNNHEHNMNMた

$$
0_{1}
$$

0000000000000

R / R

 －i－－－－－－－－－ 헝ㅎㅇㅎㅎㅇㅎㅇ $\rightarrow+-1+-1+\cdots+-1$
 にmNmmmmm？ 엉ㅇㅇㅇㅇ
 －0000000．

NmmN

 －Hingminommmin

 NNNNm母ionoorn

 a ！！！！？！？！ッグ

 $\therefore 0^{\circ} 0000100000$

「 $\infty_{0} \infty \infty \infty+\infty \pi m m m \mathrm{~m}$

$05+\infty+\infty \rightarrow \infty$
 NWNODODO $000 \infty 0 \infty 00$
 $4 \infty \mathrm{~N}+4+4+4$

 $\rightarrow-4 \rightarrow-4 \rightarrow-4 \infty$

0
$0000 \infty<\infty<0$

 rtommmmmm ャッツッnnmmn －1－－－－－－－－ $-4-4+4 \rightarrow-4$

Nroonnwomn ocomかmmष廿「rmmmmmmm
$\rightarrow-4-4-4-4 \rightarrow-4$

anmunviraonow on minoroninnmmmin \leadsto n ！！！！mm？！

S＇3004d TVNOILコ3810

 $000^{\circ} 00^{\circ} 00^{\circ}$
moNm＋NHing जownonnmmm
 ammのにNmホ\＆ №．mmmmmm

$\underset{\sim}{2}$	－

\geqslant

 abeonNNmm

مnNNMNoOn incon耳

PITOT-STATIC PROBES

-0.0000000000.

 on woomm耳nNmm心

 Nogonmmmonmmuto

60
3
$0 . \quad 00786$
226.0
0.6
347.
101.4
エヒヒロロ3ッ

manonowtomant

 000000 $0-100000$

\therefore Nनmownrommooo

 NOHO

『のサベッのかのa

 000 000000

> onnonNTous○OMのザザが

-••••• 헝ㅇㅇㅇㅇㅇㅇㅇㅇ

0 허№N

0000000000000

 $\infty \infty \pi 00051 \pi m m m r$

- \quad $\infty \begin{gathered}\infty \\ m\end{gathered}$

$4 \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$ NMNM

6
$\rightarrow \infty \rightarrow \infty$

○下のmのテロかれmunt $m \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$
 N゙ゆNのminNomom

 $N+\infty+\infty+1 n+\infty+10$

 $\rightarrow \infty \infty \infty \infty \infty \infty$

 $-\infty \rightarrow \infty-\infty \rightarrow \infty$

NMNN
 がッローのホのm NmmN－

NHNないいmmu

 ＋onmommNo

```
a
```

```
a
```


$\underset{\sim}{2}$ 00 in in oino no

$0-1060 \mathrm{~mm}$ が キレッN？mmm？
－49090090

 ©OOOOOOO．

 －••••・ツM

 －MnmmonMM．

$m+\infty[5<\infty \infty \infty$ $-m \rightarrow \infty<\infty<\infty$ స끙․ㅇ․ㅇ․ $00^{\circ} 0^{\circ 0} 00^{\circ}$

คmッmmm゙M゙ の毋लmmmmmm
－
－
可第mmm
000

∞ Nun winmu
 Nownsonmm NmmN－

 ○ONがN～NM MonNONmmm

$\stackrel{5}{2}$
 omnonmmmm

のNTONNホいN以 4.688988 －0．00＇0．0．0．

のトの円ーかのaの 40 0 Ommmm
 －10

かのmm币 $\infty \rightarrow \infty \mathrm{mmmmmm}$ －in－－－－－－

Namanowomancot
 NNNNMENHEOOHN

かんmmーnサmが かNNサーOOOO －0．0000000

がーのがにいが のーのmのm゙もな unmmmmmmm

$\rightarrow-4-\infty+\infty$
 ベNがががか $\stackrel{H}{a}$

 $\therefore \dot{0} 00000$.

$$
\begin{gathered}
\mu a \infty \infty+\infty \\
0 N \infty \\
0 N \infty \\
0 \\
0
\end{gathered}
$$

gIRECTIONAL PROBES
$\infty N E \infty N O=0$ －rinááá vmNNNNNNN
0 －
 $m=-4-4-4-1+\cdots$
$\infty \propto \infty+\infty+\infty \times \infty$

$\stackrel{4}{0}$

 000000000

NTMぃmのm Nm inNawn wn m

$0 \rightarrow 60+\infty 000$

 000000000
$\cdots \infty 606 \pi \mathrm{~m}$ $10000 \mathrm{~m}=\mathrm{m} \boldsymbol{\mathrm { m }} \mathrm{m}$

HFWHW H न H H

 oro

∞ かo

0
 90000 200 0 O O 9
 －antinmoknaon のかールNNNにががN

$\rightarrow \infty 00$ かmかto NmもホかoNmN Nmm

がomoonulo上曰ining $000^{\circ} 00^{\circ} 00^{\circ}$
 かに世N10 mo

जक心ष
$-\operatorname{con}-\ln -1+$

 のNのmmmmmm
 00000000

Now HMEONR ！n！．！n？Mmin
 NmNN

にのmのいたかん

Og9090 900

ザ○にたにのサー －Hataracos のm○しかのmmo
$\stackrel{F}{2}$ $-\infty$ $-\infty \rightarrow \infty<\infty<\infty<\infty$
∞

NGinnsing ino $\cdots \infty<0<000$

 in NGontixinNmonn

 にかNm＋れかomonon

かの

000000000
－106010 0000 m MFOGNOGO8 $\therefore \dot{0} 0^{\circ} 00^{\circ} 0$

5

のONMANOLO か下F－HNKめN
 $>$
 NmNNr

OOOOOOOOO

かonoin ron in

$\cdots-4 \times-4+\infty$
$-104 \infty \infty \times \infty$ $\begin{array}{lll}+\infty & \infty & \infty \\ \infty & \infty & \infty \\ m\end{array}$

R / K
 ○○○́cóo

जnamNNMNN to

 00000000 ＋immmmmmm
 $-1+\cos -1+\ln -1$

Moin 50 ont
 （

サツかNamarm

Hw上にのみのーm サraxaのaかの サワmツrmmm？

S3dDtic 7 VNoil3jdio

＊$\because m$ mクmmo 亿000000

Noonocomweサnitin Monnoongongomn

 HONNOMAN जननलननलन

Ormonmषr． NGos ongog「जッルmッmmm
\square

$\rightarrow-\mathrm{CHManH-1}$
$\underset{\infty}{\infty}$

©0 00000000000

MNWボmたかUNなNホO

 OOOOOOOOOOOOO
 Noれ＊imanomann $\alpha_{0} \infty \sigma \pi \sigma_{1} \pi m m m m \infty$
a Nनinomprommooo ONGLmNNNONEFN
NNNMNUN

认oOntincr

comnomvinommin onNinfNoconanon

 $00^{\circ} 0^{\circ} 00^{\circ} 00^{\circ}$

NomNmNHNN ctranagas
\qquad

CHWHNHWH

のーのかの下がか
orinamanana
「がッグッMmm
a
000000000

$\therefore 00 \circ 0000-1$

$\underset{\alpha}{\infty}$

RUX	63
POTNT	23
CT	$0.006>79$
YIMD	277.9
PSIA	1.9
PRESS	39.

000000000

monmかN6mかmサmN oninctinotomatan

 $\stackrel{H}{5}$

HNHTMNMNOOMOO gognmaowoongon

$\frac{2}{x}$

2

がいのMボがす

ㄸNNunowinco Nu！
 $\underset{\sim}{\sim} \underset{\sim}{\infty}$

 $\infty \infty<\infty<\infty<\infty$

[^0]
[^0]: *For saif sy the Nationat Tachnical Information Service, Springlield, Virginia 22161

