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Abstract

Direct numerical simulation using the full three-dimensional, time-

dependent Navier-Stokes equations is used to investigate V/STOL jet induced

interactions. The objective of this numerical simulation is to compute

accurately the details of the flow field and to achieve a better understanding

of the physics of the flow, including the role of initial turbulence in the

jet, the influence of forward motion on hover aerodynamics, the collision zone

and fountain characteristics. Preliminary results are presented.
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i. Introduction

The fluid dynamics of impinging jets of V/STOL aircraft is complex, to say

the least. The complexity is compounded by compressibility, combustion and

heat transfer, as well as complex interactions between airframe and ground,

forward flight, oblique impingement, jet turbulence, jet exit profile shape,

etc. Clearly, an accurate prediction of the aerodynamic forces and moments on

the aircraft is not possible without understanding the associated flow physics.

V/STOL aircraft have different operating modes (hovering and transition in

and out of ground effect). The flow fields associated with these modes of

operation are substantially different. Many of the complex flow phenomena

associated with these flow fields are poorly understood, thereby restricting

our ability to optimize the aircraft design. Lifting jets entrain air, which

leads to induced suction pressures on the aircraft lower surface. When the

aircraft is hovering near the ground, further entrainment is caused by the

wall jets (associated with the ground). This significantly increases the

suckdown force on the aircraft. The problem becomes more complex in the case

of multiple jets. Here the wall jets collide and form a fountain that impinges

on the aircraft undersurface. While this impingement creates an upload, which

partly offsets the suckdown force, the fountain flow causes further reduction

in the pressure between the jets and the fountain. The complex flow fields

associated with multiple jets in ground effect are also not well understood.

Presently, experimental work is the main avenue followed to gain an under-

standing of flows associated with V/STOL aircraft. However, such studies have

addressed mostly global features and time-averaged measurements of impinging

jets. Experiments in this configuration are extremely cumbersome, and measure-

ments are crude and inaccurate owing to the flow being turbulent, globally

unsteady and three-dimensional. Characterization of this flow will require

measurements involving three-dimensional arrays of sensors. These sensors

(hot-wires, for example) have the constraints that they cannot discriminate

flow reversal from forward flow and are prone to probe interference. An array

of LDAs would be prohibitively expensive.

Numerical simulation provides the opportunity of studying the detailed

flow physics as a function of space and time. Although the complete flow

field around a V/STOL aircraft will be difficult to solve today, because of

the size limitation of present-day computers, some local flow domains, such as

the impinging jet flow, can be studied. The simulation can be either a direct

numerical simulation or a large-eddy simulation (LES) involving subgrid-scale

modeling. In fact, numerical simulation provides a number of advantages: it

provides the instantaneous distribution of all flow variables over the entire

three-dimensional flow field considered; it allows "measurements" of flow

properties not possible experimentally (for example, pressure within turbulent

flows); it can provide simultaneous "flow visualization" and "measurements" in

arbitrary planes.

Numerical experimentation is often more desirable than laboratory experi-

mentation, because the former allows independent control of the flow parameters

or any choice of arbitrary combinations of parameter values. Such independent

control or arbitrary combination is difficult in any apparatus. Similarly,
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variations of parameters like initial conditions, free-stream turbulence,
excitation frequency, excitation amplitude, etc., can be typically more easily
introduced in numerical experiments than in laboratory experiments.

The majority of the research work directed towards investigating V/STOL
flows has been experimental. Only within the past few years have sufficient
advances in computer capabilities madeit feasible to attempt numerical
simulation of the three-dimensional viscous equations for the V/STOLrelated
flow fields. With present computer capabilities numerical simulations cannot
replace experimental procedures. Nowever, they can complementexperimental
efforts in gaining a deeper understanding of the complex flow phenomena
associated with V/STOLflows. The design and analysis of traditional aircraft
componentshave benefitted greatly from numerical computations. Computational
methods are expected to have a similar impact on V/STOLproblems.

The computational work initially was limited to solving two dimensional
problems. Using an incompressible inviscid rotational flow model, Rubel
(1978) investigated the normal impingement of axisymmetric jets and the
oblique impingement of two-dimensional jets upon a flat surface. This model
was then extended to allow three-dimensional computations (Rubel, 1981).
Kotansky and Bower (1978) investigated planar turbulent jet impingement. They
solved the time-averaged Navier-Stokes equations using a one-equation turbu-
lence model. In this approach, it was necessary to specify the turbulence
length-scale distribution. To avoid this disadvantage, Agarwal and Bower
(1982) replaced the one-equation turbulence model by the two-equation (k-E)
turbulence model. The work of Kotansky and Bower (1978) was extended to solve
the problem of three-dimensional llft jets in ground effect by Bower et al.
(1979). This work was the first attempt to calculate interacting jets with
fountain formation. Computer limitations restricted the calculations to a
relatively coarse computational meshand to low Reynolds number. More,
recently Childs and Nixon (1985) solved the impingement problem for three-
dimensional jets using the time-averaged Navier-Stokes equations in conjunction
with the two-equation (k-E) turbulence model.

Work is in progress at Flow Industries on the direct numerical simulation
of complex V/STOLflows using the full three-dimensional, time-dependent
Navier-Stokes equations. The objective of this numerical simulation is to
compute accurately the details of the flow field and to achieve a better
understanding of the physics of the flow, including the role of initial
turbulence in the jet, the influence of forward motion on hover aerodynamics,
the collision zone and fountain characteristics. The computational tools
necessary have been partially developed. Preliminary calculations have been
performed using a relatively coarse computational mesh for a low Reynolds
number flow. The results presented here are not intended to be an accurate
simulation of V/STOLflow configurations. Nevertheless, they do indicate the
main features of these flows.
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2. Approach

In turbulent flows, there is a wide range of spatial and temporal scales.

The separation between the largest and the smallest scales of motion widens as

the Reynolds number increases. For V/STOL flows, the numerical resolution of

all relevant scales of motion is impossible. Modeling of some aspects of the

flow is therefore necessary. In the classical approach, based on Reynold's

ideas for solving turbulent flow problems, the Navier-Stokes equations are

averaged. All fluctuations are modeled, and only mean flow variables are

calculated. This approach has been used by various researchers but has met

with only limited success. In the V/STOL problem, different flow regions

exist in which the large-scale structures vary greatly from one to another.

It is therefore difficult to model the large-scale structures. To avoid this

difficulty, the large-eddy simulation (LES) approach is followed here. In

this approach, the large scales, containing most of the turbulent energy and

providing most of the important turbulent transport, are explicitly

calculated. The small-scale turbulence structures, which are nearly isotropic

and universal in character, are modeled in a simple, relatively crude manner.

Furthermore, LES can be used to investigate the temporal development of the

flowfield. This allows us to study a broader range of problems relevant to

V/STOL flows, e.g., the unsteady separation in boundary layers produced by

impinging jets (Didden and Ho, 1985), the evolution of large, spatially

coherent structures in the jet (Crow and Champagne, 1971) and the different

stability modes in the jet (Strange and Crighton, 1983).

The governing equations that are numerically solved are the full

Navier-Stokes equation for incompressible flow. When the Reynolds number is

too large to resolve numerically the entire range of energetic scales,

filtering is used to eliminate the smaller (subgrid-scale) motions. Filtering

introduces new terms, similar to Reynolds stress terms obtained in the

Reynolds-averaged equations, that contain the effect of subgrid-scale motions

on the numerically resolved motions. These subgrid Reynolds stresses can be

modeled using an eddy viscosity (see Moin and Kim, 1982).

The finite difference approximations to the governing equations are

written at the mesh points of a staggered grid (Harlow and Welch, 1965). The

pressure is determined at each time step by solving the governing Poisson

equation. Efficient methods for the direct solution of the discrete Poisson

equation are used (Buzbee et al., 1970). The Adams-Bashforth scheme is used

to advance the velocity in time.

The problem under investigation is that of an infinite row of jets

impinging on the ground (see Figure I). This problem, which contains the

essential features of twin jets impinging on the ground (see Figure 2),

simulates the hovering configuration. The jets may be inclined in the y

direction, which leads to a configuration associated with an aircraft in pitch

while hovering. By imposing a cross flow in the y direction, it is possible

to study the effects of the aircraft's forward motion during takeoff and
transition.

A computer code that solves the time-dependent Navier-Stokes equations has

been developed with the purpose of numerically simulating the problem of an
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infinite row of jets impinging on the ground. Subgrid-scale modeling, which
would allow the solution of problems at higher Reynolds numbers is currently
being introduced into the code. Although the code is not in its final form,
it has been used to obtain solutions that indicate the main feature of V/STOL
aerodynamics.

3. Numerical Results

The results presented here are preliminary examples that have been solved

using the code in its present form. A relatively coarse numerical mesh was
used, and the Reynolds number was assumed to be low enough so that filtering

was not required. The results presented here are not intended to be an accu-

rate simulation of V/STOL flow configurations. Nevertheless, the results of

the steady-state examples presented here indicate the main features of the

impinging jet flow. The unsteady behavior of the jet flow due to forcing at a

specific frequency has also been investigated.

3.1 Steady-State Calculations

The following three examples indicate some of the main features of V/STOL

flows. In these examples the plane x=xj (see Figure i) is assumed to be a
plane of symmetry and, unless otherwise stated, the computational domain is

defined by

0 = xj < x < xf = I

-2 = YB <Y <Yb -- 2

0 = Zg < z _< za = i

where all dimensions are normalized by the jet diameter. The jet velocity

profile in the direction of the jet axis is assumed to be given by

2

Qj(r) = 1- _-_. (i)

3

where Rj is the jet radius, r is the distance from the jet axis, and velocities
are normalized by the maximum jet velocity. The Reynolds number in these

examples is based on the jet diameter and the maximum jet velocity.

Example I:

In this example, the jet axis is normal to the ground plane

(_ = 90 °) and there is no crossflow (V = 0). The jet at a Reynolds

number (Re) of 300 is solved in a 18x72x18 (x,y,z) mesh.

Figures 3 through 9 show the main features of the flow generated

by a row of vertical jets impinging on the ground. The velocity

vectors in the planes x = x_ and x = xf are shown in Figures 3
and 4, respectively. The f_n-shaped fountain that results from the

collision of the two wall jets is apparent in Figure 4. The jet, the

wall jet, and the fountain can be seen in Figure 5. Figures 6
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through 9 show the pressure contours that indicate high-pressure
areas in the zones of jet-ground impingement, wall jet-wall jet
collision, and fountain impingement on the upper boundary.

Example 2:

In this example the jet axis is inclined at an angle _ = 60 ° to

the ground. A crossflow of V = 0.2 is imposed on the flow field.

The Reynolds number and mesh size is the same as in Example i.

Figures i0 through 13 show the main features of the flow gener-

ated by a row of inclined jets impinging on the ground in a crossflow.

In Figure i0 the ground vortex formed by the interaction of the

crossflow and the wall jet is apparent. The effect of the crossflow

on the fan-shaped fountain is shown in Figure Ii, where it is no

longer symmetric.

For the problem of a jet in a crossflow, two basic configurations are

relevant to V/STOL aerodynamics. In the first configuration, the jet impinges

on the ground. The main features of this flow are indicated in Example 2. A

second configuration results as the distance between the aircraft and the

ground becomes large and/or as the forward aircraft speed becomes large. In

this case, the jet does not impinge on the ground. This configuration is shown

in the following example.

Example 3:

In this example e = 90 ° , V = 0.7, and Re = 60. A 7x28x14 mesh is

used. The computational domain is defined by

0 = xj _<x _<xf = i
-2 = YB <Y <YB = 2

0 = Zg --<z _< Za = 2.

Figures 14 through 18 show the main features of this flow. Figure 14

indicates that the jet changes its direction before it reaches the ground.

As indicated in Figure 15, no fountain flow develops in this example since

there are no wall jets. The double vortex generated by the jet-crossflow

interaction is shown in Figure 16. As indicated by the pressure contours

shown in Figure 17, a high-pressure region develops upstream of the jet,

while a low-pressure region develops downstream of the jet in its wake.

Figure 18 shows the vorticity distribution in the y-z plane.

To investigate the effect of different inflow jet velocity profile on the

jet development, a series of steady-state calculations was carried out. Four

different initial jet profiles were investigated: the rn-profiles (where

n = 2,4,6) and the tanh-profile. The computational domain and grid resolution

were kept the same with the ground plane at H/D = 8, where H is the distance

between the upper and lower walls while D is the jet exit diameter. This is

in contrast to the steady-state calculations (Examples 1-3) where the ground

plane was kept much closer to the jet exit. In this study, the ground plane

was kept as far away as possible so that the jet development and stability
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would not be directly affected by the resonance effect of the ground plane.
The basic thrust of these steady-state calculations was to investigate
numerically the experimental observation that the flatter profiles (e.g.,
tanh, top-hat) are inherently moreunstable than the less flat profiles (e.g.,
parabolic). This experimentally observed instability has been attributed
mainly to the initial shear layer instability, which is more pronounced for
the broader profile (due to the thinness of the initial shear layer).
However, to observe numerically the shear layer instability, a very high grid
resolution is required near the jet lip, which at present is not possible due
to computational limitations. Furthermore, to obtain accurate results with
the available grid resolution, the Reynolds numberand the computational
domain had to be kept small, which is another limitation inherent in these
calculations. However, we expected that there are other overall features of
the jet development that will show the effect of varying the jet profile; the
present steady-state calculations were directed towards determining these
effects.

In the following, we present the steady-state solutions obtained for the
different jet velocity profiles. Wehave assumedthat the flow field is
symmetric in the x-direction and, therefore, only the half-plane (with respect
to the y-axis) is shown. The grid used in all these calculations is a
16x32x64 mesh, and the computational domain is defined as

0 !x/D < 1

-2 !Y/D _< 2 (2)
0 < z/D < 8

The ground plane is located eight jet diameters (H/D = 8) below the jet exit

plane, and a uniform grid distribution is used in the whole computational

domain. The jet velocity profiles are given by

Profile I: w. = w. (i - q2)
j jo

Profile II: w. = w. (i - _)
j jo

Profile III: w. = w. (I - n6)
j jo

Profile IV:
Wjo 1

w. = -- {i + tanh [b(-z- q)]}
J 2 fl

(3)

where q = r/R, R is the radius of the jet, and wi9 is the reference velo-
city, taken to be unity at the centerline of the¢jet. Here b = 2R/_, where

6 is the momentum thickness. We took b = 25/16, from Strange and Crighton

(1983) which is an empirical fit to Crow andChampagne's (1971) data two jet

diameters below the exit plane.

In the following discussion, the velocity profiles given by Equation (3)

will be identified as Profiles I through IV. Profile I is the parabolic pro-

file, and Profiles II and III are the consecutive flattening of Profile I.

Profile IV is based on the empirical fit obtained for Crow and Champagne's

data and is the closest to what has been observed in experiments. Profile IV

has a thinner initial shear layer that is naturally unstable. We therefore
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expect Profile IV to be the most unstable among those studied, and the present

calculations indicate that this is indeed so. It was found during our calcula-

tions that the flatter profiles (Profiles III, IV) became numerically unstable

when the jet Reynolds number was increased. This is basically due to the lack

of proper grid resolution, which is necessary for higher Reynolds number

calculations. Therefore, to make proper comparisons and to keep the solutions

time-accurate, the solutions presented here are all in the Reynolds number

range from 200 to 300.

Figures 19a through 19d give the steady-state vorticity contours for the

four velocity profiles (I through IV), respectively. [In all the following

figures, unless otherwise stated, the y-z plane refers to the plane x = xj,

while the x-z plane refers to the plane y = Yi (see Figure i).] For direct

comparison, the contour intervals are the sam_ in all the figures. The

Reynolds numbers are not the same for all the cases but are close enough to

make comparison possible. Except for Profile IV, all solutions are at nearly

the same elapsed time. Comparing the vorticity for different profiles shows

that the vortex zone above the ground plane is much larger for Profile IV as

compared to the other profiles. The vorticity levels also increase from

Profile I to the much flatter profile (Profile IV). Near the ground plane

there is an indication of a pinching effect on the vorticity line above the

vo_ ex zone in all the x-vorticity plots. This is perhaps because as the flow

spreads on the ground plane, a part of the flow gets entrained into the jet

region, thereby causing the vortex lines to get pushed towards the centerline.

In the wall boundary layer, a region of secondary vortical circulation

opposite to the large primary vortex appears, as can be seen in the

x-vorticity contours (Figure 19). Note here that solid lines indicate

vorticity out of the plane and dashed lines indicate vorticity into the

plane. This region of secondary vorticity also moves downstream along with

the primary vortex. This formation of secondary vorticity in the wall

boundary layer has been associated with boundary layer separation (Didden and

Ho, 1985), and the present calculations seem to predict qualitatively their

experimental observation. In Didden and Ho's experiments, they observed the

secondary vorticity lifting off the plate and wrapping itself around the

primary vortex. They also observed the breakup of the large primary ring

vortex as the flow continues to spread on the ground and attributed this to

possible azimuthal instability. This has not been observed in the present

calculations, however, due to the proximity of the outflow boundary to the

jet. With a larger computational domain and better resolution near the ground,

it may be possible to study these experimental observations. The general

picture is qualitatively the same for all the different profiles studied here

and is consistent with general experimental observations. However, direct

comparison is not possible due to the low-Reynolds-number simulations carried

out here and also due to the possible effect of the type of boundary conditions

employed. Higher resolution simulations on a large computational domain (in

the x- and y-directions) and at higher Reynolds numbers are necessary for

detailed comparisons with the available experimental data.

The appearance of the secondary vorticity of the opposite sign on the

ground plane is observed for all the velocity profiles studied here. To get a

better look at this secondary vorticity in the wall boundary layer, in

168



Figure 19e we show for comparison a higher resolution (24x48x24) calculation

with the ground plane at H/D = i and at a Reynolds number of 600. For this

calculation we assumed symmetry in both the x- and y-directions and, there-

fore, only the half-planes were calculated. The propagation of the primary

vortex in the downstream direction is evident in this figure, and the formation

of the secondary vorticity of the opposite sign is also very clear. Moreover,

the initial attempt by the secondary vorticity to wrap itself around the

primary vortex as they move downstream is also shown, consistent with the

experimental observation (Didden and Ho, 1985). However, this process is

affected by the outflow boundary location, and the wrapping process seems to
be inhibited.

To determine details of the pressure variation, we show the variation of

the pressure along the centerline in Figure 20a. The pressure values are

normalized by the maximum value at the stagnation point, and the centerline

location is also normalized by the distance between the jet exit and the

ground plane. The variations for both Profiles I and III are quantitatively

the same and, for comparison, some experimental data (Beltaos and Rajaratnam,

1973; Russell and Hatton, 1972) for the centerline pressure variation are also

presented. We found that most of the experimental data available are for

two-dimensional or axisy_metric hlgh-Reynolds-number turbulent flows and,

therefore, good agreement is not expected since the present calculations are

for low-Reynolds-number, three-dimensional laminar flow. The variation of the

calculated pressure is similar to that seen in experiments and indicates that

the present calculations are predicting qualitatively the observed pressure
distribution.

To determine the possible existence of an adverse pressure gradient, we

plotted the variation of the wall pressure (normalized by the stagnation

pressure) for both Profiles I and III, as a function of radial (x) direction,

in Figure 20b. The pressure decreases from the maximum at the stagnation point

until x/H = 0.085 (for Profile III) and x/H = 0.i (for Profile I), at which

point it starts to increase again indicating a change from a favorable to an

adverse pressure gradient. We could conclude based on this figure that there

is a possible occurrence of separation at x/D = 0.80 (for Profile I) and

x/D = 0.68 (for Profile III). However, this separation effect is possibly due

to the collision of the wall jets on each other and the formation of the

fountain. Also shown in Figure 20b are the available experimental data for

the high-Reynolds-number turbulent impinging jets, which indicate similar

variation. The appearance of an adverse pressure gradient on the ground plane

is interesting since it has been experimentally identified as the cause of

unsteady separation of the wall shear layer. Additional data is required to

confirm whether there is any separation occurring on the ground plane. For

example, the pressure variation in the y-direction and the variation of the

wall shear stress must be calculated to determine the location where it changes

sign, which would then indicate the separation point. The grid resolution

near the ground would also have to be improved to resolve the wall boundary

layer. These factors will be considered in more detail in the future study.

Figure 20c gives the variation of the steady-state centerline velocity

(normalized by the maximum velocity at the jet exit and the distance of the

jet from the ground plane) as a function of distance to the ground plane for
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Profiles I and III. Also shown are some characteristic experimental data for

high-Reynolds-number turbulent impinging jets. Though direct comparison is

not possible, the general trend in the present calculation is similar to that

of the experimental data. The solution also indicates that the decay along

the centerline is much slower for Profile III than for Profile I. This is

probably due to the fact that Profile III, with its flatter profile shape, has

a more distinct potential core as compared to Profile I, which is parabolic,

with hardly any potential core. Since in potential core there is (by defini-

tion) no dissipation, the velocity decay occurs slower and hence closer to the

ground plane for a Profile Ill-type jet as compared to a Profile 1-type jet.

In general, the steady-state solutions presented above for impinging jets

indicate qualitative agreement with experimental data. Four different initial

jet profiles were studied, and the comparison indicates that the flatter

profiles show more signs of instability. Furthermore, it was found that the

flatter profiles showed numerical instability for higher-Reynolds-number

simulations and, therefore, all the present calculations were carried out in

the Reynolds number range from 200 to 300. This numerical instability is

mainly due to the lack of adequate resolution in the computational domain and,

due to the computer resource restrictions, the largest mesh used is (16x32x64).

For quantitative comparison with experimental data and more detailed interpre-

tation of the complex flow structures observed here, a higher resolution (and

higher Re) simulation is envisioned in the future study.

The overall flow pattern indicates that the initial shear layer rollup is

not observed due to lack of resolution near the jet exit. However, the forma-

tion of the large primary vortex ring is observed, and when this vortex ring

impinges on the ground plane and spreads in the radial direction, the forma-

tion of s@condary vorticity of the opposite sign in the wall boundary layer is

also observed. This secondary vorticity in the wall layer may be due to

separation, since the pressure data indicate the presence of an adverse pres-

sure gradient near the outflow (in the x-direction). However, this is not

exactly the same effect as observed by Didden and Ho (1980) due to the effect

of the fountain in the present study. Comparison with experimental data for

high-Reynolds-number turbulent impinging jets indicates qualitative agreement

for the centerline and ground plane pressure variation and the centerline

velocity variation.

3.2 Sin$1e-Frequency Forcin$

3.2.1 Axisyrmnetric Forcing

The study of turbulent shear flows has undergone considerable change in

the recent past, brought about by the discovery of large, spatially coherent

structures in fully developed flows. Furthermore, it has been realized that

the initial instability of the flow can have a strong influence on its subse-

quent evolution. For example, Crow and Champagne (1971) observed that growth

and mixing of an axisyrm_etric jet were sensitive to harmonic forcing and found

a "preferred" frequency for the development of the jet for a Strouhal number,

St( = fD/U), of 0._. They also observed that, as the Reynolds number was
increased from I0 to I0 J, the instability of the jet evolved from a sinu-

soidal to a helical mode and finally into a train of axisymmetric waves. It
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has also been noted that the initial jet exit velocity profile plays an impor-
tant part in determining the form of instability that is observed. A top-hat
profile has been shownto be more unstable than a fully developed profile
(Batchelor and Gill, 1962; Grant, 1974) due to the shear layer instability.
In someexperiments, the instability of the initial shear layer occurs through
axisymmetric modes, whereas in other experiments a helical instability was
observed first (Strange and Crighton, 1983; Hussain, 1983). Suchdifferences
are attributed, in part, to the initial conditions of the experimental setup.
Therefore, to study the stability of jet flows, the initial instability
mechanismmust be understood. Moreover, since it has been shown that large
eddies in jet flows can be controlled by harmonic forcing, the effect of
controlled forcing on the instability mechanismis also important.

In the present numerical study of an impinging turbulent jet, the mesh
resolution is limited by the available computer storage. It is, therefore,
not possible to study the effect of a wide band turbulence, i.e., a wide range
of disturbances in frequency and wave numbers. However, it is possible to look
at the unsteady behavior of the jet flow due to forcing at a specific frequency
of disturbance. Wehave done somepreliminary forcing studies, whereby the
initial jet exit velocity is perturbed at a given frequency of oscillation.
An attempt has been madeto determine the characteristic (or preferred) fre-
quency for a given jet profile, and this frequency has been used to impose
unsteadiness at the jet exit. Weexpect that, if the frequency of disturbance
corresponds to the most unstable mode, someform of axisymmetric instability
will be observed.

To further understand the effect of the initial instability, we have
studied its effects on different velocity profiles, for example, Profiles I,
II, and III. Moreover, since the helical modeof instability has also been
experimentally observed, we have done somepreliminary calculations by intro-
ducing at the jet exit an unsteady disturbance that has azimuthal variations.
By imposing a disturbance in space (azimuthal) and time at the jet exit, we
have attempted to force the shear layer similar to the experimental condi-
tions. If the frequency of the disturbance corresponds to the most unstable
mode, then the shear layer should roll up in a manner similar to the experi-
ments. For both free and impinging jets (as in V/STOLflows), the most
unstable frequency (due to shear layer instability) is probably the samesince
this type of instability is a function of the shear layer thickness at the jet
exit, and the ground effect is negligible there. However, the jet preferred
modetype of instability (based on jet diameter), which appears in the later
stage of jet development, will probably be affected by the location of the
ground plane due to possible pressure feedback and resonance effects. When
the ground plane is far from the jet exit, this instability mechanismshould
correspond to that for a free jet. Somecharacteristic results are presented
for the single-frequency forcing at St = 0.3 for the computational domain used
in the steady-state calculations [(Equation (2)]. The forcing was begun after
the flow field had reached steady state. Somestudies were also carried out
for the case when the forcing was initiated before the flow field reached
steady state, or before the large primary vortex ring reached the ground plane,
to determine the effect of initial transients on the instability mechanismand
its effects on the primary vortex development.



For these single-frequency studies the jet exit velocity was perturbed

such that

w = w,[l + _(t)] (4)
3 ]

where w. is the original jet profile given by Equation (3) and E(t) is a

sinusoi_al pulse defined by a frequency, _ and an amplitude, A. At present,

the frequency used in all the axisymmetric forcing studies corresponded to a

Strouhal number, St = 0.3. The amplitude of the forcing was varied from I0 to

30 percent of the mean velocity. These forcing levels were relatively high as

compared to experimental forcing studies (Crow and Champagne, 1971). However,

numerical simulation with lower forcing levels would require more forcing

cycles (partly due to the low Reynolds number) and hence more computer time,

which was not available. Therefore, it was decided to study qualitatively

rather than quantitatively the effect of forcing on the jet. It must be

pointed out here that available literature indicates that numerical simulation

of forced three-dimensional free or impinging jets has not been studied in

detail and, therefore, these preliminary calculations are directed toward

determining a possible future direction in the study of excited free and

impinging jets. We intend to carry out more detailed and higher resolution

forcing studies in the future that are tailored to make direct comparisons

with experimental studies possible.

Figures 21a through 21e give the vorticity contours for a jet of Profile I

at Re = 200 and forced at St = 0.3 with a 30-percent amplitude level plotted

every _/2 intervals of a forcing cycle. The forcing was begun after the flow

field had reached steady state, and the data shown are for the fourth cycle of

forcing. All vorticity contour intervals are maintained the same to facilitate

comparison. Periodic shedding of the large vortex ring is clearly evident in

these figures. As the ring vortex approaches the ground, the vorticity spreads

and the ring vortex loses its identity. The spreading of the vorticity also

causes a bulge in the vortex lines as it approaches the ground. As the primary

vortex moves down the jet, a new vortex ring appears there, which also subse-

quently is shed. Comparing Figures 21a and 21b, which show the vorticity

contours at the beginning and the end of the fourth forcing cycle, we see that

the solution essentially repeats itself. Hence, we can conclude that the

period of vortex shedding is essentially the same as the period of forcing.

If we measure the distance between two successive primary vortex cores, we

obtain a wavelength X/D = 2.1. This compares reasonably well with Didden and

Ho's (1985) wavelength of X/D = 1.7. For St = 0.3, the frequency of the

present forcing study is also 0.3 (since, here, D = U = I). Then the convec-

tion velocity of the vortex ring is Uc = %f = 0.63 U. The experimental data

of Didden and Ho (1985) indicate Uc = 0.61 U, which indicates that the present

simulation can predict reasonably the global b_havior of forced impinging jets.

Comparing the y-vorticity component at different times, we see that the

vortex has a tendency to elongate as it approaches the ground plane, where it

finally merges into the originally steady ground vortex. The formation of

secondary vorticity of the opposite sign in the wall layer is also observed in

these figures. It is possible that, during these forcing studies, the wall

boundary layer undergoes unsteady separation as was observed by Didden and Ho
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(1985). In viscous flows, the wall acts as a vorticity source, and when the
ring vortex impinges on the ground and starts to spread in the radial (x,y)-
direction, it induces a shear layer on the wall where a secondary region of
opposite vorticity appears. As shownby Didden and Ho (1985), this secondary
vortex region can exist prior to separation and, therefore, separation is not
the reason for the appearance of the secondary vorticity. However, due to the
external forcing, the wall shear layer is also unsteady and may possibly
separate, and secondary vorticity is always associated with separation. Lack
of resolution near the wall madeit difficult to determine the point of separa-
tion (if any) in these unsteady calculations. For comparison, we show in
Figures 22a through 22d, the vorticity contours for the forced case of Profile
III under the sameconditions as for Profile I. In general, the vorticity
pattern is similar though the levels are muchhigher and more details of the
ring vortices are evident.

A similar forcing study was donewith the flow at different stages of its
initial development with a view to determining the effect of controlled forcing
on the transient development of an impinging jet. This has somerelevance to
V/STOL-type flow fields, since in reality the steady-state situation is never
achieved and instability waves are probably excited during the transient
development. In general, the forcing study with initially unsteady flow indi-
cates that the primary vortex ring is shed periodically as before, with the
shedding repeating itself each period. This indicates that the unsteadiness
in the flow field does not significantly affect the flow region close to the
jet exit partly due to the fact that the effect of forcing is muchstronger
near the exit. However, there is a clear indication that the consequent
development of the primary ring vortex and its interaction with the ground
plane does not repeat itself. There is also some indication of vortex stretch-
ing and tearing near the ground. The region of secondary vorticity continues
to increase as a function of time, and the initial ring vortex near the ground
decreases in s_ze and seems to stay fixed at its initial impact position.

To obtain an idea of how the vorticity field looks in three dimensions, we
present a series of figures in Figure 23 in which we show the three-dimensional

3
perspective view of the total absolute vorticity, I_01= _ I_.I, where i=1,3

i=l i
indicates the three coordinates. The vertical axis is in the z-direction, and
the x-y plane is shown at the bottom. Since we assumedsymmetry in the
x-direction, only the half-plane is shown. These perspective plots show the
three-dimensional absolute vorticity surface at a given time. The level in
the figure indicates the value of the [co[ surface shown, such that all values
of I_I greater than the given level are contained within the three-dimensional
[co[ surface. These levels were chosen such that 12 percent of the volume of
the computational domain is contained within the three-dimensional surface.
If the level of vorticity is increased, the higher values of vorticity that
would be shownwould be contained in a smaller volume. The 12-percent value
was chosen since it gave the best overall perspective of the vorticity surface
in three dimensions. These plots do not show the vorticity direction, since
only the absolute value of the vorticity is shown.

Figure 23a gives the three-dimensional vorticity surface for steady state
of Profile I at Re = 200. The primary vortex structure above the ground can
be clearly seen. Also observable is the secondary vorticity imprint on the

_73



ground plane. The space between the two vortex tube-like structures in the

jet does not imply that there is no vorticity present there. Instead, what it

means is that the vorticity level there is lower than the level shown.

Figure 23b gives the three-dimensional vorticity surface in 12-percent volume

for the case of forcing at St = 0.3 of Profile I flow. This figure shows the

characteristic bulges due to the primary vortex shedding and also indicates

that the vorticity level shown does not remain similar to the steady-state

case shown in Figure 23a. Figure 23c shows the steady-state vorticity surface

(again in 12-percent volume) for Profile III at Re = 200. The vorticity

levels are higher, indicating that in the same volume as in Figures 23a and

23b, more vorticity is present. The structure of the ground plane vortex is

also quite different. Forcing this steady-state solution at St = 0.3 shows a

more distinct pattern of vortex shedding as can be seen in Figure 23d, which

is the forced vorticity surface for Profile III.

Three-dimensional perspective plots, such as those shown in Figure 23, can

be used to get an idea of the complicated three-dimensionality of the flow

field and the associated structures in the flow. It cannot, however, be used

to obtain a detailed picture of the actual flow (as shown in the vorticity

contours before) since the final details are usually smeared and hidden inside

the vorticity surface such as that shown in Figure 23.

3.2.2 Axisymmetric Forcing with Crossflow

The numerical code developed so far is capable of investigating additional

flow phenomena relevant for VTOL-type flow fields. Examples of such flows are
impinging jets in a crossflow, which models the forward motion of a VTOL air-

craft close to the ground, and inclined impinging jets, which models a VTOL

aircraft in a climb mode. We have carried out some preliminary forcing studies

for such complex phenomena. For these simulations we used an 18x72x18 mesh in

a computational domain defined by

-I < x/D < 1

-2 < y/D < 2

o <_z/D _<1

(5)

such that the ground plane is very close to the jet exit. We therefore expect

the presence of the ground to have an effect on the flow field generated.

In the following, we discuss the effect of unsteady forcing at the jet

exit in the presence of crossflow. The grid mesh used in these calculations

was 18x72x18 with symmetry in the x-direction. These simulations were carried

out with forcing at St = 0.3 and a crossflow of 40 percent of the mean velo-

city. The amplitude of the forcing was also 40 percent of the mean value.

Simulation with 20-percent forcing amplitude was also carried out, and the

results were qualitatively the same, though the higher amplitude forcing case

showed the features of the flow field more clearly and is presented here. The

results presented in the following figures are at equal time intervals and

therefore do not correspond to any one complete cycle of the forcing. However,

they show some interesting flow phenomena that merits presentation.
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Figure 24a gives the velocity distribution in the y-z plane as a function
of time. The solution indicates the periodic formation of a clockwise vortex
near the ground. This vortex is a direct consequenceof unsteady separation
of the wall shear layer. This is due to the adverse pressure gradient that
periodically occurs on the ground plane. Examining the pressure gradient for
the corresponding times (not shownhere) indicated that there is high pressure
ahead of the vortex zone and lower pressure behind the vortex zone, resulting
in separation of the wall shear layer and lift off from the ground, which
results in the vortex formation. The vortex disappears when the pressure
gradient periodically changes from adverse to favorable. Though the solutions
presented in these calculations are not for any complete forcing cycle, the
results do indicate that the vortex forms due to the periodic variation in the
jet velocity. This results in periodic formation of the adverse pressure
gradient near the wall, causing the wall shear layer to undergo unsteady
separation and form the vortex zone.

Figure 24b gives the corresponding velocity distribution in the x-z plane
at y = Yd (see Figure i) for the sametimes. The flow field shows that the
large primary vortex zone completely dominates the region above the ground
plane. This is due to the proximity of the ground to the jet exit. The flow
patterns also indicate the periodic formation of a "kidney"-shaped vortex
region. Note that this kidney-shaped vortex zone is not the sameas the one
observed in jets with crossflow (Andreopoulos and Rodi, 1984).

Figures 25a and b gives the corresponding vorticity in the two center-
planes. The shedding of the primary vortex is clearly evident. _owever, the
vortex ring is no longer symmetric and is compressedon the side that faces
the crossflow, as can be seen in the y-z plane. The vorticity pattern is much
more complex, with the primary vortex ring distorted by the effect of cross-
flow. The secondary vorticity region is clearly evident in both the y-z and
the x-z planes. However, the region of secondary vorticity also periodically
moves, indicating that the location of the separation point is also a function
of the periodic formation of the vortex zone. The secondary vorticity zone
also showsperiodic attempts to wrap itself around the primary vortex core
(x-z plane), but does not seemto complete itself, perhaps due to the proximity
of the downstreamboundary.

In conclusion, single-frequency axisymmetric forcing studies at St = 0.3
have been carried out for various initial jet profiles. The solutions indicate
good qualitative agreementwith experimental observations of impinging jets.
The flatter profiles (Profiles III and IV) showmore signs of instability as
compared to Profile I. The primary vortex shedding frequency corresponds very
closely to the forcing frequency. These forcing studies show that the axisym-
metric instability modecan be excited, but additional forcing simulations need
to be carried out to determine the most unstable frequency (for jet preferred
instability), since a range of 0.2 < St < 0.5 has been observed to be unstable
experimentally. Also, it is not clear at present what the presence of the
ground plane has on the instability mechanismin terms of modification of the
unstable frequency. Due to lack of resolution, the most unstable frequency for
the shear layer instability was not observed. This frequency would correspond
to St = 0.017 (based on the shear layer momentumthickness). But forcing
studies at this frequency have not been carried out at present because of the
lack of resolution to observe the shear layer rollup. However, the forcing at
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the jet preferred mode (for St = 0.3) showeda periodic shedding of axi-
symmetric vortex rings. The calculations also indicate the formation of
secondary vorticity in the wall shear layer of the opposite sign consistent
with experimental observation (Didden and Ho, 1985). This region of secondary
vorticity maybe due to separation of the wall shear layer, and there are some
indications that this is indeed so. The presence of the adverse pressure
gradient on the ground plane is probably due to the collisions of the wall
jets at the base of the fountain. There is someindication of unsteady
separation on the ground plane. This unsteady separation phenomenonseems to
be a consequenceof external forcing and indicates that the forcing technique
can be used to study the separation phenomena,which is of great interest and
is a region not well understood. More detailed calculations with a higher
resolution grid are necessary before any further conclusions can be made.

Our forcing study of the impinging jet in a crossflow indicates that there
is an unsteady formation of a ground vortex, again probably due to the change
in the pressure field (due to forcing), resulting in unsteady separation of
the wall shear layer and the consequent rollup of the wall shear layer.

The effect of the ground plane on the forcing seemsto be minimal when the
ground plane is far from the jet exit. More research is necessary, however,
to determine howthe ground plane location would modify the instability
mechanism. It is clear that the jet shear layer instability mode (not observed
here) would not be affected by the ground plane, though the jet preferred mode
would probably be affected by the wall due to possible feedback from the wall
resulting in pressure resonance effects. The present calculations are for
incompressible flows and, therefore, there is no acoustic field (noise)
generation during the impingement process. There could, however, be effects
of the variation of the hydrodynamic pressure in the region between the jet
and the impinging wall, which could result in somemodification of the
impinging jet stability mechanism. This is due to the fact that for impinging
jets there are three modesof instability: the jet shear layer instability
(based on the shear layer thickness), the jet preferred mode (based on the jet
diameter), and the resonance mode(based on the location of the ground
plane). All three modesof instability can be excited and are very important
in the study of impinging jets. At present, only the jet preferred modehas
been studied in these simulations, and additional parametric studies are
necessary to determine the interaction between the three modesof insta-
bility. This is an area of research that will be considered in more detail in
the future study.

3.2.3 Single-Frequency Forcing with Azimuthal Variation

Forcing studies were also carried out to determine whether the helical

mode of instability can also be excited. For this purpose the jet was forced

at a given frequency with an azimuthal variation. The forcing function is

assumed to be of the form

w.(x, y, t) = w.(x, y) [I + CH(X, y, t)]
] 3

(6)
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where the forcing function eH(X, y, t) is defined as

ell(x, y, t) = A sin(hint + kO) (7)

where _ is the forcing frequency and n = i, 2, . . . gives the various modes.

Also, A is the forcing amplitude and O [= tan-l(y/x)] is the azimuthal varia-

tion with k as the wave number. The solutions presented here are for n = k = I,

which corresponds to the fundamental mode excitation with an azimuthal varia-

tion. Results for some preliminary calculations were recently presented (Rizk

and Menon, 1985). These results indicate that the helical instability mode

can be excited by forcing with azimuthal variation. The initial forcing

simulations were carried out with a coarse (14x17x32) mesh at a low Reynolds

number of i00. The ground plane was located at H/D = 5 and, therefore, the

initial jet development is close to that for a free jet. The Strouhal number

corresponding to the frequency of forcing was varied (0.08 < St < 0.5) to

determine the effect of the frequency on the excitation of the instability.

The results shows that the effect of forcing on the jet development is signifi-

cant, even in these low-Reynolds-number and coarse-grid calculations. In

these preliminary study, the excitation was begun before the jet reached the

ground plane and, therefore, the instability was excited during the unsteady

development of the jet. Characteristic vorticity contours for helical forcing

at St = 0.165 is presented in Figure 26 which showed some sort of alternate

vortex shedding. There seems to be an indication that a flapping mode of

instability has been observed, but due to the fact that these studies were

with a coarse mesh, the details of the instability are not clear.

To study the helical instability mechanism in even more detail, a series

of forcing simulations for St = 0.3, 0.46, 0.67 was carried out using the

higher resolution grid (16x32x64) and the computational domain given by

Equation (2). The general pattern of instability was observed to be similar,

and here we show the characteristic results for the forcing case with St = 0.3.

In this calculation, the forcing amplitude was 30 percent of the mean, and the

forcing was initiated after the flow field had nearly reached steady state.

Due to computer resource limitations, it was decided not to take the solution

out to complete steady state at present. Figure 27 gives the vorticity

contours in the two planes for forcing at St = 0.3 plotted every w/2 of the

seventh period of forcing. Note here again that no symmetry assumptions have

been made and the whole computational domain given by Equation (2) has been

calculated. The jet is therefore located in the center of the top surface.

Since these figures represent a complete cycle of forcing, we can follow the

development and the convective motion of the vortex rings. As can be clearly

seen in these figures, the vorticlty is shed alternately at the jet exit, and

there is no sign of the axisymmetric mode of the instability. There is also

an indication that the vortex core may be undergoing some sort of pairing.

The period of vortex shedding is the same as the period of forcing, as can be

seen by comparing the figures for the beginning and the end of the period. As

pointed out by Hussain (1983), it is possible that what is observed may not be

the helical instability but rather tilting of the axisymmetric ring vortex due

to the azimuthal variation of the flow velocity. It is clear that the form of

instability observed during forcing with azimuthal variation is quite different

from that observed during the axisymmetric forcing studies.
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In conclusion, detailed calculations with a relatively fine meshhave been
carried out to study the effect of both axisymmetric and helical forcing of a
low-Reynolds-number impinging jet. Only a single-frequency forcing study has
been carried out in detail. The results indicate the characteristic shedding
of the vortex rings as a function of forcing frequency during axisymmetric
forcing, and the twisting and alternate shedding (or tilting) of vorticity is
observed for helical forcing. Pressure variation along the ground plane shows
the appearance of an adverse pressure gradient in the x-z plane, which is
probably due to the fountain effect in the outflow boundary. A region of
secondary vorticity is present in the ground plane, which is consistent with
experimental observation (Didden and Ho, 1985). Due to lack of resolution and
data (in the y-z plane) in the wall region, it was not possible to determine
conclusively whether there was any unsteady separation in the wall layer during
the forcing, which has been experimentally observed. The present calculations
indicate that the numerical simulations carried out here for both steady-state
and forcing cases showedqualitative agreement with experimental observations.
However, there are manyaspects of the study that warrant improvement and that
will be considered in the future research. For example, the grid resolution
and the Reynolds numberwill be increased for a more realistic simulation by
using subgrid-scale modeling and grid refinement. Additional forcing studies
to determine the effect of the ground plane on the instability development will
also be carried out. More realistic turbulence simulations will be carried
out by imposing a random turbulence field at the jet exit. Grid resolution
near the jet exit will be refined to observe the shear layer rollup. Addi-
tional data in the ground plane will be sampled to determine whether there is
any unsteady separation occurring in the wall shear layer during forcing.
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a. Profile I, Re = 200 
Steady State 

b. Profile 1, Re = 200 
Forced 

c. Profile 111, Re = 200 
Steady State 

d. Profile 111, Re = 200 
Forced 

Figure 23. Perspective Plot of the Absolute Total Vorticity Surface in Three Dimensions 
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T =  17.5 

T-21.4 

Figure 24. Velocity Distribution for Profile I at Re = 300 with 4Ooh Crossflow and Forced 
Axisymmetrically at St = 0.3 
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X - Vorticity Component, Y-Z Plane , x = Xj 

T = 15.56 T =  17.5 T =  19.44 T=21.4 

tx 
Y - Vorticity Component, X-Z Plane, y = Yj 

Figure 25. Vorticity Contours for Profile I at Re = 300 with 4Ooh Crossflow and Forced 
Axisymmetrically at St = 0.3 

a. X - Vorticity Component, Y-2 Plane, x = Xj 

b. Y - Vorticity Component, X-Z Plane, y = yj 

Figure 26. Vorticity Contours for Profile I at Re = 100 and Forced Helically (Azimuthal 
Variation) at St = 0.165 
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