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Abstract--A study has been conducted to investigate the effects of dynamic

inflow on rotor-blade flapping and vertical motion of the helicopter in

hover. Linearized versions of two dynamic inflow models, one developed by

Carpenter and Fridovich and the other by Pitt and Peters, were incorporated in

simplified rotor-body models and were comparedfor variations in thrust

coefficient and the blade Lock number. In addition, a comparison was made

between the results of the linear analysis, and the transient and frequency

responses measured in flight on the CH-47Bvariable-stability helicopter.

Results indicate that the correlations are good, considering the simplified

model used. The linear analysis also shows that dynamic inflow plays a key

role in destabilizing the flapping mode. The destabilized flapping mode,

along with the inflow modethat the dynamic inflow introduces, results in a

large initial overshoot in the vertical acceleration response to an abrupt

input in the collective pitch. This overshoot becomesmore pronounced as

either the thrust coefficient or the blade Lock number is reduced. Compared

with Carpenter's inflow model, Pitt's model tends to produce more oscillatory

responses because of the less stable flapping modepredicted by it.
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slope of the lift curve (rad -I)

vertical acceleration of the aircraft (ft/s 2)

factor to account for dynamic inflow models used (CO = I

model, Co = 0.639 for Carpenter model)

thrust coefficient (CT = T/0_R2(_R) 2)

blade chord (ft)

blade moment of inertia about flapping hinge (slug-ft 2)

blade mass-moment about the flapping hinge (slug-ft)
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mass of the total aircraft (slug)

apparent additional air mass, m = O.637p(4/3)_R 3 (slug)
a

number of blades

rotor radius (ft)

Laplace transform variable

thrust (ib)

inflow perturbation (ft/s, positive downward)

perturbation in aircraft vertical velocity (ft/s, positive downward)

initial steady vertical velocity of the aircraft (ft/s)

I - NM_/mI B

blade Lock number (y : 0acR4/I 8)

inflow ratio (T° = + (CT /2) I/2 )
O

rotor angular velocity (rad/s)

rotor solidity ratio

blade flapping angle (rad, positive upward)

air density (slug/ft 3)

v/_R

time rate of change of x

perturbation of x

collective pitch (rad)

collective stick displacement (in.)

I. INTRODUCTION

There is a trend toward using superaugmented, high-gain flight control

systems [1,2] for the military rotorcraft in order to meet the requirements

for demanding mission tasks such as nap-of-the-Earth (NOE) flight or aerial

combat. In the design analysis of such high-gain control systems, it is now
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essential that high-order dynamics of the system components be adequately

modeled, in contrast to past practice when only the lower frequency, quasi-

static, rigid body flight dynamics were used in the design of low-gain flight

control systems. The requirement for adequate modeling of the high-order

dynamics for high-gain flight control systems used in rotorcraft was found,

for example, in recent flight investigations using a variable-stability

research helicopter [3,4]. These investigations showed that, not only high-

order elements such as rotor dynamics are required (Miller [5], Ellis [6], and

Hall and Bryson [7]), but other high-order effects such as dynamics of sensor

filters, servo actuators, and data processing delays of the airborne computer

must also be adequately modeled.

Inclusion of air-mass dynamics associated with a lifting rotor may also

prove to be important in the design of a high-gain flight control system for

rotorcraft. Recent research [8-12] in dynamic inflow has shown that the

frequencies of the inflow dynamic modes are the same order of magnitude as

those of the rotor blade flapping and lead-lag modes, and as such, the dynamic

inflow has a significant influence on the aeromechanic stability of the rotor

system. These research efforts have focused mainly on the ground- and air-

resonance problems, and have been concerned with the inflow dynamics associ-

ated with the pitch and roll motions of the rotor hub. Little has been done,

however, since the original work of Carpenter and Fridovich [13] that has

considered the interaction of dynamic inflow, rotor-blade flapping, and the

vertical motion of the helicopter. These items are of particular interest in

flight dynamics and control associated with such high bandwidth NOE tasks as

rapid masking and unmasking vertical maneuvers.

In 1953, Carpenter and Fridovich [13] proposed a nonlinear dynamic inflow

model to investigate the transient rotor thrust and the inflow buildup during
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a Jump take-off maneuver. The model permitted calculations of the responses

of inflow, flapping, and thrust to large inputs in collective pitch. The

results of calculations were in good agreement with the experimental test data

obtained from a helicopter test stand with no aircraft motions. The inflow

transient was found to exist for less than I sec after the blade pitch reaches

its final value; the thrust overshoot was calculated to be about 100% (some

10% greater than measured) following a very rapid pitch increase. The non-

linear dynamic model that they proposed, while convenient for nonlinear simu-

lation, provides little insight into the influence of the operational condi-

tions (such as thrust coefficient), and the mass and inertia properties of the

rotor blade on the thrust response and helicopter vertical motion.

This paper discusses the results of linear analyses conducted'to gain

better insight into these parametric effects. The use of linear analysis also

expedites the development of a simplified mathematical model for use in the

design analysis of high-bandwidth control systems for rotorcraft. One such

linear analysis was conducted based on the nonlinear dynamic inflow model of

Carpenter and Fridovich [13]. A nonlinear version of the Pitt-Peters dynamic

inflow model [11,12] which was developed recently based on unsteady actuator-

disc theory, was also linearized and incorporated into a simple rotor model

[14,15] for a comparative investigation which included variations in thrust

coefficient and the rotor-blade Lock number to assess the effect of dynamic

inflow on the thrust response and helicopter vertical motion.

The remainder of this paper is organized as follows. First, the develop-

ment of the linear equations of motion for the dynamic inflow, flapping, and

vertical response characteristics of a hovering helicopter is presented. The

results generated from the linear analysis are then compared with the tran-

sient and frequency responses measured inflight on the variable-stability



CH-47Bresearch helicopter. A detailed discussion of the parametric effects

and a summaryof the results of the study completes this report.

2. DYNAMICINFLOWMODELS

The analysis of the influence of dynamic inflow on helicopter response in

the vertical axis focused on two dynamic inflow models related to the thrust

of the lifting rotor• The first model was developed by Carpenter and

Fridovich in 1953 [13], and the second model was developed by Pitt and Peters

[11,12] in 1981. Carpenter extended the simple-momentumtheory for steady-

state inflow to include the transient inflow buildup by introducing the

"apparent additional mass" of air ma participating in the acceleration.

With a steady aircraft vertical velocity w, and accounting for blade flap-

ping, the expression for the instantaneous thrust becomes[13]:

T = m v + 2_R2pv(v - w + (2/3)_R)
a

(I)

By analogy with an accelerating impervious disk, Carpenter defined the appar-

ent additional air mass to be 63.7% of the air mass of the circumscribed

sphere of the rotor. Equation (I) thus fits the two end points: at the

moment that the inflow transient begins, and at the final steady state. In

between, Eq. (I) may not be exact, because the flow fields of the impervious

disk and the helicopter rotor are not strictly analogous.

Now expressing (I) in terms of thrust coefficient, and noting that

m a = 0.637p(4/3)_R 3, yields

CT : 0.849 _ + 2_ - _-_ + (2)



where

5 v
nR

Linearizing about the initial conditions, v : Vo, w : Wo, and 8 : O, results

in the following perturbation equation:

_T : 0.849 v + 2 5o - _-R 25o _-R + 3 _o (3)

The Pitt-Peters dynamic inflow model was developed based on unsteady

actuator-disc theory [11,12]. Closed-form formulae were obtained that relate

transient rotor thrust and pitch and roll moments to the transient response of

the rotor induced-flow field. Applying the Pitt-Peters model in hover, the

inflow response to the transient thrust (the nonlinear version with

"corrected" value for M 12) is reduced to
11

if128 
CT = _ _75_/ d-t + 2VT5

(4)

where VT is the normalized total velocity at the rotor. In order to provide

a direct comparison with the Carpenter-Fridovich model above, Eq. (4) is

extended to include the effects of the vertical motion of the aircraft and the

blade flapping, as follows:

- _ dt + 2 - _-_ + _ 5 (5)

Equation (5) will henceforth be called the Pitt-Peters model (or the Pitt

model for brevity). By comparing Eq. (2) and Eq. (5), it is clear that the

two models are now identical with one exception: the Pitt-Peters model



smaller apparent additional air massby about 64%than does the Carpenter-

Fridovich model. Becauseof the smaller value of ma associated with the

Pitt-Peters model, the time constant of the inflow modeis also smaller as

will be discussed in more detail later.

3. EQUATIONSOFMOTIONIN HOVER

The small-disturbance equations of motion are obtained by combining the

Pitt-Peters dynamic inflow equation described in the preceding section with

the flapping equation [14,15], and the vertical motion of the helicopter. The

results are shown in Table I for an articulated rotor with no hinge offset or

pitch-flap coupling. The fuselage drag and the effects of rotor downwashon

the fuselage are neglected. In these equations, the value of the constant

Co is I for the Pitt-Peters dynamic inflow model, and is 0.639 for the

Carpenter-Fridovich model. It can readily be verified, in fact, that the set

of equations in Table I is identical to that of the linearized version of the

set of nonlinear equations developed in Ref. [13], if the rotor RPMis assumed

to remain constant.

To provide somebackground for the results to be discussed in the subse-

quent sections, it is important at this point to examine two special cases:

(I) the quasi-static equation, and (2) hover equations with no aircraft

motions.

3.1 Quasi-StaticEquation

The classical quasi-static equation for the uncoupled vertical motion of

the helicopter can now be reduced from the general equations in Table I by

assuming that the inflow and the flapping reach their steady state instanta-

neously upon an input in collective pitch. Setting the time rate of change in
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inflow, the flapping rate, and flapping acceleration to zero, the fourth-order

equation in Table I reduces to the following first order equation:

= ZwW+ Zee (6)

where

Z = _ _aa(CR) (7)
w 8(m/_R2)(1 + a_/16_ )

O

4
Ze : - _nRZw (8)

As expected, the quasi-static equation shown above does not contain the param-

eter Co and is, therefore, independent of the dynamic inflow model used.

Note also that the quasi-static derivatives Zw and Z9 are independent of the

mass and inertia properties of the rotor blade. These derivatives vary sig-

nificantly with flight conditions such as air density, thrust coefficient, and

disc loading. The quasi-static derivative Zw (commonly called vertical

damping) as expressed in Eq. (7) is in good agreement with the approximation

given by Seckel in Ref. [17].

3.2 Hover Equation with No Aircraft Motion

To compare the predicted response with Carpenter-Fridovich's experimental

data from a hover-test tower, it is instructive to examine the case wherein

the aircraft motion is absent. With the vertical motion neglected, the

coupled inflow and flapping equations become:
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25_R * Co
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8

0 (9)
0

From this set of equations, several versions of reduced forms are given in

Table 2, including the "quasi-steady inflow" approximation [16], which, in

effect, assumes that the apparent additional mass is zero. It is clear from

this table, that for the quasi-steady inflow approximation there exists no

equivalent Lock number that accounts for the vertical inflow effect in the

flapping equation. This result is in contrast to the work of Curtiss and

Shupe [16], in which they discovered that there is an equivalent Lock number

associated with the pitch-and-roll motion of the helicopter when the quasi-

steady inflow approximation is used in the first harmonic inflow variation.

The steady-state responses of the inflow and flapping to a step input in

collective pitch can be obtained from Eq. (9) as:

10



(V/eo)s.s. :
aa(_R)

24[5 + aa/16]
O

(10)

+ aa/144

(B/eo)s.s. : _ _°
v + aa/16

0

(11)

which indicate that the change in inflow is purely aerodynamic in nature.

However, the change in the flapping depends on the operating conditions and

the inertia properties of the rotor blade. An inspection of these equations

reveals that the steady-state sensitivities of inflow and flapping with

respect to collective pitch vary widely with operating condition, going from

(2/3)_R and y/72 at 5° = 0 (zero initial thrust condition), to (aa/245o)_R

and y/8 as _ >> aa/16. The extremely large variations in the response
O

characteristics with operating condition indicate that the system is highly

nonlinear. Thus, care must be exercised in interpreting the results obtained

using the linearized equations of motion when calculating the responses of

inflow, flapping, and thrust to a large collective pitch input.

4. COUPLED INFLOW-FLAPPING DYNAMICS

The hover equation with no aircraft motion will first be examined in some

detail to determine how the coupled inflow-flap dynamics are influenced by the

dynamic inflow model used. The effects of the rotor-operating conditions (in

terms of thrust coefficient) and the Lock number of the rotor blade are also

investigated, with the focus on their influence on the flapping and thrust

overshoot characteristics. For correlation with the flight-test data of the

CH-47B helicopter to be presented later in the discussion of the case with

aircraft motion, a rctor-system similar to the CH-47B will be used in the
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following calculations. The rotor rotational speed, solidity ratio, and the

tip speed are 24.085 r/s, 0.067, and 722.55 ft/s, respectively.

4.1 Influence of Lock Number

Although the uncoupled inflow dynamics are independent of the rotor blade

inertia, the inflow mode in the coupled inflow-flap dynamics is strongly

influenced by the blade Lock number as shown in Fig. I. For an operating

condition with a moderate level of thrust coefficient (CT = 0.0047), the time

constant of the inflow mode corresponding to the lower values of Lock number

(y = 3-6) is on the order of 1/10 sec for the Carpenter-Fridovich dynamic

inflow model, and on the order of 1/16 sec for the Pitt-Peters inflow model.

For both inflow models, the time constant of the inflow mode reduces rapidly

as the Lock number increases. Both inflow models have a strong effect on the

frequency and damping of the flapping mode as is evident by comparing them

with the case of no inflow dynamics shown in Fig. I. Notice that, with both

dynamic inflow models, the frequency and damping of the flapping mode are

reduced from the uncoupled flapping mode (without dynamic inflow) for the

entire range of Lock number. Compared with Carpenter's model, Pitt's model

produces a more destabilizing influence on the flapping mode.

The transient characteristics of the inflow and flapping responses to a

step input in collective pitch (0.01 tad) are shown in Fig. 2 for a low value

(Y = 3) and a high value (y = 16) of the blade Lock number for both dynamic

inflow models. The more destabilizing effect of Pitt's model is evident. The

inflow response, while monotonically increasing for the low value of the blade

Lock number (and at the moderate value of thrust coefficient CT = 0.0047),

tends to oscillate initially before reaching its steady-state value for the

high value of the blade Lock number. The steady,state values of the inflow

12



and flapping responses are independent of the dynamic inflow model used as

discussed earlier. As expected from Fig. I, the responses for the low value

of the blade Lock numberare more oscillatory and the overshoot in flapping

(and, thus, thrust) higher than those for the high value of the blade Lock

number.

Figure 3 shows the influence of the blade Lock numberon the overshoot of

the flapping response to a step input in collective pitch at the moderate

value of thrust coefficient (CT = 0.0047). The percent overshoot increases

greatly with decreasing Lock number for both the dynamic inflow models, with

Carpenter's model producing slightly larger overshoot than does Pitt's. Both

models induce a larger flapping overshoot than exists without including a

dynamic inflow model, for the entire range of blade Lock number examined.

Figure 4 shows a comparison of flapping and thrust responses of the two cases;

one with Carpenter's dynamic inflow model, and the other including no dynamic

inflow, for y = 8.608 and CT = 0.0047.

4.2 EffectOf ThrustCoefficient

As discussed earlier, the initial thrust coefficient has a strong effect

Itson the steady-state responses of inflow and flapping to collective input.

influence on the coupled inflow-flap dynamic modes is also very strong as

shown in Fig. 5. For y = 8.608, the inflow mode has a time constant of

I/3 sec for Carpenter's model (about I/5 sec for the Pitt's) at CT = O. The

inflow mode time constant decreases rapidly with increasing thrust coefficient

for both dynamic inflow models. Both models induce a lower frequency of the

flapping mode, comparing with the case of no dynamic inflow as shown in the

figure.
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Figure 6 shows the flapping and inflow responses to step input in collec-

tive pitch for a low value (CT = 0.00135) and a high value (CT = 0.008) of

thrust coefficient. The steady-state response of the blade flapping has a

higher value, and the inflow response a lower value, for higher initial thrust

coefficient. Again, the Pitt's dynamic inflow model induces a more oscilla-

tory response than does Carpenter's model. For a low value of initial CT

(and with a moderate value of the blade Lock number, y = 8.608 in this case),

the inflow response is monotonically increasing; however, it is oscillatory

initially for the larger value of CT, an effect similar to that of increasing

Lock number discussed earlier. The inflow and the flapping responses reach

their steady values less than I sec following the step input in collective.

The influence of thrust coefficient on the flapping (and, thus, thrust) over-

shoot is also very strong as indicated in Fig. 7. The flapping overshoot

increases with decreasing thrust coefficient more rapidly in the low-thrust

region. Again, Carpenter's model produces slightly more overshoot than does

Pitt's.

In summary, when the aircraft vertical motion is restricted such as when

performing a test on a hover test stand, the inflow and the flapping reach

their steady state within I sec or less following an abrupt input in collec-

tive pitch (as previously shown in Ref. [13]). However, the shape of the

inflow response and the overshoot in flapping and thrust responses are depen-

dent strongly upon the blade Lock number and the thrust coefficient. In

particular, the overshoot in flapping and thrust responses increases with a

decrease in Lock number or in thrust coefficient. The percent overshoot can

deviate considerably from about 100% as predicted in Ref. [13], especially

with a larger value of blade Lock number or at a higher level of thrust coef-

ficient or both.
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5. VERTICALRESPONSEOFTHEHELICOPTERIN HOVER

The coupled inflow-flapping-vertical motion of the helicopter is now

examined using the equations of motion listed in Table I. The rotational

speed of the rotor is assumedto be constant. Before proceeding with the

determination of the influence of operating conditions and the blade inertia

characteristics as was done in the preceding section, the calculated vertical

acceleration response from the Table I model will be comparedwith that mea-

sured from flight using a CH-47 research aircraft [18]. Comparison will be

madefor both the step response and the frequency response characteristics to

Collective pitch excitation.

5.1 Comparisonof Transient Response with the CH-47 Test Data

The normal acceleration response to a sequence of 15 sec pulse inputs in

collective was measured on the CH-47 as shown in Fig. 8. The amplitude of the

collective pulse is approximately 0.62 in. (0.0201 rad). The data were taken

initially with a sampling frequency of 107.75 Hz. They were then passed

through a filter with a response flat up to 5 Hz and cutting off by more than

44 dB above 6.5 Hz [19] to remove the 3/rev and higher harmonic vibratory

noise. Finally, the filtered data were decimated by a factor of 5 to yield

21.55 Hz data, as plotted in Fig. 9. As can be seen, the transient is charac-

terized by an overshoot in az which immediately follows an abrupt change in

collective pitch. The response of the rotor RPM was not recorded, but some

small variations in rotor RPM, on the order of 3%, were observed from a video

recording of the cockpit instrumentation during the flight. The response of

the RPM is slower than that of az, typically drooping down to its minimum at

about I sec after an up collective, and the transient lasts for about 3 sec

before reaching steady state.
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The calculated perturbation of the vertical acceleration response to a

0.62 in. step input in collective pitch is shown in Fig. 10 with both dynamic

inflow models. The first peak of the calculated az response is about

9.9 ft/sec 2 which is somewhatsmaller than the measuredvalue of about

11 ft/sec 2, and the calculated value at t = 5 sec is somewhatlarger than

that measured. The second peak of the calculated response, because of the

constant RPMassumption used in the math model, tends to be sharper than the

measured, especially with Pitt's inflow model. As in the case with no air-

craft motion, Pitt's dynamic inflow model tends to produce more oscillatory

response in az than does the Carpenter model.

An inspection of the az response shown in Fig. 10 reveals that there is

a small initial undershoot of about 1.9 ft/sec 2. This is due to the assump-

tion that the rotor blade is rigid (infinite blade-bending stiffness), which

results in overly large inertia forces, as previously observed by Carpenter

[13]. This effect may be incorporated into the equations of motion in Table I

by selecting the reduced massmoment MB so that the initial undershoot will

be zero. If MB is chosen to be

4I 8
MB: _ (12)

then, the forcing function in the acceleration equation becomeszero, result-

ing in a no-undershoot response as shownin Fig. 11. (It is interesting to

note that the above expression for MB amounts to a reduction of approxi-

mately 11%from the value corresponding to a rectangular blade with a uniform

massdistribution, i.e., Ms = 318/2R.) Also shown in the figure is the

calculated az response with no dynamic inflow (constant inflow). The strong
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influence of the dynamic inflow on the overshoot in the vertical acceleration

response is clearly exhibited in the figure.

5.2 Compari3on of Frequency Response

A varying frequency input in collective pitch was employed to measure the

frequency response of az to collective of the CH-47B research aircraft.

Figure 12 shows a sample of typical frequency sweeps, with frequency varying

from about 0.05 Hz to about 2 Hz. Using the Fourier analysis programs

developed in Ref. [20], the frequency response of az/6 c was determined as

shown in Fig. 13. From the amplitude plot, it is seen that there is a reso-

nance peak at the frequency of about 17 rad/sec. It is also interesting to

note from the phase plot, that a substantial lead is present in the range of

frequencies below 6.5 rad/sec. Because of lack of low-frequency power in the

frequency sweeps (see Fig. 11), the identified frequency-response plots become

less reliable in the range of frequencies below 0.3 rad/sec.

The calculated frequency response of the az/_ c transfer function using

the math model listed in Table I is shown in Fig. 14, with the flight data,

for both Carpenter's and Pitt's dynamic inflow models. The calculations cover

the frequency range of 0.1 to 100 rad/sec. The resonance peak at the fre-

quency of about 17 rad/sec is evident, with Pitt's model producing a slightly

higher peak than Carpenter's because of the more destabilized flapping mode.

(A more detailed discussion will be given later.) The low-frequency phase

lead observed in the flight-measured phase plot is also seen in the calculated

phase plots for both inflow models. This phase lead is a result of the non-

minimum phase behavior of the az/_ c transfer function and a free s present

in the numerator. Overall, the frequency responses calculated with the two

17



dynamic inflow models match well with those measured from flight test using

the CH-47B research helicopter. It should be noted that the intent here is

not to provide a direct correlation, since the simplified math model was

developed for a single-main rotor helicopter with constant RPM, and without

accounting for rotor to rotor interference effects as will be present in the

CH-47B tandem-rotor helicopter.

5.3 Influence of Lock Number

We now examine the influence of Lock number on the coupled inflow-flap-

body vertical dynamics. First, the effect of aircraft motion on the inflow

and the flapping modes is determined by comparing directly their eigenvalues

as shown in Fig. 15. Clearly, both the inflow mode and the flapping mode are

relatively insensitive to the vertical motion of the helicopter. With the

vertical motion, the heave mode is insensitive to the variation in the blade

Lock number and to the dynamic inflow model used. The eigenvalue of the heave

mode is on the order of -0.29 I/sec, and since it is well separated frequency-

wise from the inflow and flapping modes, the heave mode eigenvalue can be

adequately approximated by the quasi-static Zw as given in Eq. (6).

The effect of the blade Lock number on the vertical acceleration, and the

rate of climb responses to a step input in collective pitch (0.01 rad) is

shown in Fig. 16. Pitt's dynamic inflow model is used in the computation

because it is, in general, more oscillatory as discussed previously. The

lower value of Lock number yields a more oscillatory response than does the

higher value, as is to be expected from Fig. 15. Because of the high-order

dynamic effects, there is a retardation (on the order of 50 ms) in the rate of

climb response. Thus, the delay effect may have to be considered, if the
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simple quasi-static equation (6) is used in the design analysis of a highly

augmented vertical axis.

5.4 Influence of Thrust Coefficient

With the aircraft motion included, the thrust coefficient was varied by

changing the weight of the aircraft. The effect of changing the thrust coef-

ficient on the system eigenvalues is shown in Fig. 17. While the flapping

mode is relatively insensitive with respect to the variation in the thrust

coefficient, both the inflow and the heave modes are significantly affected.

The time constant of the inflow mode is reduced as the thrust coefficient is

increased, as is the case without aircraft motion discussed previously; the

heave-mode time constant is decreased with increasing thrust coefficient. The

heave mode is relatively insensitive to the dynamic inflow model used as can

be expected from the expression (7) for the quasi-static vertical damping.

However, it is evident that both the inflow and the flapping modes are signif-

icantly influenced by the dynamic model used. With the Pitt model, which in

effect reduces the additional apparent air mass relative to the Carpenter

model, there is a decrease in the inflow-mode time constant and a destabiliz-

ing effect on the flapping mode. Reducing further the additional apparent air

mass to zero yields, in the limit, the quasi-static inflow [16]. For this

limiting case, the time constant of the inflow mode becomes zero and the

flapping mode is further destabilized from that corresponding to the Pitt's

model as shown in Fig. 17.

As in the case with no aircraft motion, a decrease in the thrust coeffi-

cient also results in an increased thrust overshoot in response to a rapid

collective input when the aircraft vertical motion is included. This effect

is shown in Fig. 18, in which a low and a high value of thrust coefficient are
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compared. Note, also, from the figure that the effective time constant of

the az decaying response following the initial transient decreases with the

decreased thrust coefficient owing to an increase in the quasi-static vertical

damping Zw as discussed earlier. This decrease in the effective time con-

stant is also apparent in the heave response. Notice that the initial delay

in the heave response is again evident in the figure. The calculations using

Carpenter's dynamic inflow model result in less oscillatory responses compar-

ing to those shown in Fig. 18 because of the more stable predicted flapping

modeexhibited in Fig. 17.

6. CONCLUDINGREMARKS

This paper has described a study conducted to gain a better understanding

of the influences of dynamic inflow on the vertical motion of the helicop-

ter. Twodynamic inflow models, one by Carpenter-Fridovich developed in 1953,

and one by Pitt-Peters developed in 1981, were investigated in conjunction

with variations in thrust coefficient and the rotor blade Lock number.

Linearized versions of these models were developed for use in the design

analysis of high-bandwidth control systems for rotorcraft, and to gain a

better insight into the interplay of the dynamic inflow, rotor blade flapping,

and the vertical motion of the rotorcraft. Comparisonsof these analytic

models were madewith flight test results of the NASAAmesCH-47Bhelicop-

ter. The results of the study are summarized in the following:

I. Generally, good agreement was obtained between both the transient and

frequency responses generated from the linear model and those measured from

the CH-47Bresearch helicopter. For the transient response to a step input in

collective input, the model well predicts the initial vertical acceleration

overshoot and its long-term decaying rate. However, the agreement in mid-term
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response is degraded somewhatdue perhaps to the constant RPMassumption used

in the linear model.

2. Dynamic inflow plays a key role in the initial overshoot of the

vertical acceleration response to an abrupt input in the collective. It

destabilizes the flapping (coning) mode, and it introduces a new inflow

mode. The overshoot in the vertical acceleration response becomesmore pro-

nounced as the thrust coefficient is decreased or the rotor blade Lock number

is lowered or both. The time constant of the inflow modedecreases with an

increase in Lock numberor an increase in the value of thrust coefficient.

The time constant of the body-heave modeincreases with increasing thrust

coefficient and is insensitive to the variation in Lock number. Neither the

flapping modenor the inflow modeis significantly affected by the vertical

motion of the helicopter.

3. Comparedwith Carpenter's dynamic inflow model, Pitt's model tends to

produce more oscillatory responses owing to its more destabilizing influence

on the flapping mode. The time constant of the inflow modeis smaller for

Pitt's model than for Carpenter's, because Pitt's model, in effect, reduces

the additional apparent air mass participating in the inflow transient from

that of Carpenter's. A further reduction in the additional apparent air mass

to zero yields the quasi-static inflow for which the time constant of the

inflow modeis zero.

4. Becauseof the high-order effect owing to the inflow and flapping

modes, there is a retardation on the order of 50 ms in the response of verti-

cal rate of climb for the rotor system evaluated.

5. The transfer function of the vertical acceleration to collective has

a nonminimumphase characteristic, which together with a free s present in

21



the numerator results in a significant phase lead in the frequency range below

approximately 6.5 rad/s.
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Fig. I :

motion).

Figure Captions

Influence of blade Lock number on characteristic roots (without A/C

Fig. 2: Effect of Lock number on inflow and flapping responses to collective

input (_ = 24.085 r/s, e = 0.067, _R = 722.55 ft/s, CT = 0.0047, collective

step = O.O1 rad). (a) Carpenter inflow model, (b) Pitt inflow model.

Fig. 3: Influence of Lock number on flapping overshoot.

Fig. 4: Effect of dynamic inflow on flapping and thrust response (¥ = 8.608,

= 24.085 r/s, a = 0.067, _R = 722.55 ft/s, collective step = 0.01 rad.

CT = 0.0047).

Fig. 5: Effect of thrust coefficient on characteristic roots.

Fig. 6: Effect of thrust coefficient on inflow and flapping responses to

collective input (y = 8.608, _ = 24.085 r/s, a = 0.067, _R = 722.55 ft/s,

collective step = 0.01 rad). (a) Carpenter inflow model, (b) Pitt inflow

model.

Fig. 7: Influence of thrust coefficient on flapping overshoot to step input

in collective pitch.

Fig. 8: Collective input and az response measured on the CH-47B.

Fig. 9: Filtered az response: (a) unexpanded scale, (b) expanded scale.
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Fig. I0: Calculated perturbed vertical acceleration response to 0.62 in. step

collective input: (a) with Carpenter model, (b) with Pitt model.

Fig. 11: Calculated perturbed vertical acceleration response to 0.62 in. step

collective input: (a) with carpenter model, (b) Pitt model, (c) no dynamic

inflow.

Fig. 12: Frequency sweeps of collective and az response measured on the

CH-47B.

Fig. 13: Measured frequency response of az/6 c (ft/sec2/in.) for the CH-47B.

Fig. 14: Calculated frequency response of az/6 c (ft/sec2/in.) compared with

flight data: (a) Carpenter inflow model, (b) Pitt inflow model.

Fig. 15: Influence of blade Lock number on characteristic roots (with and

without A/C motion).

Fig. 16: Influence of Lock number on the vertical acceleration and rate of

climb responses to collective step input (0.01 rad) (_ = 24.085 r/s,

_R = 722.55 ft/s, a = 0.067, CT = 0.0047, Pitt inflow model).

Fig. 17: Effect of thrust coefficient on characteristic roots (with A/C

vertical motion).
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Fig. 18: Influence of thrust coefficient on the vertical acceleration and

rate of climb responses to collective step input (0.01 tad) (_ = 24.085 r/s,

_R = 722.55 ft/s, a = 0.067, y = 8.608, Pitt inflow model).
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