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ABSTRACT

The distributions and relationships derived from the change

data collected during the development of a medium scale

satellite software project shows that meaningful results can

be obtained which allow an insight into software traits and

the environment in which it is developed. Modified and new

modules were shown to behave similarly. An abstract classif-

ication scheme for errors which allows a better understand-

ing of the overall traits of a software project is also

shown. Finally, various size and complexity metrics are

examined with respect to errors detected within the software.

yielding some interesting results.
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1.0 INTRODUCTION

The discovery and validation of fundamental relation-

ships between the development of computer software, the

environment in which the software is developed, and the fre-

quency and distribution of errors associated with the

software are topics of primary concern to investigators in

the field of software engineering. Knowledge of such rela-

tionships can be used to provide an insight into the charac-

teristics of computer software and the effects that a pro-

gramming environment can have on the software _roduct. In

addition, it can provide a means to improve the understand-

ing of the terms reliability and quality with respect to

computer software. In an effort to acquire a knowledge of

these basic relationships, change data for a medium scale

software project was analyzed (e.g., change data is any

documentation which reports an alteration made to the

software for a particular reason).

In general, the overall objectives of this paper are

threefold : first, to report the results of the analyses;

second, to review the results in the context of those

reported by other researchers; and third, to draw some con-

clusions based on the aforementioned. The analyses

presented in this paper encompass various types of distribu-
tions based on the collected change data. The most impor-

tant of which are the error distributions observed within

the software project.

In order for the reader to view the results reported in

this paper properly, it is important that the terms used

throughout this paper and the environment in which the data

was collected are clearly defined. This is pertinent since

many of the terms used within this paper have appeared in

the general literature often to denote different concepts.

Understanding the environment will allow the partitioning of

the results into two classes: those which are dependent on

and those which are independent of a particular programming
environment.

1.1 DESCRIPTION OF THE ENVIRONMENT

The software analyzed within this paper is one of a

large set of projects being analyzed in the Software

Engineering Laboratory (SEL). The particular project

analyzed in this paper is a general purpose program for

satellite planning studies. These studies include among

others: mission maneuver planning; mission lifetime; mission

launch; and mission control. The overall size of the

software project was approximately 90,000 source lines of

code. The majority of the software project was coded in FOR-

TRAN. The system was developed and executes on an IBM 360.
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The developers of the analyzed software had extensive

experience with ground support software for satellites. The

analyzed system represents a new application for the

development group, although it shares many similar algo-

rithms with the system studied here.

It ts also true that the requirements for the system

analyzed kept growing and changing, much more so than for

the typical ground support software normally built. Due to

the commonality of algorithms from existing systems, the

developers re-used the design and code for many algorithms

needed in the new system, Hence a large number of re-used

(modified)

modules became part of the new system analyzed here.

An approximation of the analyzed software's life cycle

is displayed in Figure I . This figure only illustrates the

approximate duration in time of the various phases of the

software's life cycle. The information relating the amount

of manpower involved with each of the phases shown was not

specific enough to yield meaningful results, so it was not
included.
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I.2 TERMS

This section presents the definitions and associated

contexts for the terms used within this paper. A discussion

of the concepts involved with these terms is also given when

appropriate.

Module: A module is defined as a named subfunction, subrou-

tine, or the main program of the software system. This

definition is used since only segments written in FORTRAN

which contained executable code were used for the analyses.

Change data from the segments which constituted the data

blocks, assembly segments, common segments, or utility rou-

tines were not included. However, a general overview of the

data available on these types of segments is presented in

Section 4.0 for completeness.

There are two types of modules referred to within this

paper. The first type is denoted as modified. These are
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modules which were developed for previous software projects
and then modified to meet the requirements of the new pro-

ject. The second type is referred to as ne___w. These are

modules which were developed specifically for the software

project under analyses.

The entire software project contained a total of 517

code segments. This quantity is comprised of 36 assembly

segments, 370 FORTRAN segments, and 111 segments that were

either common modules, block data, or utility routines. The

number of code segments which met the adopted module defini-

tion was 370 out of 517 which is 72% of the total modules

and constitutes the majority of the software project. Of

the modules found to contain errors 49% were categorized as

modified and 51% as new modules.

Number of Source and Executable Lines: The number of source

lines within a module refers to the number of lines of exe-

cutable code and comment lines contained within it. The

number of executable lines within a module refers to the

number of executable statements, comment lines are not

included.

Some of the relationships presented in this paper are

based on a grouping of modules by module size in increments

of 50 lines. This means that a module containing 50 lines

of code or less was placed in the module size of 50; modules

between 51 and 100 lines of code into the module size of

100, etc. The number of modules which were contained in

each module size is given in Table I for all modules and for

modules which contained errors (i.e., a subset of all

modules) with respect to source and executable lines of

code.
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Number modules

All Modules Modules with Errors

Number

of Lines Source Exececutable Source Executable

0-50 53 258 3 49

51-100 107 70 16 25

101-150 80 26 20 13
151-200 56 13 19 7

201-250 34 1 12 I

251-300 14 I 9 0

301-350 7 1 4 I

351-400 9 0 7 0

>400 10 0 6 0

Total 370 370 96 96

Table I

Error: Something detected within the executable code which

caused the module in which it occurred to perform

incorrectly (i.e., contrary to its expected function ).

Errors were quantified from two view points in this

paper, depending upon the goals of the analysis of the error

data. The first quantification was based on a textual rather

than a conceptual viewpoint. This type of error quantifica-

tion is best illustrated by an example. If a "*" was

incorrectly used in place of a "+" then all occurrences of

the "*" will be considered an error. This is the situation

even if the "*"'s appear on the same line of code or within

multiple modules. The total number of errors detected in

the 370 software modules analyzed was 215 contained within a

total of 96 modules, implying 26% of the modules analyzed
contained errors.

The second type of quantification was used to measure

the effect of an error across modules, textual errors asso-

ciated with the same conceptual problem were combined to

yield one conceptual error. Thus in the example above, all

incorrectly used *'s replaced by +'s in the same formula

were combined and the total number of modules effected by

that error are listed. This is done only for the errors

reported in Figure 2. There are a total of 155 conceptual

errors. All other studies in this paper are based upoon the
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first type of quantification described.

Statistical Terms and Methods: All linear regressions of the

data presented within this paper employed as a criterion of

goodness the least squares principle (i.e., "choose as the

"best fitting" line that one which minimizes the sum of

squares of the deviations of the observed values of y from

those predicted" [I]).

Pearson's product moment coefficient of correlation was

used as an index of the strength of the linear relationship

independent of the respective scales of measurement for y

and x. This index is denoted by the symbol r within this

paper. The measure for the amount of variability in y

accounted for by linear regression on x is denoted as r2

within this paper.

All of the equations and explanations for these statis-

tics can be found in [I]. It should be noted that other

types of curve fits were conducted on the data. The results

of these fits will be mentioned later in the paper.

Now that the software's environment and the key terms

used within the paper have been defined and outlined, a dis-

cussion of the basic quantification of the data collected,

the relationships and distributions derived from this quan-

tification, and the resulting conclusions are presented.

2.0 BASIC DATA

The change data analyzed was collected over a period of

33 months, August 1977 through May 1980. These dates

correspond in time to the software phases of coding, test-

ing, acceptance, and maintenance (Figure I) . The data col-

lected for the analyses is not complete since changes are

still being made to the software analyzed. However, it is

felt that enough data was viewed in order to make the con-

clusions drawn from the data significant.

The change data was entered on detailed report sheets

which were completed by the programmer responsible for

implementing the change. A sample of the change report form

is given in the Appendix. In general, the form required

that several short questions be answered by the programmer

implementing the change. These queries allowed a means to

document the cause of a change in addition to other charac-

teristics and effects attributed to the change. The major-

ity of this information was found useful in the analyses.

The key information used in the study from the form was: the

data of the change or error discovery, the description of
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the change or error, the number of components changed, the
type of change or error, and the effort needed to correct
the error.

It should be mentioned that the particular change

report form shown in the Appendix was the most current form

but was not uniformly used over the entire period of this

study. In actuality there were three different versions of

the change report form, not all of which required the same

set of questions to be answered. Therefore , for the data

that was not present on one type of form but could be

inferred, the inferred value was used. An example of such

an inference would be that of determining the error type.
Since the error description was given on all of the forms

the error type could be inferred with a reasonable degree of

reliability. Data not incorporated into a particular data

set used for an analysis was that data for which this infer-

ence was deemed unreliable. Therefore, the reader should be

alert to the cardinality of the data set used as a basis for

some of the relationships presented in this paper. There

was a total of 231 change report forms examined for the pur-

pose of this paper.

The consistency and partial validity of the forms was

checked in the following manner. First, the supervisor of

the project looked over the change report forms and verified

them (denoted by his or her signature and the date).

Second, when the data was being reduced for analysis it was

closely examined for contradictions. It should be noted

that interviews with the individuals who filled out the

change forms were not conducted. This was the major differ-

ence between this work and other error studies performed by

the Software Engineering Laboratory, where interviews were

held with the programmers to help clarify questionable data
(8).

The review of the change data as described above

yielded an interesting result. The errors due to previous

miscorrections showed to be three times as common after the

form review process was performed, i.e. before the review

process they accounted for 2% of the errors and after the

review process they accounted for 6% of the errors. These

recording errors are probably attributable to the fact that
the corrector of an error did not know the cause was due to

a previous fix because the fix occurred several months ear-

lier or was made by a different programmer, etc.

_.0 RELATIONSHIPS DERIVED FROM DATA

This section presents and discusses relationships derived

from the change data.
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_.I CHANGE DISTRIBUTION BY TYPE

Types of changes to the software can be categorized as

error corrections or modifications (specification changes,

planned enhancements, clarity and optimization improve-

ments). For this project, error corrections accounted for

62% of the changes and modifications 38%. In studies of

other SEL projects, errors corrections ranged from 40% to

64% of the changes.

3.2 ERROR DISTRIBUTION BY MODULES

Figure 2 shows the effects of an error in terms of the

number of modules that had to be changed. (Note that these

errors here are counted as conceptual errors.) It was found

that 89% of the errors could be corrected by changing only

one module. This is a good argument for the modularity of

the software. It also shows that there is not a large

amount of interdependence among the modules with respect to

an error.

NUMBER OF MODULES AFFECTED BY AN ERROR (data set: 211 textual errors)

174 conceptual errrors)

#ERRORS #MODULES AFFECTED

155 (89%) I

9 2

3 3

6 4

I 5

Figure 2

Figure 3 shows the number of errors found per module.

The type of module is shown in addition to the overall total

number of modules found to contain errors.
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NUMBER OF ERRORS PER MODULE (data set:

#MODULES NEW MODIFIED #ERRORS/MODULE

36 17 19 I

26 13 13 2

16 10 6 3

13 7 6 4

4 I** 3* 5

1 I** 7

215 errors)

Figure 3

The largest number of errors found were 7 (located in a

single new module) and 5 (located in 3 different modified

modules and I new module). The remainder of the errors were

distributed almost equally among the two types of modules.

The effort associated wlth correcting an error is

specified on the form as being (I) I hour or less, (2) I

hour to I day, (3) I day to 3.days, (4) more than 3 days.

These categories were chosen because it was too difficult to

collect effort data to a finer granularity. To estimate the

effort for any particular error correction, an average time

was used for each category, i.e. assuming an 8 hour day, an

error correction in category (I) was assumed to take .5

hours, an error correction in category (2) was assumed to

take 4.5 hours, category (3) 16 hours, and category (4) 32

hours.

The types of errors found in the three most error prone

modified modules (* in Figure 3) and the effort needed to

correct them is shown in Table 2. If any type contained
error corrections from more than one error correction

category, the associated effort for them was averaged. The

fact that the majority of the errors detected in a module
was between one and three shows that the total number of

errors that occurred per module was on the average very

small.
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The twelve errors contained in the two most error prone

new modules (** in Figure 3) are shown in Table 3 along with

the effort needed to correct them.

NUMBER OF ERRORS

(15 total)

AVERAGE EFFORT[

TO CORRECT

I

I
I
I

I
misunderstood

or incorrect

speclfications

incorrect design

or implementation

of a module

component

clerical error

8 24 hours

5 16 hours

2 4.5 hours

EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE

MODIFIED MODULES

Table 2

NUMBER OF ERRORS

(12 total)

AVERAGE EFFORT

TO CORRECT

misunderstood

i
I

i
I

I

I
I

or incorrect

requirements 8

incorrect design

or implementation

of a module

clerical error

32 hours

3 0.5 hours

I 0.5 hours

EFFORT TO CORRECT ERRORS IN THE TWO MOST ERROR PRONE

NEW MODULES

Table 3
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3-3 ERROR DISTRIBUTION BY TYPE

In Figure 4 the distribution of errors are shown by type. It

can be seen that 48% of the errors were attributed to

incorrect or misinterpreted functional specifications or

requirements.

The classification for error used throughout the

Software Engineering Laboratory is given below. The person

identifying the error indicates the class for each error.

A: Requirements incorrect or misinterpreted

B: Functional specification incorrect or misinterpreted

C: Design error invloving several components

I. mistaken assumption about value or structure of
data

2. mistake in control logic or computation of an

expression

D: Error in design or implementation of single component

I. mistaken assumption about value or structure of
data

2. mistake in control logic or computation of an

expression

E: Misunderstanding of external environment

F: Error in the use of programming language/compiler
G: Clerical error

H: Error due to previous miscorrection of an error

The distribution of these errors by source is plotted

in Figure 4 with the appropriate subdistribution of new and

modified errors displayed. This distribution shows the

majority of errors were the result of the functional specif-

ication being incorrect or misinterpreted . Within this

category, the majority of the errors (24%) involved modified

modules This is most likely due to the fact that the modules

reused were taken from another system with a different

application. Thus, even though the basic algorithms were the

same, the specification was not well enough defined or

appropriately defined for the modules to be used under

slightly different circumstances.
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The distribution in Figure 4 should be compared with

the distribution of another system developed by the same

organization shown in Figure 5. Figure 5 represents a typi-

cal ground support software system and was rather typical of

the error distributions for these systems. It is different

from the distribution for the system we are discussing in

this paper however, in that the majority of the errors were

involved in the design of a single component. The reason

for the difference is that in ground support systems, the

design is well understood, the developers have had a reason-

able amount of experience with the application. Any re-used

design or code comes from similar systems, and the require-

ments tend to be more stable. An analysis of the two distri-

butions makes the differences in the development environ-

ments clear in a quantitative way.
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Thepercent of requirements and specification errors is

consistent with the work of Endres'[1]. Endres found that

46% of the errors he viewed involved the misunderstanding of

the functional specifications of a module. Our results are

similar even though Endres" analysis was based on data

derived from a different software project and programming

environment. The software project used in.Endres ° analysis

contained considerably more lines of code per module, was

written in assembly code, and was within the problem area of

operating systems. However, both of the software systems

Endres analyzed did contain new and modified modules.

Of the errors due to the misunderstanding of a module's

specifications or requirements (48%), 20% involved new

modules while 28% involved modified modules.

Although the existence of modified modules can shrink

the cost of coding, the amount of effort needed to correct

errors in modified modules might outweigh the savings. The

effort graph (Figure 6) supports this viewpoint: 50% of the

total effort required for error correction occurred in modi-

fied modules; errors requiring one day to more than three

days to correct accounted for 45% of the total effort with

27% of this effort attributable to modified modules within

these greater effort classes. Thus, errors occurring in new

modules required less effort to correct than those occurring

in modified modules.
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The similarity between Endres" results and those

reported here tend to support the statement that independent

of the environment and possibly the module size, the major-

ity of errors detected within software is due to an inade-

quate form or interpretation of the specifications. This

seems especially true when the software contains modified
modules.

In general, these observations tend to indicate that

there are disadvantages in modifying a large number of

already existing modules to meet new specifications. The

alternative of developing a new module might be better in

some cases if there does not exist good specifications for

the existing modules.

_._ OVERALL NUMBER OF ERRORS OBSERVED

Figure 7 displays the number of errors observed in both

new and modified modules. The curve representing total

4-89



modules (new and modified) is basically 5ell-shaped. One

[nterpretat[on is that up to some point errors are detected

at a relatively steady rate. At this point at least half of

the total "detected-undetected" errors have been observed

and the rate of d£scovery thereafter decreases. It may also

imply the maintainers are not adding too many new errors as

the system evolves.

It can be seen, however, that errors occurring in

modified modules are detected earlier and at a slightly

higher rate than those of new modules. One hypothesis for

this is that the majority of the errors observed in modified

modules are due to the misinterpretation of the functional

specifications as was mentioned earlier in the paper.

Errors of this type would certainly be more obvious since

they are more blatant than those of other types and there-

fore, would be detected both earlier and more readily.(See

next section.)
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3.5 ABSTRACT ERROR TYPES

An abstract classification of errors was adopted by the

authors which classified errors into one of five categories

with respect to a module: (I) initialization; (2) control

structure; (3) interface; (4) data; and (5) computation•

This was done in order to see if there existed recurring

classes of errors present in all modules independent of

size. These error classes are only roughly defined so exam-

ples of these abstract error types are presented below• It

should be noted that even though the authors were consistant

with the categorization for thls project, another error
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analyst may have interpreted the categories differently.

Failure to initialize or re-initialize a data structure

properly upon a module's entry/exit would be considered an
initialization error. Errors which caused an "incorrect-

path" in a module to be taken were considered control

errors. Such a control error might be a conditional state-

ment causing control to be passed to an incorrect path.

Interface errors were those which were associated with

structures existing outside the module's local environment

but which the module used. For example, the incorrect

declaration of a COMMON segment or an incorrect subroutine

call would be an interface error. An error in the declara-

tion of the COMMON segment was considered an interface error

and not an initialization error since the COMMON segment was

used by the module but was not part of its" local environ-

ment. Data error would be those errors which are a result

of the incorrect use of a data structure. Examples of data

errors would be the use of incorrect subscripts for an

array, the use of the wrong variable in an equation, or the

inclusion of an incorrect declaration of a variable local to

the module. Computation errors were those which caused a

computation to erroneously evaluate a variable's value.

These errors could be equations which were incorrect not by

virtue of the incorrect use of a data structure within the

statement but rather by miscalculations. An example of this

error might be the statement A : B + I. when the statement

really needed was A = B/C + I.

These five abstract categories basically represent all

activities present in any module. The five categories were

further partitioned into errors of commission and omission.

Errors of commission were those errors present as a result

of an incorrect executable statement. For example, a com-

missioned computational error would be A = B * C where the

"*" should have been" "÷'. In other words, the operator was

present but was incorrect. Errors of omission were those
errors which were a result of forgetting to include some

entity within a module. For example, a computational omis-

sion error might be A = B when the statement should have

read A = B + C. A parameter required for a subroutine call

but not included in the actual call would be an example of

an interface omission error. In both of the above examples

some aspect needed for the correct execution of a module was

forgotten.

The results of this abstract classification scheme as

discussed above is given in Figure 8. Since there were

approximately an equal amount of new (49) and modified (47)

modules viewed in the analysis, the results do not need to

be normalized. Some errors and thereby modules were counted

more than once since it was not possible to associate some

errors with a single abstract error type based on the error
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description given on the change report form.

initialization

control

interface

data

computation

commission

new modified

omission

new modified

2 9 5 9
12 2 16 6

23 31 27 6

10 17 1 3
16 21 3 3

28% 36% 23% 12%
iilJlllJlJllJJJl lJllllJJJlJJJllJil

64% 35%

initialization

control

interface

data

computation

total

new modified

7 18 ---
28 8 ---

50 37 ---
11 20 ---

19 24 ---

--m---- --m----

115 107

25 (11%)
36 (16%)
87 (39%)
31 (14%)
43 (19%)

ABSTRACT CLASSIFICATION OF ERRORS

Figure 8

According to Figure 8, interfaces appear to be the

major problem regardless of the module type. Control is more

of a problem in new modules than in modified modules. This

is probably because the algorithms in the old modules had

more test and debug time. On the other hand, initialization

and data are more of a problem in modified modules. These

facts, coupled with the small number of errors of omission

in the modified modules might imply that the basic algo-
rithms for the modified modules were correct but needed some

adjustment with respect to data values and initialization

for the application of that algorithm to the new environ-
ment.

_.6 MODULE SIZE AND ERROR OCCURRENCE
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Scatter plots for executable lines per module versus
the number of errors found in the module were plotted. It
was difficult to see any trend within these plots so the

number of errors/1000 executable lines within a module size

was calculated (Table 4).

Module Size Errors/t000 lines

50 16.0

100 12.6

150 12.4

200 7.6

>200 6.4

ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)

Table 4

The number of errors was normalized over 1000 executable

lines of code in order to determine if the number of

detected errors within a module was dependent on module

size. All modules within the software were included, even
those with no errors detected. If the number of errors/1000

exececutable lines was found to be constant over module size

this would show independence, An unexpected trend was

observed: Table 4 implies that there is a higher error rate

within smaller sized modules. Since only the executable

lines of code were considered the larger modules were not

COMMON data files. Also the larger modules will be shown to

be more complex than smaller modules in the next section.

Then how could this type of result occur?

The most plausable explanation seems to be that since

there are a large number of interface errors, these are

spread equally across all modules and so there are a larger

number of errors/1000 executable statements for smaller

modules. Some tentative explanations for this behavior are:

the majority of the modules examined were small (Table I)

causing a biased result; larger modules were coded with more

care than smaller modules because of their size; errors in

smaller modules are more apparent and there may indeed still

be numerous undetected errors present within the larger

modules since all the "paths" within the larger modules may

not yet have been fully exercised.

_.7 MODULE COMPLEXITY

Cyclomatic complexity [5] (number of decisions * I) was

correlated with module size. This was done in order to

4-94



determine whether or not larger modules were less dense or

complex than smaller modules containing errors. Scatter

plots for executable statments per module versus the

cyclomatic complexity were plotted and again, since it was

difficult to see any trend in the plots, modules were

grouped according to size. The complexity points were

obtained by calculating an average complexity measure for

each module size class. For example, all the modules which

had 50 executable lines of code or less had an average com-

plexity of 6.0, Table 5 gives the average cyclomatic com-

plexity for all modules within each of the size categories.

The complexity relationships for executable lines of code

within a module is shown in Figure 9. As can be seen from

the table the larger modules were more complex than smaller
modules.

Module size Average Cyclomatic Complexity

50 6.0

100 17.9

150 28.1

200 52.7

>200 60.0

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL MODULES

Table 5
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For only those modules containing errors, Table 6 gives
the number of errors/t000 executable statements and the

average cyclomatic complexity. When this data is compared

with Table 5 , one can see that the average complexity of
the error prone modules was no greater than the average com-

plexity of the full set of modules.
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Module Size Average Cyclomatic

Complexity

Errors/t000

executable lines

50 6.2 65.0

100 19.6 33.3

150 27.5 24.6

200 56.7 13.4

>200 77.5 9.7

COMPLEXITY AND ERROR RATE FOR ERRORED MODULES

Table 6

4.0 DATA NOT EXPLICITLY INCLUDED IN ANALYSES

The 147 modules not included in this study (i.e.,

assembly segments, common segments, utility routines) con-

tained a total of six errors. These six errors were

detected within three different segments. One error

occurred in a modified assembly module and was due to the

misunderstanding or incorrect statement of the functional

specifications for the module. The effort needed to correct

this error was minimal (I hour or less).

The other five errors occurred in two separate new data

segments with the major cause of the errors also being

related to their specifications. The effort needed to

correct these errors was on the average from I hour to I day

(I day representing 8 hours).

5.0 CONCLUSIONS
m

The data contained in this paper helps explain and

characterize the environment in which the software was

developed. It is clear from the data that this was a new

application domain in an application with changing require-
ments.

Modified and new modules were shown to behave similarly

except in the types of errors prevalent in each and the

amount of effort required to correct an error. Both had a

high percentage of interface errors, however, new modules

had an equal number of errors of omission and commission and

a higher percentage of control errors. Modified modules had

a high percentage of errors of commission and a small per-

centage of errors of omission with a higher percentage of
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data and initialization errors. Another difference was that

modified modules appeared to be more susceptible to errors

due to the misunderstanding of the specifications.

Misunderstanding of a module's specifications or require-

ments constituted the majority of errors detected. This

duplicates an earlier result of Endres which implies that

more work needs to be done on the form an6 content of the

specifications and requirements in order to enable them to

be used across applications more effectively.

There were shown tobe some disadvantages to modifying

an existing module for use instead of creating a new module.

Modifying an existing module to meet a similar but different

set of specifications reduces the developmental costs of

that module. However, the disadvantage to this is that
there exists hidden costs. Errors contained in modified

i

modules were found to require more effort to correct than

those in new modules, although the two classes contained

approximately the same number of errors. The majority of

these errors was due to incorrect or misinterpreted specifi-

cations for a module. TherefoPe, there is a tradeoff

between minimizing development time and time spent to align

a module to new specifications. However, if better specifi-

cations could be developed it might reduce the more expen-
sive errors contained within modified modules. In this

case, the reuse of "old" modules could be more beneficial in

terms of cost and effort since the hidden costs would have

been reduced.

One surprising result was that module size did not

account for error proneness. In fact, it was quite the con-

trary, the larger the module the less error prone it was.

This was true even though the larger modules were more com-

plex. Additionally, theerror prone modules were no more

complex across size grouping than the error free modules.

In general, investigations of the type presented in

this paper relating error and other change data to the

software in which they have occurred is important and

relevant. It is the only method by which our knowledge of

these types of relationships will ever increase and evolve.
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