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Summary

The objective of the Advanced Detection, Isolation, and
Accommodation (ADIA) Program is to improve the overall
demonstrated reliability of digital electronic control systems
for turbine engines by using analytical redundancy to detect
sensor failures. The results of a test-bed evaluation of an
analytical-redundancy-based algorithm developed as part of
the ADIA program are presented in this report. The ADIA
program is organized into four phases: development,
implementation, evaluation, and demonstration. This report
describes the evaluation phase. This includes a validation of
the ADIA algorithm for sensor failure detection, isolation, and
accommodation effectiveness, documentation of algorithm
performance, validation of the algorithm’s real-time
implementation, and establishment of a data base for the
demonstration phase of the ADIA program.

The algorithm was evaluated in a test-bed system that
consisted of the engine system, the multivariable control, and
the ADIA algorithm. The engine system, including actuators
and sensors, was simulated in real time on a hybrid computer.
The multivariable control used was an existing control design
based on linear quadratic regulator theory. The ADIA
algorithm is based on hypothesis testing and can detect, isolate,
and accommodate hard and soft sensor failures.

The evaluation is defined by a test matrix. The test matrix
consists of engine evaluation operating conditions along one
axis and the type of test performed along the other axis.
Control performance with and without the ADIA algorithm was
evaluated. Eight operating points were considered, and one
or more of the 13 possible tests were performed at these
operating points. Control performance was documented as was
sensor failure detection, isolation, and accommodation perfor-
mance. Minimum detectable levels of bias and drift failures
were determined at all eight operating points for all sensors
considered. Conclusions and recommendations based on the
evaluation also are presented.

Introduction

Over the past 35 years hydromechanical implementations
of turbine engine control systems have matured into highly
reliable units. However, there is a trend toward greater engine
complexity to meet ever-increasing engine performance

requirements. Consequently the engine control too has become
increasingly complex (fig. 1). Because of this complexity
trend and the revolution in digital electronics the control has
evolved from a hydromechanical to a full-authority digital
electronic (FADEC) implementation. These FADEC controls
have to demonstrate the same levels of reliability as their
hydromechanical predecessors, or better.

Thus in an effort to improve the overall reliability of the
digital electronic control system, various redundancy manage-
ment techniques have been applied to both the total control
system and individual components. One of the least reliable
of the control system components is the engine sensor. In fact
some type of engine sensor redundancy will be required to
achieve adequate control system reliability. One important type
is analytical redundancy (AR). AR-based systems can have cost
and weight savings over other redundancy approaches such
as hardware redundancy.

Considerable work has been done in applying analytical
redundancy to improve turbine engine control system
reliability. Reference 1 surveys these accomplishments and
defines several technology needs. These needs include
(1) the ability to detect small (soft) failures, (2) real-time
implementations of algorithms capable of detecting soft
failures, (3) a comparison of algorithm complexity versus
performance, (4) a full-scale demonstration of a soft-failure
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Figure 1.—Trends in control complexity of aircraft turbine engines.



detection capability, and (5) an evaluation of the pseudo-
linearized modeling approach. The ADIA program addresses
all of these technology needs.

The ADIA program is organized into four phases:
development, implementation, evaluation, and demonstration.
In the development phase (refs. 2 and 3) the ADIA algorithm
was designed by using advanced filtering and detection
methodologies. In the implementation phase (refs. 4 and 5)
this advanced algorithm was implemented in microprocessor-
based hardware. A parallel-computer architecture (three
processors) was used to allow the algorithm to execute in a
timeframe consistent with stable, real-time operation. This
report describes the evaluation phase. In this phase algorithm
performance was evaluated by using a real-time hybrid
computer engine simulation. The objectives of the evaluation
were to validate the algorithm for sensor failure detection,
isolation, and accommodation (DIA) effectiveness, to
document algorithm performance, to validate the algorithm’s
real-time implementation, and to establish a data base for the
demonstration phase of the ADIA program. The ADIA
algorithm will be demonstrated on a full-scale F100 engine
in the NASA Lewis Research Center altitude test facility.

The report begins with a description of the test-bed system

algorithm and the implementation hardware are described.
Next the results of the evaluation are presented. Finally
conclusions and recommendations for further work are given.

Test-Bed System

The ADIA algorithm was evaluated in a test-bed system
(fig. 2) consisting of the engine system, the multivariable
control algorithm, and the ADIA algorithm. The ADIA
algorithm is described in the next main section.

Engine System

The engine system consisted of an F100 turbofan engine,
the control actuators, and the sensors. The F100 turbofan
engine is a high-performance, low-bypass-ratio, twin-spool
turbofan engine. The test-bed engine has five controlled inputs,
five sensed outputs, and four sensed environmental variables.
These variables are defined as follows:

Controlled engine inputs U, and U,
WF main combustor fuel flow
Al exhaust nozzle area

used in evaluating the ADIA algorithm. Then the ADIA CIVV fan inlet variable vanes
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Figure 2.—Test-bed system.
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Figure 3.—Structure of F100 multivariable control.

RCVV rear compressor variable vanes

BLEED compressor bleed
Sensed engine outputs Z,,

N1 fan speed

N2 compressor speed

PT4 combustor pressure

PT6 exhaust nozzle pressure

FTIT fan turbine inlet temperature
Sensed environmental variables E,,

PO ambient (static) pressure

PT2 fan inlet (total) pressure

TT2 fan inlet temperature

TT25 compressor inlet temperature

Strictly speaking, TT25 is an engine output variable. However,
since TT25 is used only as a scheduling variable in the control
(like TT12), it is called an environmental variable. Also, TT25
sensor failures are not covered by the ADIA logic.

Multivariable Control System

The multivariable control (MvC) system (fig. 3) is
essentially a model following proportional plus integral
control. The components of the control are the reference point
schedules, the transition control schedules, the proportional
control logic, the integral control logic, and the engine
protection logic. The reference point schedules generate a
desired engine operating point given the pilot’s commanded
power lever angle (PLA). The transition logic generates rate-
limited command trajectories for smooth transition between
steady-state operating points. The proportional and integral
control logic minimizes transient and steady-state deviations
from the commanded trajectories. The engine protection logic
limits the size of the commanded engine inputs. This control

is more completely described in reference 6. The control
modes in this logic normally use fuel to set engine fan speed
and use nozzle area to set nozzle pressure (engine pressure
ratio). However, at those conditions where limiting is required,
fuel flow can be used to limit the maximum FTIT, the
maximum PT4, or the minimum PT4.

Algorithm

The ADIA algorithm detects, isolates, and accommodates
sensor failures in turbofan engine control systems. It was
originally developed for NASA Lewis under contracts
NAS3-22481 and NAS3-23282 by Pratt & Whitney Aircraft
with subcontractor Systems Control Technology (refs. 2 and
3). The algorithm incorporates advanced filtering and detection
logic and is general enough to be applied to different engines
or to other types of control systems.

The ADIA algorithm consists of three elements: (1) hard-
failure detection and isolation logic, (2) soft-failure detection
and isolation logic, and (3) an accommodation filter. These
are shown as part of the test-bed system in figure 2. The
algorithm detects two classes of sensor failures, hard and soft.
Hard failures are out-of-range or large bias errors that occur
instantaneously in the sensed values. Soft failures are small
bias errors or drift errors that accumulate relatively slowly
with time.

The general concept is shown is block diagram form in
figure 4. Here, in a normal or unfailed mode of operation the
accommodation filter uses the full set of engine measurements
to generate a set of optimal estimates of the measurements.
These estimates Z are used by the control law. When a sensor
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Figure 4.—Advanced detection, isolation, and accommodation concept.

failure occurs, the detection logic determines that a failure has
occurred. The isolation logic then determines which sensor
is faulty. This structural information is passed to the estimator.
The estimator then removes the faulty measurement from
further consideration. The estimator, however, continues to
generate the full set of optimal estimates for the control. Thus
the control mode does not have to restructure for any sensor
failure.

The ADIA algorithm inputs are the measured engine inputs
U, (¢) (fuel flow, nozzle area, compressor inlet guide vane
angle, rear compressor variable vane angle, and bleed flow)
and the measured engine outputs Z,(¢) (fan speed,
compressor speed, combustor pressure, augmentor pressure,
and fan turbine inlet temperature). The algorithm outputs y/ (1)
are optimal estimates of the engine outputs Z(z). The measured
environmental variables E,, are also used to schedule engine
model parameters. The outputs of the algorithm, the estimates
Z(1), are used as input to the proportional (linear quadratic
regulator, or LQR) part of the control. During normal-mode
operation engine measurements are used in the integral control.
When a sensor failure is accommodated, the measurement in
the integral control is replaced with the corresponding
accommodation filter estimate by reconfiguring the interface
switch matrix.

Engine Model

The performance of the accommodation filter and the
detection and isolation logic is strongly dependent on a model

of the engine. The model used has a linear state-space
structure, and the base points are nonlinear functions of various
engine variables.

X =F(X-X,) + G(U-1U,)
Z=H(X-X,) +D(U-U,) +Z,

Here the subscript represents the base point (steady-state point)
and X is the 4 X 1 model state vector, U the 5 X 1 control
vector, and Z the 5 X 1 output vector. The F, G, H, and D
matrices are the appropriately dimensioned system matrices.
The system matrices and the model base points were
determined at 109 operating points throughout the flight
envelope. Three variables are sufficient to completely define
an operating point—power lever angle (PLA), altitude, and
Mach number. An alternative definition set is PLA, inlet
pressure (PT2), and inlet temperature (TT2). Figure 5 shows
some of those 109 points as a function of the altitude/Mach
number envelope at 83° PLA. In figure 6 the same points are
shown at 83° PLA as a function of engine inlet conditions. The
second envelope is the more appropriate format for ensuring
that all significant model dynamics are considered by
adequately spanning the entire envelope with model points.
Once system matrices are determined at all of the 109 operating
points, the individual matrix elements are corrected by the
engine inlet condition E,, and scheduled as nonlinear
functions of Z. These functions are given in reference 2.
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Accommodation Filter

The accommodation filter (fig. 7) incorporates the engine
model along with a Kalman gain update to generate estimates
of the engine outputs Z and states X as follows:

X=FX-X,) + G, —U,) + Ky

Z=HX-X,) + DU, -U,) + 27,

Figure 7.—Accommodation filter structure.

where K is the Kalman gain matrix and v is the residual vector.
Like the system matrices the elements of K are corrected by
E,, and scheduled as nonlinear functions of Z. An
improvement that was added to the accommodation filter was
the incorporation of integral action to improve steady-state
accuracy of the FTIT estimate Zs.

One important engine control mode is the limiting of FTIT
at high-power operation. Because the FTIT sensor is relatively
slow, control action is based on the dynamically faster FTIT
estimate. The FTIT limiting control has integral action;
therefore a high degree of steady-state accuracy in the FTIT



estimate is required to ensure satisfactory control. This
accuracy is accomplished by augmenting the filter with the
following additional state and output equations:

~

b = Kgy
Fiir =25+ b

where K is a gain matrix, b is the temperature bias, Zs is
the unbiased temperature estimate, and +y is the vector of
residuals from the accommodation filter. The addition of these
dynamics, although improving FTIT estimation accuracy,
results in a larger minimum detectable FTIT drift failure rate.
Concatenating the temperature bias state to the filter state
vector yields the same filter equations with the following
replacements:

This filter structure, which includes the FTIT bias state, is the
structure used in the accommodation filter and all the
hypothesis filters in the soft-failure detection and isolation
logic.

After the detection and isolation of a sensor failure the
accommodation filter is reconfigured by a switching matrix
(fig. 7). This matrix is defined as

(10000'
01000
S=100100
00010

| 0000 1 |

When a sensor failure has been isolated, the filter is
reconfigured by setting the appropriate diagonal matrix element
to zero. For example, if a compressor speed sensor failure
(N2) has been isolated, the switch matrix becomes

[1 00007
00000
S=100100
060010

L0000 1|

The effect of this reconfiguration is to force v, equal to 0.
This is equivalent to setting sensed N2 equal to the estimate
of N2 generated by the filter. The residuals generated by the
accommodation filter are used in the hard-failure detection
logic.

Hard-Failure Detection and Isolation Logic

The hard-failure detection and isolation logic (fig. 8)
compares the absolute value of each component of the residual
with its own threshold. If the residual absolute value is greater
than the threshold, a failure is detected and isolated for the
sensor corresponding to the residual element. Threshold sizes
are initially determined from the standard deviation of the noise
on the sensors. These standard deviation magnitudes are then
increased to account for modeling errors in the accommodation
filter. The hard-failure detection threshold values (table I) are
twice the magnitude of these adjusted standard deviations.

The failure is accommodated by reconfiguring the switch
matrices in the accommodation filter and all of the hypothesis
filters in the soft-failure detection logic.

RESIDUALS., ¥

NO » SOFT DETECTION

YES

MODIFY S

Figure 8.—Hard-failure detection logic.



TABLE 1.—HARD-FAILURE
DETECTION THRESHOLD

MAGNITUDES

Sensor | i [ Adjusted | Detection

standard | threshold,

deviation, Ay

i

N1 1| 300 rpm | 600 rpm
N2 2| 400 rpm | 800 rpm
PT4 3| 30psi 60 psi
PT6 4 5 psi 10 psi
FTIT 5| 250 °R 500 °R

Soft-Failure Detection and Isolation Logic

The soft-failure detection and isolation logic consists of
multiple-hypothesis-based testing. Each hypothesis is
implemented by using a Kalman filter. The soft detection and
isolation logic structure (fig. 9) consists of six hypothesis
filters, one for normal mode operation and five for the failure
modes (one for each engine output sensor). For example, the
first hypothesis filter H; uses all of the sensed engine outputs
except the first, N1. The second uses all of the sensed outputs
except the second, N2, and so on. Each hypothesis filter
generates a statistic or likelihood called the weighted sum of
squared residuals (WSSR) statistic, which is defined below.
This statistic is subtracted from the normal-mode WSSR filter

statistic. The maximum of the results is compared with the
soft-failure detection and isolation threshold. If the threshold
is exceeded, a failure is declared. If a sensor failure has
occurred in N1, for example, all of the hypothesis filters except
H, will be corrupted by the faulty information. Thus each of
the corresponding likelihoods will be small except for H;.
Thus the H, likelihood will be the maximum, and it will be
compared with the threshold to detect the failure.

Each hypothesis filter is identical in structure (fig. 10) to
the accommodation filter except for the switch matrix S;.
Each hypothesis filter generates a unique residual vector v;.
Assuming Gaussian sensor noise, each sample of y; has a
certain likelihood or probability

L = pi(y;) = ke VS

where k is a constant and WSSR; = y/L~'y; with T =
diag (o). The o, are the adjusted standard deviations defined
in table I. These standard deviation values scale the residuals
to unitless quantities that can be summed in the WSSR statistic.
The WSSR statistic is smoothed to remove gross noise effects
by a first-order lag with a time constant of 0.1 sec. When the
log of the ratio of likelihoods is taken,

L
LR; = log <L—'> = WSSR, — WSSR;

0,

> WSSRg
Ho
+
— WSSR; _ LR,
(m) . S, N, W,
1] i
I H WSSR, _ LRo
2 N P N
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SN ¢ ) W 2
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Figure 9.—Soft-failure isolation logic.
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If the maximum log likelihood ratio exceeds the threshold,
a failure is detected and isolated and accommodation occurs.
Three steps are taken for accommodation. First, all seven of
the filter (one accommodation and six hypothesis) switching
matrices are reconfigured to account for the detected failure
mode. Second, the states and estimates of all seven filters are
updated to the correct values of the hypothesis filter that
corresponds to the failed sensor. Third, the interface switch
matrix is reconfigured.

Adaptive Threshold

Since the WSSR statistic is the sum of Gaussian variables
squared, it has a chi-squared distribution. Initially the soft-
failure detection and isolation threshold is determined by
standard statistical analysis of this distribution to set the
confidence level of false alarms and missed detections. Next
the threshold is modified to account for modeling error. It was
soon apparent from initial evaluation studies that transient
modeling error was dominant in determining the fixed thresh-
old level. It was also clear that this threshold was too large
for desirable steady-state operation. Thus an adaptive threshold
was incorporated.

The adaptive threshold is triggered by an internal control
system variable M,.,,, which is indicative of transient
operation. When the engine experiences a transient, M, is
set to 4.5; otherwise it is 0. This variable is used to modify
the isolation threshold \; as follows:

A= )‘isso\exp +1)

Txexp + )\exp = Mran

where N is the steady-state detection/isolation threshold and
7= 2 sec. The values of N\, 7, and My, were found by
experimentation to minimize false alarms during transients.
The adaptive threshold expansion logic enabled A\ to be
reduced to 40 percent of its original value. This resulted in
an 80 percent reduction in the detection and isolation threshold
A2 The adaptive threshold logic is illustrated in figure 11 for
a PLA pulse transient.
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Figure 11.—Soft-failure detection threshold.



Evaluation System

The ADIA algorithm was evaluated by using a real-
time hybrid computer simulation of the F100 engine, a
microprocessor-based control computer including accompany-
ing interface and monitoring hardware and interactive data
acquisition software, and the sensor failure simulator (SFS).

Hybrid Computer Simulation

The F100 engine hybrid simulation is a nonlinear, real-time,
32nd-order model that includes sensor and actuator dynamics.
Differential equations, which are based on lumped-parameter
thermodynamic and mechanical conservation equations, are
solved on the analog portion of the hybrid. Component
performance information is stored in the digital computer with
interpolation and table lookup functions being handled by
digital software. The simulation was derived from a digital
computer program developed by the engine manufacturer and
from engine test data obtained during the MVC test program.
Simulation accuracy is 2 to 4 percent of nominal for steady-
state performance and is good for transient performance. A
complete description of the simulation and its accuracy
performance is given in reference 7.

Control Computer

The control, interface, and monitoring (CIM) unit contains
the microcomputer used to implement the combined MvC-
ADIA algorithm in real time. The CIM unit also contains
hardware and cabling to provide a flexible interface to and
from the engine or engine simulation being controlled. A
monitoring system in the CIM unit allows the signals between
the microcomputer and the controlled engine to be checked
for correctness. The interface and monitoring functions of the
CIM unit are described in detail in reference 8. The remainder
of this subsection describes the control microcomputer
hardware and software.

Implementing the MVC-ADIA algorithm required integrating
the ADIA algorithm with an existing microcomputer
implementation of the F100 multivariable control (MVC). The
update interval of the microprocessor-based MVC imple-
mentation was 22 msec. The F100 engine system dynamics
required that the combined MVC-ADIA algorithm update
interval be 40 msec or less.

The microcomputer implementation of the MVC algorithm
had been developed by porting the minicomputer implemen-
tation of the MVC algorithm used for the F100 MVC program
to an Intel 8086 microprocessor-based control microcomputer.
The ADIA algorithm was then merged with this MvC
implementation to give a full microcomputer implementation
of the control algorithm with sensor analytical redundancy.
The resulting control microcomputer was also based on the
Intet 8086 microprocessor architecture. However, in order to
implement the combined algorithm and satisfy the update

interval requirement of 40 msec necessary for stable engine
operation, multiple processors operating in parallel were used.

Initially only the normal-mode accommodation filter and the
hard-failure detection logic of the ADIA algorithm were added
to the MVC algorithm. For this initial configuration a second
8086-based central processing unit (CPU), running in parallel,
was added to the CPU used to implement the MVC alone. The
CPU’s used were Intel 86/30 single-board computers. Data
were transferred between CPU’s through dual-ported memory,
and synchronization between CPU’s was achieved through
interrupts. The software for the combined MVC-ADIA
algorithm was partitioned so that the ADIA software ran on
the second CPU while the MvC algorithm remained intact on
the first cpu. This straightforward way to partition the
algorithm allowed the parallel-processing mechanism to be
thoroughly evaluated. It was assumed that the soft-failure
detection and isolation logic would be added to the second CPU
at a later date.

During algorithm development the soft-failure isolation logic
was only run after a soft failure was detected by the soft-failure
detection logic. Because the soft-failure isolation logic is
complex and since we felt that there might be some benefit
to running the soft isolation logic in parallel with the soft
detection logic, a third CPU was added to implement the soft
isolation logic. The soft detection logic was added to the second
cpU. Data were transferred and synchronized in the same
manner as with the two-CPU implementation. Most recently,
the three 8086-based CPU’s were replaced with 80186-based
CPU’s. These are Monolithic Systems MSC 8186 single-board
computers. The new CPU’s are software compatible with the
old CPU’s but are considerably faster. The relative timing for
the three CPU’s is shown in figure 11.

As shown in the figure, the different parts of the combined
MVC-ADIA algorithm are divided among the three CPU’s. The
MVC is implemented in fixed-point assembly language on
CPU 1. When the MVC was implemented on a microcomputer,
assembly language programming using fixed-point arithmetic
was necessary to achieve real-time execution of the algorithm.
With the development of efficient floating-point coprocessing
hardware, in this case the Inte] 8087, came the capability of
implementing real-time controls in floating-point arithmetic.
Thus most of the ADIA algorithm running on CPU’s 2 and 3
is programmed in floating-point arithmetic and the application-
oriented language Fortran. Fortran was chosen because the
ADIA as developed was coded in Fortran and because a fairly
good compiler was available for the 8086-8087. The
advantages of using floating-point arithmetic and an application
language such as Fortran rather than programming in fixed-
point assembly language as was used for the MvVC are well
known.

The primary disadvantage to using an application language
is that it generally produces less efficient object code than the
equivalent functions programmed in assembly language.
Execution efficiency is critical for real-time control systems
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Figure 12.—ADIA timing for 8-MHz MSC 8186.

including the MVC-ADIA. Thus for the ADIA, table lookup
routines, which are written to take advantage of the 8087
architecture (ref. 9) and are executed frequently in the
algorithm, and the hardware interface routines, which have
no Fortran equivalent, are implemented in assembly language.
To allow the remainder of the algorithm to remain in Fortran,
the source code has been optimized to make it run more
efficiently (ref. 10). As shown in figure 12, the entire
MVC-ADIA algorithm now executes in less than the required
40 msec.

The programs for each of the CPU’s are downloaded into
the CPU’s by using a commercially available disk operating
system, CP/M-86. The Microcontroller INteractive Data
System (MINDS) is used for data acquisition (ref. 11). This
software runs on CPU 1 in the spare time when the CPU is not
executing the MVC algorithm (fig. 12). The package has both
steady-state and transient data-taking capabilities and can
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Figure 13.—MVC-ADIA memory requirements. Algorithm code requires
65 percent of total algorithm memory. Total memory, 110 kilobytes.

access any variable in the MVC or ADIA algorithm. The data
taken can be uplinked to a mainframe computer for off-line
processing. In addition, the software has been enhanced to
allow plotting of transient data on-line while the control
microcomputer is operating (ref. 12). The on-line transient
data display of internal MVC and ADIA variables was an
indispensable tool in the evaluation process.

The memory requirements for each of the three CPU’s are
shown in figure 13. Each CPU has, in addition to its share of
the MVC-ADIA algorithm, an executive routine that maintains
correct real-time operation of the total algorithm. The memory
requirements for the algorithm and for the executive are shown
for each CPU. In addition, the memory requirement for MINDS
is shown for CPU 1. In all cases the code and the constants
were about 65 percent, and the data and the variables about
35 percent, of the total memory required. Lastly figure 13
shows the total memory requirements for all executives, the
total algorithm, and MINDS for all three CPU’s combined.

Sensor Failure Simulator

The sensor failure simulator (SFS) provides an efficient
means of modifying engine sensor signals to simulate sensor
failures. The SFS unit consists of a personal computer driving
discrete analog hardware. The personal computer allows a
menu-driven, top-down approach to failure scenario retrieval,
creation, editing, and execution. The SFS can simulate any of
four basic sensor failure modes: scale-factor change, bias,
drift, and noise. These failure modes are implemented in
analog electronic hardware that is controlled by the personal
computer. The SFs allows complete and repeatable control
over the failure size and the timing of failure injection. Details
of the SFS are given in reference 13.

Real-Time Evaluation

This section describes the evaluation of the ADIA algorithm
using a hybrid-computer-based, real-time simulation of an



F100 engine. The objectives, the procedure, and the results
of the evaluation are discussed.

Objectives

The first objective of the evaluation was to validate the
operation and performance of the ADIA algorithm and its
implementation. It was especially important to conduct this
validation in a real-time environment in order to establish the
feasibility and practicality of the implementation. The second
objective was to document the performance of the algorithm
over the envelope of the engine. The third objective was to
establish a data base for comparison with results obtained
during the demonstration phase of the program.

Procedure

The procedure for evaluating the algorithm is defined by
the test matrix (table IT). The different operating conditions

(altitude/Mach number) used during the evaluation are across
the top of the matrix, and the different tests conducted at these
points are along the side. Both MVC only and ADIA-MVC
evaluation tests are shown.

Operating conditions.—The rationale used in selecting the
test matrix operating conditions was to duplicate as many
conditions as possible used in the F100 Multivariable Control
Program (ref. 6), to avoid high fan inlet pressures, and to
reasonably span the envelope. This rationale was a compromise
between taking advantage of previous results for comparison,
limited-risk engine operation, and full-envelope validation. The
test conditions selected are plotted on the engine face condition
envelope in figure 14.

Test definitions.—The tests used in the evaluation were
selected to completely define detection performance for five
common failures modes. Also, tests were conducted to
determine engine control performance with and without the
ADIA algorithm and with and without engine sensor failures.
The tests are summarized in table III.

TABLE II.-EVALUATION TEST MATRIX

Test Operating condition,
altitude (1000 ft)/Mach number
10/0.6 | 30/0.9 | 10/0.9 | 45/0.9 | 10/1.2 } 50/1.8 | 35/1.9 | 55/2.2
Number of tests
Sensor failure test:
Hard 10
Soft 10 10 10 5 5 5 5 5
Drift 10 10 10 5 5 5 5 5
Noise 2 2
Scale 2 2
Sequence 12 12
Pulse 1 1 1 1
Open 1 1
Random 4 4
Frequency 4 4
MVC tests:
MVC SS 7 3 3 2 1 1 1
MVC pulse 1 1 1 1
Original/CIM 1 1. 1 1
comparison
Single 5

11



TABLE III.—TEST DEFINITIONS

Test Description
ADIA-MVC evaluation

Hard Large bias failure

Soft Small bias failure

Drift Small drift failure

Noise Random noise failure

Scale Scale-factor bias change

Sequence | Sequence of successive output sensor failures

Pulse Minimum-to-maximum-to-minimum transient power
excursions. Maximum power level is maintained for 10 sec.

Open Same as pulse test except that minimum power level is
raised slightly, maximum power level is decreased slightly,
and engine is controlled without using any sensed engine
output information.

MVC-only evaluation

MVC Same as pulse test except that control is run exclusively with
engine sensed output. ADIA estimates are not used
in control.

MVC SS | Steady-state data at operating point

Bleed Pulse test with bleed control disabled

Single Pulse test with single sensor failure accommodated before
initiating transient

Alt/Mach | Altitude/Mach number excursion from 10 000 ft/Mach 0.6
to 45 000 ft/Mach 0.9

Results

Three types of real-time evaluation results are presented.
The first shows the performance of the microprocessor-based
MVC control. The second shows the accuracy of the Kalman-
filter-based estimator. Finally the performance of the ADIA
algorithm itself is given.

Mvc performance.—The performance of the MVC control
was evaluated without the ADIA logic. This evaluation
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Figure 14.—Evaluation test conditions.

demonstrated that the microprocessor-based implementation
of the MvC control algorithm could accurately and safely
control the test-bed engine. Steady-state and transient results
were obtained at the test matrix operating conditions. In every
case both the steady-state and transient accuracy results were
good. The steady-state results are summarized in table IV.

Minimum and maximum steady-state error results at seven
points in the 10 000-ft/Mach 0.6 operating condition are given
graphically in figure 15 for N1 (minimum error) and in

TABLE IV.—STEADY-STATE MVC PERFORMANCE RESULTS

Operating condition Engine output
Altitude, | Mach | Power N1 N2 PT4 PT6 FTIT EPR
ft number | lever
angle, Value, percent of nominal
PLA,
deg
10x103 0.6 50 0.07 0.66 1.94  —0.18 6.71 | —0.79
.6 83 —.40 08| -.31 —.48 .24 1.53
9 50 —-.17] —.36| —2.66 .00 1.49 13
9 83 -.72 17 s -07 —-41 -.07
1.2 70 —-.08] -.21 -.15( -1.35 32 =07
30 9 50 =07 =52 -.11 -.37 7.20 | —1.39
9 83 09 -.20 94 —-.24 1.16 | —.24
35 1.9 83 -34| -31| -247| -8 | —-196]| -.51
45 9 70 -.16| -.31 0 —-.71] —9.89 | —1.45
50 1.8 83 -1.20| -2.01 | —=5.50 [ —2.18 | —-3.78 | —1.93
55 2.2 83 .28 1.37 4.97 A1 .81 11
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Figure 15.—Steady-state accuracy comparison (minimum error) for fan speed
N1 at 10 000-ft/Mach 0.6 operating condition.

figure 16 for FTIT (maximum error). The error magnitudes
for FTIT at PLA of 50° and 70° from table IV represent some
inaccuracy in the steady-state control schedules. However,
these inaccuracies will have no effect on control performance
since the FTIT control schedule information is not used in the
control at these PLA settings. Typical transient response
examples at the 45 000-ft/Mach 0.9 operating condition are
shown in figure 17 for N1 and in figure 18 for PT6 for pulse
tests. Of the five pulse responses the 45 000-ft/Mach 0.9
operating condition represents worst-case engine control
performance. It is, however, completely acceptable control
response. Additionally the pulse test results at the five transient
operating conditions were compared with results obtained
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Figure 16.—Steady-state accuracy comparison (maximum error) for fan turbine
inlet temperature FTIT at 10 000-ft/Mach 0.6 operating condition.

during the original real-time evaluation of the MvC algorithm
(vef. 7).

In this original evaluation a different computer (a mini-
computer) was used to implement the control. Both good
steady-state reference point accuracy and transient trajectory-
following accuracy were demonstrated throughout the engine
operating envelope. Although the minicomputer-based
implementation used a slightly different principal control mode
(nozzle area sets the airflow Mach number rather than the
engine pressure ratio), this did not significantly affect the
comparison. Thus if the two implementations compared
closely, an additional level of confidence in the ability of the
new implementation to accurately control the test-bed engine
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Figure 17.—Multivariable control performance showing 45 000-ft/Mach 0.9 pulse transient response for fan speed N1.
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Figure 19.—Multivariable control response to 45 000-ft/Mach 0.9 pulse transient for fan speed N1—comparison for two implementations.
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Figure 20.—Multivariable control response to 45 000-ft/Mach 0.9 pulse transient for augmentor pressure PT6—comparison for two implementations.
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(a) N1 pulse response.
(b) PT6 pulse response.
Figure 21.—ADIA-MVC performance at 10 000-ft/Mach 0.6 operating condition.
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Figure 22.—ADIA-MVC performance at 10 000-ft/Mach 0.6 with a PT6 sensor failure.

system was obtained. As seen in the typical responses of figure 19
for N1 and in figure 20 for PT6, the comparison was quite good.
This was typical for all five of the transient test matrix conditions.

Additionally the control was evaluated to determine if
successful engine operation could be obtained without com-
pressor bleed. In these tests the simulation was subjected to
the pulse transient with the compressor bleed fixed in the closed
position. The transient was simulated at the 10 000-ft/Mach
0.6 operating condition. These results were compared with
those for the nominal configuration. The comparison shows
no discernible difference between engine control operation
with and without compressor bleed.

16

Control performance was also evaluated given that a single
sensor failure had occurred. The purpose of this test was to
evaluate control performance after a single sensor failure had
been accommodated. In this case five pulse transients at the
10 000-ft/Mach 0.6 operating condition were simulated. In
each case a single, but different, output sensor failure was
accommodated before the pulse transient was initiated. The
normal-mode responses and the failure transient responses are
compared for an N1 failure in figure 21 and for a PTé6 failure
in figure 22. Control performance was good for all five failure-
mode cases. Additional information about estimate accuracy
during these tests is given in the next section.
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Figure 24, —ADIA-MVC performance—N1 response to altitude and Mach number excursions of figure 23.

Finally control performance was evaluated for an altitude
and Mach number excursion. The ADIA-MVC control
performed acceptably during this excursion. The excursion
went from the 10 000-ft/Mach 0.6/83° operating condition to

the 45 000-ft/Mach 0.9/83° operating condition as shown in
figure 23. Data showing N1 and PT6 control for this transient
are given in figures 24 and 25, respectively. Control
performance for this transient was quite good.
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Figure 25.—ADIA-MVC performance—PT6 response to altitude/Mach number excursions of figure 23.

Estimator accuracy.—The single most important element
in determining ADIA algorithm performance is the accuracy
of the engine output estimates used in the algorithm. These
estimates are determined by the accommodation filter, which
incorporates a simplified engine model. The accuracy of the
output estimates for both steady-state and transient operation
was evaluated at various engine operating conditions. An
engine operating condition is defined by the pilot’s power
request (power lever angle, PLA) and the altitude (ALT) and
Mach number (MN) at which the engine is operating. The
accuracy of the estimates is presented in two parts, steady-
state accuracy and transient accuracy.

Steady-state accuracy was obtained in a straightforward
manner. The simulation was ‘‘flown”” to the desired operating
condition and allowed to reach steady state. Then control
execution was halted (or frozen). MINDS was then used to
sample and store a set of steady-state data. Measured and
estimated variables for seven operating conditions are
compared in table V by showing the difference (the residual)
between sensed and estimated fan speed N1, compressor speed
N2, combustor pressure PT4, exhaust nozzle pressure PT6, and
fan turbine inlet temperature FTIT as a percentage of the
nominal value.

18

TIME, sec
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TABLE V.—STEADY-STATE ESTIMATION ACCURACY
RESULTS WITH NO SENSOR FAILURES

Operating condition

Engine output

Altitude, | Mach | Power | NI N2 PT4 | PT6 | FTIT

ft number | lever

angle, Accuracy, percent of nominal

PLA,

deg
10x103 0.6 83 0.43 | 0.11 | 3.16 | 0.53 | 0.11
30 9 50 06| .16 | .21 (153 .11
10 9 83 421 28 (136 69| .04
45 9 60 A2 21| 1.8711.45] .04
10 1.2 83 A7 111136 33 .11
55 2.2 33 54 (564248 | .05
35 1.9 l 03| 32 92512 .01
50 1.8 39 49 (3,12 (248 .04
Average |(0.24 | 0.28 | 2.21 | 1.83 | 0.06
Maximum 43| 531564 (512 .11




From these comparisons it is clear that the estimates exhibit
excellent steady-state accuracy. Maximum error magnitudes
occurred for PT4 at the 55 000-ft point and for PT6 at the
35 000-ft point. These error magnitudes can be easily reduced
by straightforward adjustment of the base-point schedules
used in the algorithm. The average and maximum steady-state
accuracy results are summarized in bar graph form in
figure 26.

Transient accuracy data were obtained in the following
manner: Again the simulation was ‘‘flown’’ to the desired
operating condition and allowed to reach steady state. An idle-
to-intermediate-power PLA pulse transient was then simulated
(see fig. 27) at five different operating conditions. MINDS was
used to sample and store data throughout the transient.
Example plots of sensed and estimated fan speed and its
residual, as well as the likelihood ratio for N1, are presented
in figures 28 to 30.

These trajectories give the reader a “‘feel’’ for the summa-
rized results of tables VI to IX. In table VI the maximum value
of the residuals obtained in response to the reference transient
is given for each output at each of the five operating conditions.
In table VII the average absolute values of the residuals are
given.
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Figure 26.—Steady-state estimation accuracy.
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Figure 27.—Idle-to-intermediate power pulse transient used to generate
transient results.
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Figure 28.—Example of pulse response to sensed and estimated fan speed
for 10 000-ft/Mach 0.6 operating condition.
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Figure 29.—Example of pulse response to fan speed residual for
10 000-ft/Mach 0.6 operating condition.
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Figure 30.—Example of pulse response to fan speed likelihood ratio for
10 000-ft/Mach 0.6 operating condition.

Since detection performance is determined by the likelihood
ratios, estimate accuracy interpreted in terms of these statistics
is critical to understanding algorithm performance. The
maximum ratio values and the average ratio values are given
in tables VIII and IX, respectively, to summarize transient
accuracy for the reference trajectories.
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TABLE VI.—MAXIMUM RESIDUAL VALUE IN
RESPONSE TO PLA PULSE INPUT
(NORMAL MODE)

Operating condition Engine output
Altitude, Mach N1 N2 | PT4 | PT6 | FTIT
ft number
Value, percent of nominal

10x103 0.6 3.57( 081 6.50| 12.55| 5.78
30 9 1471 .74 4.48| 13.08 | 5.49
10 9 4301 1.13 ] 5.22 | 14.98 | 5.68
45 9 2.89( 1.86 | 7.81 ] 19.30 | 4.44
10 1.2 1.54 ([ 1.24 | 5.02| 9.21] 3.50

Average [ 2.75| 1.16 | 5.81 | 13.82 | 4.98

Maximum | 4.30 | 1.86 | 7.81 | 19.30 | 5.78

TABLE VIL.—AVERAGE RESIDUAL ABSOLUTE VALUE
IN RESPONSE TO PLA PULSE INPUT
(NORMAL MODE)

Operating condition Engine output
Altitude, Mach N1 N2 PT4 | PT6 | FTIT
ft number
Value, percent of nominal

10x 103 0.6 |0.77]024] 1.67 233 1.44
30 9 63 28] 92294 1.64
10 9 60| 42| .78 2.98] 1.39
45 9 491 36| 2.37 (578 1.21
10 1.2 210 23| 121 75| .85

Average | 0.54 | 0.31 | 1.39| 2.96 | 1.31

Maximum | .77 | 42| 2.37| 5.78 | 1.64

TABLE VIIL.—MAXIMUM LIKELIHOOD RATIO IN
RESPONSE TO PLA PULSE INPUT
(NORMAL MODE)

TABLE IX.—AVERAGE LIKELIHOOD RATIO IN
RESPONSE TO PLA PULSE INPUT
(NORMAL MODE)

Operating condition Engine output
Altitude, Mach N1 N2 PT4 PTé6 FTIT
ft number
Average likelihood ratio

10x103 0.6 0.086 | 0.057 | 0.044 | 0.059 | 0.010
30 9 060 | .0371 .006| .045| .007
10 9 .088| .047( .038; .123| .010
45 9 .044 | .034| .003( .007] .007
10 1.2 015 .107 | .124| .020| .006

Average | 0.059 | 0.056 | 0.023 | 0.051 | 0.008

Maximum | .088 [ .107( .044{ .123| .010

Plots of the likelihood ratios became the standard tool used
for evaluation and performance prediction. Transient accuracy
was considered to be quite good overall although not as good
as steady-state accuracy. It was fairly evident then that
detection performance could be greatly improved if different
thresholds for steady-state and transient detection were
allowed. This observation led immediately to the implemen-
tation of the adaptive threshold logic described earlier.

Estimator accuracy results were also obtained for the single-
failure pulse tests described in the MvC evaltuation. These
results are given in table X for maximum residual values and
in table XI for average residual values. These tests show very
little degradation in estimator accuracy performance even when
it was operating with only four sensors. Thus ADIA perfor-
mance will not degrade significantly after a single sensor
failure.

Estimator accuracy was also studied during the altitude/
Mach number excursion of figure 23. As an example sensed
and estimated N1 and PT6 are compared in figures 24 and 25,
respectively. In each case the accuracy was excellent.

TABLE X.—MAXIMUM RESIDUAL ERRORS FOR PULSE
TRANSIENTS AT 10 000 FT/MACH 0.6 WITH
SINGLE SENSOR FAILURE

Operating condition Engine output
Altitude, Mach N1 N2 PT4 PT6 FTIT
ft number
Maximum likelihood ratio

10x103 0.6 0.875 | 0.342 { 0.286 | 0.598 | 0.080
30 9 241 .146| .076 | .305| .042
10 9 1.025 [ .236 | .162| 1.340| .059
45 .9 400 | .238) .009] .059] .042
10 1.2 126 | 253 | 355 | 401 .041

Average | 0.533  0.243 [ 0.177 | 0.540 | 0.053

Maximum | 1.025 | .342| .355| 1.340| .080

Output Failure mode
None N1 N2 PT4 PT6 FTIT
Maximum residual error

N1 3.570| 0 2.931| 2.592 | 2.481) 2.877
N2 .810 979 0 823 .784 91
PT4 6.500 | 7.513( 5.211{ 0 6.454 | 6.550
PT6 12.550 | 10.740 | 12.220 | 11480 | O 11.880
FTIT 5.780( 6.383| 5704 | 5.650| 5.731| O




TABLE XI1.—AVERAGE RESIDUAL ERRORS FOR PULSE
TRANSIENTS AT 10 000 FT/MACH 0.6 WITH
SINGLE SENSOR FAILURE

Output Failure mode

None N1 N2 PT4 PT6 FTIT

Average residual error

Nt 0.770 | O 0.755 | 0.472  0.571 | 0.483
N2 240 249|0 250 265 270
PT4 1.670 | 1.479| .693| 0 1.067 | 1.260

PT6 2.330| 2.211| 2.4861 2432 | 0 2.431
FTIT 1.440 | 1.305] 1.417| 1.406| 1.455| 0

Detection, isolation, and accommodation performance.—
Two types of sensor failures were considered: hard and soft.
Hard failures, because of their size, are easily detected. Thus
hard-failure detection performance, although important to
system reliability, was examined at only one operating condi-
tion. The ADIA algorithm exhibited excellent hard-failure
detection performance at this condition. There were no false
alarms or missed detections of any hard failures at the oper-
ating condition studied. Hard failures were simulated in each
of the engine sensor outputs. The failure was successfully
detected and accommodated in each case. In addition, no false
alarms in the hard-failure detection logic were encountered
during the subsequent soft-failure evaluation.

Soft sensor failures, although small in magnitude, if
undetected, may result in degraded or unsafe engine operation.
Soft failures are more difficult to detect. Therefore the
evaluation concentrated on soft-failure detection and isolation
performance. Four soft-failure modes were considered: bias,
drift, noise, and scale factor. Algorithm performance for
the bias and drift failure modes was studied extensively.
Performance for the noise and scale-factor modes was studied
at a limited number of conditions. Performance criteria studied
were minimum detectable bias values and drift rates, detection
time, steady-state performance degradation, and transient
response to failure accommodation.

The procedure followed to obtain performance data was
identical to that used to obtain transient accuracy data.
Additionally the SFs was used to simulate a sensor failure of
the appropriate size and at the desired time. The results
obtained are summarized for the minimum detectable level of
bias in table XII.

In table XII the minimum detectable biases at 11 different
operating conditions for each engine output are given. The
detection times for the minimum detectable biases were essen-
tially instantaneous. The results are presented as a percentage
of full scale, a percentage of nominal, and in engineering units.
Full-scale values are constant, but nominal values can vary
throughout the operating range. Note that the size of the
failures detected (in units or equivalently as a percentage of
full scale) was essentially constant over the operating range.

TABLE XII--MINIMUM BIAS FAILURE MAGNITUDES

(a) Units
Operating condition Engine output
Altitude, | Mach | Power | N1, | N2, | PT4, PT6, | FTIT,
ft number | lever | rpm | rpm | psi psi °F
angle,
PLA, Failure magnitude
deg
10x 103 0.6 50 300 | 300 | 12.50 3.00 | 150
6 83 350 | 350 | 12.50 | 3.00
30 9 50 300 13.50 | 2.75
83 325 13.50 | 3.00
10 50 300 13.50) 2.75
83 300 11.00 | 3.00
45 70 200 | 400 | 18.00 | 3.00 [ 250
10 1.2 70 200 | 400 { 20.00( 3.50 | 150
50 1.8 83 300 | 350 | 12.50| 3.00
35 1.9 83 300 | 300 | 19.00| 3.00 l
22 83 250 | 500 | 25.00 | 3.00

(b) Nominal

Operating condition

Engine output

Altitude, | Mach | Power | NI N2 PT4 PT6 FTIT
ft number | lever
angle,
PLA, Failure magnitude,
deg percent of nominal
10x103 0.6 50 347|260 6.39] 12.02 | 12.00
.6 83 341267 3.8 7.714] 8.5
30 .9 50 3.43 ] 3.10 1092 ] 18.10| 12.36
83 3251273 699 13.24( 9.41
10 50 354260 6.17| 9.74| 12.17
83 291|266 28| 6.40]| 8.72
45 70 2,12} 3.34( 21.33 | 29.96 | 18.18
10 1.2 70 2,111 3.21| 571} 7.78| 10.00
50 1.8 83 2941 2,71} 833} 17.44) 9.06
35 1.9 83 295|231 594 7.69| 8.94
55 2.2 83 2.57] 3.76 | 16.34 | 15.54 | 8.80
(c) Fuli-scale bias
Operating condition Engine output
Altitude, | Mach Power| N1 N2 PT4 PT6 FTIT
ft number | lever
angle,
PLA, Failure magnitude,
deg percent of full scale
10x103 0.6 50 2921229] 385| 7.74 | 8.75
.6 83 3.41 ] 2.67| 3.85 7.74
30 9 50 292|267 4.15 | 7.10
83 317} 2.67| 4.15 | 7.74
10 50 2921229 415 | 7.10
83 2921267 3.38 | 7.74
45 70 1.95( 3.05| 5.54 | 7.74 | 4.59
10 1.2 70 1.95( 3.05| 6.15 | 9.04 | 8.75
50 1.8 83 2.92]2671 3.8 | 7.74
35 1.9 83 2921229 585 | 7.74 l
55 2.2 83 244 381 7.69 | 7.74
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Figure 31.—Minimum detectable bias failure.

Note also that the highest detectable bias (29.96 percent) as
a percentage of nominal occurred for PT6 at 45 000-ft/Mach
0.9/70° because of the low nominal value of PT6 at this
condition. However, this failure as a percentage of scale (7.74
percent) was about average. The minimum detectable bias
magnitudes were small overall and represented excellent
performance. This performance is summarized in bar graph
form in figure 31.

The minimum detectable drift rates (table XIII) were
determined by adjusting the drift magnitude such that a failure
was detected approximately S sec after its inception. As in the
bias case the highest minimum detectable drift rate as a
percentage of nominal occurred at the 45 000-ft/Mach 0.9/70°
operating condition. However, as before, this value as a per-
centage of nominal was well below the maximum value as a
percentage of full scale. The percentage-of-full-scale values
are all similar in magnitude. In general these results, which
are summarized in the bar graph of figure 32, were excellent.
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Figure 32.—Minimum detectable ramp failure.
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TABLE XIII.—MINIMUM DRIFT FAILURE MAGNITUDES

(a) Units
Operating condition Engine output
Altitude, | Mach | Power NI, N2, PT4, PT6, FTIT,
ft number | lever | rpm/sec | rpm/sec | psi/sec | psi/sec | °F/sec
angle,
PLA, Failure magnitude
deg
10x 103 0.6 50 100 100 2.50 | 0.80 70
.6 83 125 125 1.25 .60
30 9 50 130 100 2.50
83 150 125 3.00
10 50 100 100 2.50
83 125 125 2.00
45 70 100 150 3.00 .80 75
10 1.2 70 25 150 3.50 | 1.20 70
50 1.8 83 150 150 1.75 .20 70
35 1.9 83 125 50 3.00 .20 70
55 2.2 83 75 215 4.50 .60 75
(b) Nominal drift
Operating condition Engine output
Altitude, | Mach | Power N1 N2 PT4 PT6 FTIT
ft number | lever
angle,
PLA, Failure magnitude, percent of nominal
deg
10x103 | 06 50 1.16 0.87 | 128 | 3.20 | 5.60
.6 83 1.22 .95 .38 1.55 4.08
30 9 50 1.49 .89 2.02 3.95 5.77
83 1.50 .97 1.55 2.65 4.39
10 50 1.18 .87 1.14 2.13 5.68
83 1.21 .95 .52 1.28 4.07
45 70 1.06 1.25 3.55 7.99 5.45
10 1.2 70 .26 1.20 1.00 2.67 4.67
50 1.8 83 0 .01 .01 .03 .05
35 1.9 83 1.23 .38 94 51 4.17
55 2.2 83 77 1.61 2.94 3.11 4.40
() Full-scale drift
Operating condition Engine output
Altitude, | Mach | Power Nt N2 PT4 PT6 FTIT
ft number | lever
angle,
PLA, Failure magnitude, percent of full scale
deg
10x103 | 0.6 50 976 076 | 077 | 2.70 | 4.08
.6 83 1.22 95 .38 1.55
30 9 50 1.27 .76 a7
83 1.46 95 .92
10 50 .97 .76 a7
83 1.22 .95 .62
45 70 .97 1.14 .92 2.07 4.38
10 1.2 70 24 1.14 1.08 3.10 4.08
50 1.8 83 (] .01 .01 .03 .04
35 1.9 83 1.22 .38 94 51 4.17
55 2.2 83 .73 1.64 1.38 1.55 4.38




TABLE XIV.—STEADY-STATE RESULTS OF SLOW DRIFT FAILURE TRANSIENTS FOR ORIGINAL ADIA ALGORITHM

those for PT4 and PT6. Here the accuracy was quite good and
there were no false alarms.

Operating condition Failure ADIA algorithm
parameter
Altitude, | Mach | Power Parameter bias Change in Time for Comments Performance?
ft number | lever before DIA thrust DIA,
angle, before DIA, sec
PLA, percent
deg
0 0 24 |p6 7.4 psi (42%) —-4.5 0.490 A
0 40 | NI 1333 rpm (12.1%) | —44.5 1.994 4]
0 83 | PT4 46.5 psi (12.7%) —.1 3.080 Filter noisy during ADIA A
1.2 83 | FTIT 90 F (5.2%) —-2.2 2.53
10x103 75 50 | PT4 40.5 psi (19.6%) -2 2.664 l
5 83 PT6 9 psi 21.8%) -1.5 572
20 3 40 | N2 Undetected -— Undetected | Unstable diverging U
3 83 | N2(—) Undetected -— Undetected | Unstable U
3 N2 1415 rpm (11.4%) —-4.5 3.518 A
25 1.0 l PT4 46.5 psi (18.1%) -2 3.066 A
2.2 PT4 False alarm ——— ———- PT4 and PT6 false alarms prior to failure U
40 .6 40 [ N2 Miss —48 —— 2000-rpm drift miss U
.6 83 | PT6 6.75 psi (63.7%) -.5 .448 System oscillatory after failure induced A
45 2.2 P4 —56.4 psi (—-24.5%) -.16 3.750 A
60 1.2 l N2 2000 rpm (15.8%) -19.4 5.016 Drift caused system to go unstable U
65 2.5 P6 —3.75 psi (—27.4%) +24.7 400 FTIT false alarm U
AA = acceptable; U = unacceptable.
To place these results in perspective, the soft-failure detect-
ion performance f’f this 1mpr'0ved version of the algorlthr.n TABLE XV.—DRIFT FAILURE RESULTS
was compared with the original algorithm (ref. 1). In this
comparison drift failures were injected at 17 ‘‘edge of the Operating condition Failure | Parameter | Change in | Time
envelope”’ points. Performance data for the original algorithm ) parameter | bias thrust | for
. K e . X Altitude, | Mach | Power before DIA, | DIA,
(table XIV were obtained from a nonlinear, digital simulation ft number | lever percent sec
- of the engine. The performance of the improved algorithm is angle,
presented for comparison in table XV. v
Some of the operating conditions of table XIV are only i
approximated in table XV. The hybrid computer could not 0 0 24 | p6 3.7 psi 0 0.5
successfully attain these conditions because of scaling limita- g ‘;(3) ’:;4 26?'502““:; (1) 'g
tions. In every case but one, the improved version of the 12 83 | FriT 124.0 EF —4 25
algorithm had a smaller parameter bias before detection than 10x10 75 | 50 | P4 16.4 psi 0 9
the original version. In all failure cases the improved algorithm 0 ';4 ig ’;;6 X 482(')7r§2 :? 3';
allowed continued engine operation; in some cases the original 3 83 | N2(-) ~234.0 rpm 1 5
algorithm would have required an engine shutdown. The drift 3 N2 265.0 rpm -1 3
failure rates used in this comparison are given in reference 1. » ;‘g | g: isg - _(1) ig
Estimation accuracy and false alarm performance were also 40 P 40 |n2 216.0 rgm _5 s
evaluated for the altitude/Mach number excursion defined by 6 83 | PT6 2.6 psi -1 1.6
figure 23. Likelihood ratio and detection threshold responses 2(5) f ; o 2715(')7 Lo 1(5’ g
are given in figure 33 for the PT4 and PT6 engine outputs. The 65 23 PT6 '3_7r§),si —5 23
likelihood ratios for N1, N2, and FTIT were all smaller than 45 2.1 v [PT4(2) —15.0 psi 0 1.5
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Figure 33.—Likelihood ratio response during altitude/Mach number excursion.

LIKELIHOOD RATIO

Actuator Modeling Error Evaluation

The effects of fuel flow actuator and fuel flow feedback sen-
sor modeling errors were also evaluated. Since the algorithm
estimates depend on fuel flow information and since fuel
flow is the primary control variable, fuel flow actuation or
measurement errors could significantly degrade detection
performance. Likelihood ratio results for the PLA pulse test
at the 10 000-ft/Mach 0.6 operating condition are shown in
figure 34 for normal operation, for operation with a 10 percent
change in the fuel flow actuator gain, and for operation with
a 10 percent change in the fuel flow feedback measurement.
In each case no false alarms were encountered. In general,
detection performance was not significantly degraded by the
modeling errors. However, some effect was seen for a
feedback sensor error on the N2 and PT4 likelihood ratios. For
PT4 the difference occurred only during an engine acceleration
and would have only a limited effect on detection performance.
For N2, however, a steady-state error occurred that in the
worst case would result in approximately a 50 percent increase
in minimum detectable failure magnitudes.

@ DETECTION THRESHOLD
=== NORMAL MODE
——===— SENSOR ERROR
ACTUATOR ERROR

20 25

TIME, SEC

(a) N1 likelihood ratio.

Figure 34—Fuel flow modeling error effects for various likelihood ratios.
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Figure 34.—Continued.
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Conclusions

As a result of this real-time evaluation study several conclu-
sions have been reached.

1. The advanced detection, isolation, and accommodation
(ADIA) failure detection algorithm works and works quite well.
Sensor failure detection and accommodation were demonstra-
ted over a broad range of operating conditions and power
conditions. The minimum detectable failure magnitudes
represent excellent algorithm performance.

2. The algorithm is implementable in a realistic computer
environment and in an update interval consistent with real-
time operation. Off-the-shelf microprocessor-based hardware

and straightforward programming procedures, including
Fortran and floating-point arithmetic, were used. Parallel
processing was also used and shown to be an effective
multiplier of computational resources.

3. The ADIA algorithm and MVC control microprocessor-
based implementations are ready for demonstration. The ADIA
algorithm will be demonstrated on a full-scale F100 engine
in the Lewis Research Center’s altitude test facility.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, April 14, 1987
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