
\

A SOFTWARE TECHNOLOGY EVALUATION PROGRAM

AUTHOR: DAVID N. NOVAESCARD

Adress to contact: Computer Sciences Corporation
8728 Colesville Road
Silver Spring, Maryland 20910
USA
Telephone (30 1 I 589- 1 545

KEYWORDS: Software Engineering, Productivity, Reliability, Maintainability, Modem Programming Practices, Quality
Assurance, Computer Use.

INTRODUCTION

Software provides an increasingly larger part of the func-
tionality, and consequently the cost, of computer systems.
For some large applications, the cost of the software com-
ponent exceeds 75 percent of the total system cost. The
ability to deliver reliable software on time at minimum cost
has become essential to success in the computer industry.
The delayed first launch of the National Aeronautics and
Space Administration (NASA) space shuttle clearly demon-
strated the consequences of software failure.

Software development orsanizations. therefbra have
strong incentives to improve the software development
process, principally by adopting new technology. A wealth
of potentially beneficial software engineering tools, practices,
and technques has emerged in the past several years. Ma-
ny. nowever, have been empirically evaluated (Reference
1) . Furthermore, experience shows that all sofhvare en-
gineering technologies are not appropriate for all software
development problems and environments.

The difficulty of accurately measuring the software de-
velopment process, in general, and technology use, in par-
ticular, accounts for much of the lack of objective informa-
tion in this area. This Daper describes an ongoing technolo-
gy evaluation program (Reference 2) conducted by the Soft-
ware Engineering Laboratory EEL) that is intended to resoive
these issues, at least in part. In the context of this paper, the
term "technology" refers to tools, practices, and technique
applied by software developers.

Software engineering laboratory

The SEL is a research project (Reference 3) sponsored
by NASA and supported by Computer Sciences Corpora-
tion and the University of Maryland. Figure l shows the or-
ganization of the SEL. which was established in 1977. The
SEL studies software developed to support spacscraft flight
dynamics applications at Goddard Space Flight Center.

The overall objective of the SEL is to understand the sofi-
ware development process in the flight dynamics environment
and the identify the ways in which it can be altered to im-
prove the quality and reduce the cost of the product. The
SEL has monitored the development of more tnan 45 fligth
dynamics projects. In addition, the SEL conducts control-
led experiments and performs multiproject variation studies,

Fliiht dynamics software

The general class of spacecraft flight dynamics sotoare
studied by the SEL includes applications to support at::ude
determination/ control, orbit adjustment, maneuver pari-
ning, and mission analysis. The attitude ground suppcr. 3 s -
tems form a large and homogeneous group of softwa:e hat
has been studied extensively. Each system includes a te'srn-
etw processor, dataadjuster, and a1titudgcompu:atm strb-
systems as well as other necessary suporting iunc!~ons.

Flight dynamics applications are developed in FORTRAN
on IBM mainframc comouters. Svztnrn n i 7 ~ s r g n y f r w n 3c
to 150 thousand source lines of code. The fixed space2r;ft
launch date imposes a severe development time constrant.
Acceptance resting must be completed 2 months pr:or to
launch so that launch preparations can proceed on sc+ed-
ule. Figure 2 describes some major characteristics of L;]ht
dynamics software.

THE PROGRAM

The SEL program of technology evaluation includes ! W e
steps: measurement, evaluation, and xansference. k'ias-
urement establishes the baselme against which the ef'aca
of technologies can be compared. Next, technologca: in-
novations are attemped and their effects evaluated. i f te r
careful study, sucessful technoiogies are transferred to de-
velopers via guidelines, standards, and training.

Measurement
Measurement is the basic prereauisi;e for technoiqy

evaluation and management. Software engineering e:qxrts
such as Boehm (Reference 4) and DeMarco (Reierenr.;: 5)
are paying increased attention to the role of measurercni
in software developmc.nt. The SEL developed a c0mprer.w-
sive data coliectiori methodology (Reference 6) as the Sa-
sis for its measurement actvity. Measures collected incMe
staffing, computer utilization. errcr reports, and prooxt
sizelcomplexity measures. as well as the level of technc:o-
gy applied to each project. The SELemploys both ques::sn-
naires an3 automated methods 01 data collection. The cc.1-
Iccted data are assembled in a computerized data b s e ac-
cessible to all SEL participants.

Because the software developmcnt process is comp:ax
and involves many different humen and physical eleme: !s,

,

2-2

https://ntrs.nasa.gov/search.jsp?R=19870016343 2020-03-20T10:53:28+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42836033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

---. .
Quality assurance

Quality assurance includes all review and management
procedures undertaken to ensure the delivery of an effec-
tive and realible product. The specific technologies studied
by the SEL are as follows:
- Requirements Reviews .
- Design Reviews
- Design Walkthroughs
- Code Walkthroughs
- Test Formalism
- Test Followthrough
- Methodology Reinforcement
- Document Quality Assurance
- Development Standards
- Code Configuration Control
- Code Library (PANVALET)
- Configuration Analysis Tool

For the analysis decribed here, the individual meas'ures
of technology usejlisted previously) were combined to form
a single index of overall quality assurance activity. Figure
7 shows the relationship of this index to error rate. Quality
assurance activity appears to be associated with a reduced
error rate. No significant correlation with productivity was
found. This implies that the reliability benefits of quality as-
surance are obtained at no additional cost in terms of de-
velopment effort.

Cnmguter utauatian
Another mapr factor in software development is the com-

puting environment. Because changes to this environment

gle project, the computing environment is not considered
to be a software engineering technology as defined in this
paper. Nevertheless, it can have a strong effect on the de-
velopment process (Reference 8). The flight dynamics com-
puting environment provides the programmer with facilities
for editing, compiling, linking, and testing source code.

Figure 8 shows that extensive computer use is associat-
ed with low productivity. Heavy computer users may not
spend enough time desk checking and planning their work
before jumping into code and test. However, a recent study
(Reference 91 indicated that computer support for desgn
and planning activities (not now provided) can increase the
overall productivity and reliability of the software develop-
ment process.

Transference
When the effectiveness of a technology has been demon-

strated, the next step is to transfer it to software developers.
The principal mechansms used by the SEL to accomplish
technology transfer include disseminating guidelines, de-
veloping tools, and conducting specialized training. The
guidelines produced by the SEL cover management proce-
dures (Reference 101. programming practices (Reference
1 1 1, and quality assurance (Reference 12). Two important
SELdeveloped tools are the Source Code Analyzer Program
(Reference 131, which has been distributed across the United
States, and the configuration Analysis Tool (Reference 141,
which is tailored to specific flight dynamics needs. Current-
ly, SEL researchers are designing a training program for the
Ada' language (Reference 15).

,,,.,,..ll.,,.-"--.~- "-c.y,,, ru,,,,uru~IIleGlei~i~r~~uirri -- io rheneeasoianysin- .
. '
!

'

.

;

many memires are needed to characterize it adequately.
Examination of a model of software development, such as
that shown in Figure 3, helps to define ovedappng set of
measures. This mcdel includes the tollowing components:
- Problem - Statement of the information needs for which

a soitware solution is desired
- Personnei - Software development team, managers,

and supporting personnel
- Process - Practices, tools, and techniques employed

by the personnel'to develop the product; it proceeds in
a series of steps (the software life cycle1 - Environment - Physical and informational resources and
constraints within which the personnel and process
operate

- Product - Software and documentation that solve the
problem
Measures are needed to characterize the principal attrib-

utes of these components before the relationships among
the components can be determined. A complete set of mea-
sures constitutes a profile. Software Development profiles
form the baselines against which technologiesareevaluated.

Evaluation
Even after assembling a substantial software engineer-

ing data base, other obstacles to accurate technology evalu-
aton remain: technologies tend to be applied together, sam-
ple sizes are small, and many nontechnology factors also
afect the outcome of a software development protect. These
complications prohibit a simplistic sta:istical anslysis and in-
terpretation of the software development measures collected
(Reference 41. Nevertheless, some trends in the data are
clear.

The SEL has extensively studied four &tors: program-
mer wrformance, modern programming practises, quality
assurance, and computer utilization. Figure 4 summarizes
the results of an analysis of covariance perfoimw with SEL
data t Reference 7). Frogrammer performance proved tc be
the most important factor with respect to both productivity
and reliabi!ity.

Figure 5 shows range of programmer productivity values
encountered in the SEL data. The figure indicates that vari-
antion is lessened (or performance is homogenized) in large
projects. Fwres 6,7 and 8 plot data from 14 large attitude
projects to illustrate the effects of ihe other factors

Mociem programming practices
One grwp of individual technologies, referred to as

modern programming practices, tend do be applied
together. These techologies provide a flexible methodolo-
gy for the (detailed) design, implementation, and verifica-
tion of software.

As practiced in the flight dynamics environment, the pnn-
cipal components are as follows:
- Informal program design language
- Top-down development
- Structured pmgramming
- Code reading - Strutured FORTRAN preprocessor

The individual measures of technology use (listed above)
were combined to form 3 single index of overall structured
programming use. Figure 6 shows the relationship of this
index to error rate. The use of modern programming prac-
ticesappears to be associated with a reduced error rate. No
significant correlation with productivity was found. This im-
plies that the reliability benefits of modern programming
practices are obtained at no additional cost in terms of de-
velopment effort . ..

* Ada IS a registered trademark of the U S. Goverment. Ada Joint Pro-
gram Office

2-3

CONCLUSIONS

SEL experience demonstrated that the software develop-
ment process can be improved by a throughful program of ,

technology evaluation. Other similar organizations can also
apply the lessons leamed by the SEL. First, the use of modem
programming practices increases software reliability without
noticeably increasing.development cost. Second, a regular
program of quality assurance also improves software relia-
bility at little or no net cost. Whereas many modern program-
ming concepts are firmly established in software engineec
ing practice, formal quality assurance procedures are only
now coming into widespread use. Third, intensive computef
use appears to be associated with low productivity. Rogram-
mers who spend a lot of time at the terminal tend to be less
productive.

In summary, these results suggest that a formal and con-
, scientious method of software development yields a more
reliable product. On the other hand, it is very difficult to
reduce the cost of developing a software product, although
a more reliable product should require less subsequent main-
tenance. Despite technological advances, the major factor
in both productivity and reliability continues to be person-
nel capability and performance (Reference 16).

ACKNOWLEDGMENT

The author would like to recognize the central roles of
F. E. McGarry (National Aeronautics and Space Adminis-
tration), G. T. Page (Computer Sciences Corporation), and
V. R. Basili (University of Maryland) in planning and perk-
iiuiita ?G &&s i%<.;ih(: h :!is 3~:.

REFERENCES

1. 6. A. Sheil, "The Psychological Study of Program-
ming," ACM Computing Surveys. March 1981.

2. D. N. Card, F. E. McGarry, G. T. Page, et al., Measur-
ing and Evaluating Software Technology, NASAIGSFC,
under development.

3. D. N. Card, F. E. McGarry, G. T. Page, et al., The Soft-
war8 Engineering Laborarory, National Aeronautics and

Space AdministrationlGoddard Space Flight Center
(NASAIGSFC). SEL-81-104, February 1982.'

4. 6. W. Boehm, Software Engineering Economics. En-
glewood Cliffs: Prentice-Hall 1981.

5. T. DeMarco, Controlling Software Propcts. New York:
Yourdon Press, 1982.

6. V. E. Church, D. N. Card, F. E. McGarry, et al.. Guide
to Dara Collection, NASAIGSFC, SEL-81-101, August
1982.

7. D. N. Card, F. E. McGarry, andG. T. Page, "Evaluat-
ing Software Engineering Technologies," proceedings
of the Eighth Annual Software Engineering Workshop,
NASAIGSFC, SEL-83-007, November 1983.

8. F.E. McGarry, J. D. Valett, and D. L. Hall, "Measuring
the Impact of Computer Resource Quality on the Soft-
ware Development Process and Product," Collected
Software Engineering Papers: Volume 3, NASAIGSFC,
under development

9. K. Koerner, R. Mital, 0 . N. Card, and A. Maione. "An
Evaluation of ProgrammerIAnalyst Worksta-
tions,"Proceedings of the Ninth Annual Software En- '
gineering Workshop", NASAIGSFC, SEL-84-004, ,

November 1984.
10. W. W. Agresti, F. E. McGarry, 0. N. Card, et al..

Manager's Handbook for Software Development, NA-
SAIGSFC, SEL-8 1-205, April 1984.

1 1. W. J. Decker, Programmer's Guide. NASNGSFC, u&
der development.

12. Q. L. Jordan.ProductAssurance, NASAIGSFC, under
development.

13. W. J. Decker and W. A. Taylor, FORTRAN Static
Source Code Analyzer Program User's Guide, NA-

14. W. J. Decker and W. A. Taylor, ConfigurationAnalyss
Tool System Description and User's Guide, NA-
SAIGSFC, SEL-80-104, December 1982.

15. V. R. Basili, "Analysis of Software Development in
Ada", Proceedings of the Ninth Annual Software En-
gineering Workshop, NASAIGSFC, SEL-84-004,
November 1984.

16. F. E. McGarry, "Measuring Software Technology"
Proceedings of the Seventh AnnualSoftware Engineer-
ing Workshop, NASA/GSFC, SEL-82407. December
1982.

'

S.A.lGSFC; SEL-7&?(??. April 1 Q A 5

. .

2-4

AERONAMQ
AND S C A U

FIGURE 1 - Software Engineering Laboratory

TYPE OF
SOFTWARE

SCIENTIFIC. GROUND-BASED, INTERACTIVE GRAPHIC,
MODERATE REUABIUTV A N 0 RESPONSE REQUIREMENTS

LANGUAGES I% FORTRAN. 15% ASSEMBLER MACROS

COMPUTERS: IBM MAINFRAMES, BATCH WITH TSO

PROJECt CHARACTERISTICS: AVERAGE

OURATlON (MONTHS) 18 2 l

EFFORT (STAFFYEARS1 8 24

SIZE (lo00 LOCI
DEVELOPED w 142
DWVERED Q 1s

STAFF (NU-TIME
EQUIVALENT)
AVERAGE 8 11
PEAK 10 24
INDIVIDUALS 14 E)

APWCAWON EXPERIENa
WEARS)
MANAGERS 8 7
TECHNICAL STAFF 4 I

OVERAU EXPERIENCE
WEARS)
MANAGERS 10 14
TECHNICAL STAFF 9 11

LOW
u
2

-

a
P

2
4
7

I
3

8
7

FIGURE 2 - Flight Dynamics Software

2-5

\
\

'\

FIGURE 3 - Software Development Model

PERCENT OF VARIANCE
EXPLAINED BY FACTOR.

TECHNOLOGY FACTOR

MODERN PROGRAMMING
PRACTlCES

OUAUTVASSURANCO

COMPUTER UnutATlON

PRODUCTIVITY RELIABILITY

28

b

b

I

46

10

10

b

.VALUES FROM REFERENCE 7.
hU0 SIG#IRCANT CONTRIBUTION.

FIGURE 4 - Technology Evaluations Summary

SMALL PROJICI I

MOTES: U R G E PROJECTS ARE GREATER THAN 20.006 SOURCL UNCI or coo&
PROOUCTlVlrY IS SOURCE UNES P€R STAFF HOUR.

FIGURE 5 - Programmer Productivity Variations

2-6

.-

FIGURE 6 - Effect of Modern Programming Practices FIGURE 7 - Effect of Quality Assurance

- E L

I

NON& CIowcrmlTT IS MVILOMO ¶OUICI U U I S W C O M MI IOU%
COYNII~ uu IS cowwrcn nouns nr oevaocen SOURCI UNL

FIGURE 8 - Effect of Computer Use

2 -7

