
9s 4/2-- ARROWSMITH-P - A PROTOTYPE W E R T SYSTEM
FOR S 0 F T W . M ENGINEERING MAPJAGLMENT L

VicGor R. Basili and Connie Loggia Ramsey
Univexsity of .Maryland

ABSTRACT
Although the deld of software engmeenng IS

relatively new, i t can beneat from the use of expert
systems. Two prototype expert systems have been
developed to a d in soltware englneenng manage-
ment. Given the values for certam metncs. these
systems will provide interpretac~ons which explain
any abnormal patterns of these values durmg the
development of a softuare project. The two sys
tems. which solve the same problem, were built
uslng daerent methods, rule-bascd deduction and
framebased abduction, so a comparison could be
done to see wbch method better sub the needs of
thw lleld. I t wzul t o a d that both systems per-
formed moderately ueil. but the rulebascd deduc-
tion system using simple rules provideC more com-
plete solutions thau did the frame-based abduction
system.

1. INTRODUCTION
The imvortanca of expert systems is growing

in industrid. medical. scientlllc. and other delds.
Several major rcawna for thu are: (1) the necessity
of handling an ovemhelmmg amount of knowledge
in these areas. (2) the potential of expert systems to
train new experts, (3) the potential to learn more
about 3 deld while organizing knowledge for the
Cevelopment of expert systems, (4) cost reductions
sometimes provided by expert systems, and (5) the
desire to capture corporate knowledge so it is not
lost as personnel changes.

Although the aeld of software engineering is
still relatively new, i t can benefit from the use of
expert systems. As pointed out above, some of the
major advantages to expert systems are derived
from the ability to learn from them. This learning
experience can take place on at least two different
levels. The development of an expert system for
software engineenng provides a learnmg experience
by pointing out bow much we do not know yet, but
also by forcing the knowledge englneer to develop
and organize relationships between various pieces of
knowledge. such as metrics and their inrerprea-
tions.

On another level, the expert systems in this
flela c a n be used to train and help people, including

software managers. They can contain general
software engineering knowledge as well as a history
of information from a particular software develop-
ment environment, and tbs can be verp helpful to
inexperienced managen and developers.

This paper will focus on two prototype
expert systems. collective!y named
ARROWSMTH-P.r* This represents a d m
attempt at organizing some of the knowledge and
dellning some of the problems assxiated with the
process of creating expert systems for software
engineering. AFtFtOWWTH-P is intended to aid
the manager of a softmare development project in
an automated manner. The systems work a3 fob
lows. First, i t is determined whether or not a
software project is following normal development
patterns by comparing mcaSures such as program-
mer hours per line of source code against historical,
environmentspecidc baselines of such measures.
Then, the “manifestations” detected by this com-
parison. such as an abnormally high rate of pro-
grammer hours per line of source code, serve a9
input to each expert system, and each system
attempts to determine the reasons, such as low pm-
ductivity, for any abnormal software development
patterns. These systems can be updated as the
environment changes and as s o r e is learned in the
aeld of software engineenng.

The rest of this paper is organized as fcllows.
Section 2 provides a brief overview of the underly-
ing methodology ued to build the expert systems
discussed in thw paper. Section 3 details the imple-
mentations of ARROWSMITH-P, and Section 4
discusses the issues and problems asrociated with
this process. Section 5 furnishes the details for the
evaluation of the two expert systems. Section 6
then discuses results and conclusions from the
development and testing of the expert ssstcms.
Finally, Section 7 discusses current and future
research aeeds.

$1 Martin Arrowsmith. created by Sinclair
Lewis in the novel Atrowsmith, was in constant
search of truth in scientulc Sei&. The “P” stands
tor Prototype.

I Research supported in par t Sy the National Aeronau t l a and Space Administration Grant XSG-5123
to the University of Maryland. Computer support provided In part by the Computer Science Center of the
University of Maryland.

This paper was presented ac the Expert Systems in Government Symposium, October 23-25. 1985

3-59

https://ntrs.nasa.gov/search.jsp?R=19870016348 2020-03-20T10:52:05+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42836028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. BACKGROUND
In general, an expert system consists of two

basic components, a domain-speciflc knowledge
base and a domain-independent inference mechan-
ism. The knowledge base consists of data struc-
tures which represent general problem-solving infor-
mation for some application area. The inference
mechanism uses the information in the knowledge
base along with problem-specac input data to gen-
erate useful information about a specific case.

The set of expert systems in

an experimental domain-independent expert system
generator which can be used to build rulebased,
framebased and Bayesian systems. The
ARROWSMITH-P systems were built using two
different methods: rulebased deduction and frame
based abduction. These two methods are briefly
described below.

-0WsMITH-P W a S constructed Using

2.1. R u l a B d Deduction
A common method for expert systems, and

essentially the “standard” in AI today, is rule
based deduction. In this approach, domain-specific
problem-solving knowledge is represented in rules
which are basically of the form:

IF <antecedents>
THEN <consequents>,

although the exact syntax used may be quite
different (e.g.. PROLOG). If the antecedents of
such a rule are determined to be true, then i t logi-
cally follows that the consequents are also true.
Note that these rules are not branching points in a
program. but are non-procedural statements of fact.

The inference mechanism consists of a rule
irtemreter which, when given a speciflc set of prob-
lem features, determines applicable rules and
applies them in some specifled order to reach con-
clusions about the c s e at hand. Rulebased deduc-
tion can be performed in a variety of ways, and
rules can be chained together to make mu!tiplestep
deductions. (For a fuller description, see Hayes-
Roth .) In addition, in many systems one can
attach “certainty factors” to rules to capture pro-
babillstic information, and a variety of mechanisms
can be used to propagate certainty measures durin
problem solving. MYCIN and PROSPECTOR
are two well-known exainples of expert systems
which incorporate rulebased deduction.

2

f

2.2. Frame-Based Abduction
Another important method for implementing

expert systems is framebased abduction. Here, the
domain-specific problem-solving know ledge is
represented in descriptive “frames” of information ‘, and inference is typically based on hypothesize-

and-test cycles which model human reasoning as
follows. Given one or more initial problem
features, the expert system generates a set of
potential hypotheses or “causes” which can explain
the problem features. These hypotheses are then
tested by (1) the use of various procedures which
measure their ability to account for the known
features. and (2) the generation of new questions
which will help to discriminate among the most
likely hypotheses. This cycle is then repeated with
the additional information acquired. This type of
reasonin is used in diagnostic problem solving (see
Reggia ‘for a review). INTERNIST ’, Kh4S.HT ’, PIP ’, and IDT lo are typical systems using
framebased abduction.

In order to simulate hypothesize-and-test r e s
soning, KMS employs a generalized set covering
model in which there is a universe of all possible
manifestations (symptoms) and a universe which
contains all posslble causes (disorders). For each
possible causa, there is a set of manifestations
whch that cause can explain. Likewise, for each
possible manifestation, there is a set of causes
which could explain the manifestation, Given a
diagnostic problem with a specific set of manifesta-
tions which are present, the inference mechanism
Ends all sets of causes with minimum cardinality+
which could explain (cover) all of the manifest&
tions. For a more detailed explanation of the
theory underlying this approach and the problem-
solving algorithms, see Reggia ’, Reggia ’’, Nau
12, and Peng 13.

3. IMPLEMENTATIONS
In this section, we will rlrst present the

methodology developed for building expert systems
for software engineering. Then we will discuss the
actual implementation of ARROWSMITX-P.

3.1. Methodology
The following methodology for constructing

expert systems for software engineering manage
ment was developed. (An earlier version of this
reasoning was presented by Doerflinger 14.) Given a
homogeneous environment, i t is possible to produce
historical. environment-specific baselines of normal-
ized metrics from the data oi past software pro-
jects. Normalized metrics are derived by compar-
ing variables such as programmer hours and lines of
code against each other. This is done so that

+ Ockham’s razor, which states that the sim-
plest explanation is usually the correct one, togeth-
er with the assumption of independence among
causes motivate the requirement of minimum cardi-
nality.

3-60

influences such as the size of the individual project
are factored out. The baseline tor each metric is
defined as the average value of that meuic for the
past projects at various discrete time intervals
(such as start of coding and start of acceptance
sesting). Only those metrics whch exhibit base-
lines with reasonable standard deviations should be
used; too little variety in the values of the measures
proves uninteresting, while too much variety is not
very meaningful. In addition, one ideally wants a
relatively small number of meaningful metrics
whose values are easily obtainable.

Next, interpretations, such as unstable
specifications or good testink are determined which
explain any significant deviation (more than one
standard deviation less than or greater than the
average) of a particular metric from the histoncal
baseline. The deviation of some metric can be
thought of as a manifestation or symptom which
can be "diagnosed" as certain interpretations or
causes. Furthermore, these interpretations should
be made time-line speciflc because, !or example, an
interpretation during early coding might not be
v3lid during acceptance testing. In addition. me%+
ures to indicate how certain one is that the devia-

ticular interpretation can be included.
The approach. described above, can be

classifled as a bottom-up approach because i t seems
to go in the opposite direction of cause-and-effect.
First the symptoms (deviant metric values) that
something is abnormal are explored, and then the
underlying interpretations or diagnoses of the
abnormalities are developed. This approach is re!+
sonable in a homogeneous environment because the
metrics are homogeneous, and deviations are indi-
cative that something is wrong. However, this
approach contrasts with the development of expert
systems in other fields, such as medicine, which
typically use a top-down approach. A topdown
approach would Brs t define the various disorders or
causes and then associate the correct manifestations
cr effects with each disorder.

The input to the expert systems consists of
those metrics Irom a current project which deviate
Irom a historical baseline of the same metrics at the
same time of development !or similar projects. The
knowledge bases consist of information about vari-
ous potential causes, such as poor testing or
unstable specifications, for any abnormally high or
low m e w - , and the expert system provides
explanations for any abnormal sottware develop-
ment patterns.

t.inn Q! a 2zwGic1i=r m,cnr!c h-2 re=!$& 3

3.2. Actua l Implementations
ARROWSMITH-P is based on previous

research conducted on the NASA/Goddard Space
Flight Center Software Engineering Laboratory

(SEL) environment 14. Since the SEL environment
is homogeneous, i t was possible to use the bottom-
up methodology described above to produce histori-
cal. environment-speciflc baselines ot normalized
metrics Irom the highly reliable data of nine
s ttware projects. (See Basili 15, Basili 16, Basili
", Card 18, and SEL l9 for tuller descriptions of
the SEL environment.) Altogether, nine metrics
(shown in Table 1) proved satisfactory, exhibiting
baselines with reasonable standard deviations. The
time-line for the baselines was divided (after a
slight modification) into the tollowing five discrete
intervals: early code, middle code, late code, sys
tems test, and acceptance test.

The interpretations !or abnormal values of
metrics were mostly derived lrom Frank McGarry
of NASA/GSFC and Jerry Page of CSC, experts
who have had a great deal of experience in this
fleld and particularly in the SEL environment: The
set of interpretations was later modified and made
timeline specific tor use in the development of
ARROWSMITH-P. (The complete l i s t of interprt
tations used in the expert systems is displayed in
Table 2.) In addition, measures +a lndicate how cer-
tain one is that the deviation of a particular metric

included.
As stated previously, two- differeat methods

were used to build the two expert systems tor this
application in order to determine which method
better suits the needs of this field. The two
methods used were rule-based deduction and
tramebased abduction. which were described in
Section 2. In the rule-based system, the rules are
of the form "IF manifestations THEN interpreta-
tions." while in the framebased system, there is
one trame (containing a list of manifestations) for
each interpretation. The two systems were inten-
tionally built to be as consistent with one another
as possible. The causes and manifestations used
were identical in both cases, as were the relation-
ships between them. However, the certainty f a 0
tors attached to the rules could not be directly
translated to m e a r e s of likelihood in the frames
so these measures of likelihood were omitted. For
example, we were relatively certain that an abnor-
mally high value of computer iime per sottware
change is caused by good. reliable code so this was
given a certainty lactor of 0.75. However, if that
particular metric appears abnormally high very
infrequently and that particular interpretation is
common, then we would not be able to state that
good, reliable code generally results in an abnor-
mally high value of computer r.ime per software
change. XFor a discussion ot similar problems see
Ramsey -'.) Figure 1 shows a sample section of
each knowledge base. Example sessions with the
expert systems are provided in Appendix 1.

h_np r=*A!t@w !yea 8 p&v:&&r i n t e ~ y e t ~ ~ ~ ~ ~ yere

3-61

TABU3 1 - METRICS USED IN EXPERT SYSTEM I
- Computer Runs per Line of Source Code
- Computer Time per Line of Source Code - Software Changes per Line of Source Code - Programmer Hours per Line of Source Code
- Computer Time per Computer Run
- Software Changes per Computa Run - Programmer Hours per Computer Run
- Computer Time per Software Change - Programmer Hours per Software Change

TABLE 2 - INTERPRETATIONS USED IN EXPERT SYSTEM

* Unstable Specifications
Late Design
New or Late Development

Low Productivity
* High Productivity
* High Complexlty or Tough Problem

High Complexity or Compute Bound Algorithms Run or Tested
Low Complexity

* Sunple System
Removal of Code by Testing or Transporting
Inllux of Transported Code
Little Executable Code Being Developed
* Error Prone Code

Near Build or Milestone Date
il Large Portion of Reused Code or Early and Larger Tests
* Lots of Testing

Little or Not Enough Online Testmg Being Done
* Good Testmg or Good Test Plan
Unit Testing Being Done

Lack of Thorough Testing
Poor Testing Program

I

Good Solid and Reliable Code

System and Integration Testing Started Early
Change Backlog or Holdmg Changes
Change Backlog or Hddmg Code
Changes Hard to Isolate
* Changes Hard to Make
Easy Errom or Changes Being Found or Fixed
Modiflcations Being Made to Recently Transported Code
* Loose Configuration Management or Unstructured Development
* Tight Management Plan or Good Configuration Control
* Computer Problems or Inaccessibility or Environmental Constraints
I Lots of Terminal Jockeys

Note - * indicates that this interpretation was used in the
evaluation of the expert systems

3-62

ATTRIBUTES

/* INPUT ATTRJBUTSS e/
COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):

ABOVE NORMAL.
NORMAL.
BELOW NORMAL.

/* DWERRED ATTRIBUTE */
INTERPRETATION (MLT):

UNSTABIS SPECIFICATIONS
LOW PRODUCTIVITY
HIGH PRODUCTIVITY
GOOD TESTING OR GOOD TEST PLAN

RULES:
CRLCl IF COMPUTER RUNS PER LINE OF CODE = ABOVE NORMAL.

& TIME = EARLY CODING
THEN INTERPFUWATION - LOW PRODUCTMTY <0.25>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

SCLC3 IF SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL,
h m..m - r .- _amT&,.-.
U. L A N U W A C 4 b V U U Y U

THEN INTERPRETATION = GOOD TESTING OR GOOD TEST.PLAN <0.26>.
& INTERPRETATION = ERROR PRONE CODE <0.76>.

Figure la Small Section of Rule-Based Deduction Expert System.

ATTRIBUTES:

/* INPUT ATTRIBUTES */
COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):

ABOVE NORMAL,
NORMAL.

BELOW NORMAL.

/* INFERRED ATTRIBUTE - FRAMES */

LOW PRODUCTIVITY
INTERPRETATION (MLT):

[DESCRIPTION
COMPUTER RUNS PER LINE OF CODE = ABOVE NORMht:
COMPUTER TIME PER LINE OF CODE = ABOVE NORMAL;
PROGRAMMER HOURS PER LINE O F CODE = ABOVE NORMAL 1.

GOOD TESTING OR GOOD TEST PLAN
[DESCRIPTION:

SOFTWARE CHANGES PER LINE O F CODE = ABOVE NORMAL;
SOFTWARE C " G E S PER COMPUTER RUN = ABOVE NORMAL;
COMPUTER TIME PER SOFTWARE CHANGE = BELOW NORMAL;
PRO- HOURS PER SOFTWhRE CHANGE BELOW NORiMAL 1,

Figure l b - Small Section of Frame-Based Abduction Expert System

3-63

4. RESEARCH ISSUES AND PROBLEMS
The fleld of expert systems is relatively new,

and therefore, the development Process of expert
systems still faces many problems. The selection of
which method to use for building them is not gen-
erally clear, although an attempt has been made to
provide guidelines for the selection of an appropri-
ate method in Ramsey 20. Furthermore, most
expert systems are shallow in nature and cannot
handle temporal or spatial information well.

even if i t happens to be true.
This issue also leads to concern in the

frame-based abduction system which provides all
answers of minimum cardinality. The inference
mechanism works very well for most diagnostic
problem solving, but one must be cautiously aware
of the fact that not all possible explanations are
provided by this expert system. For example, if an
abnormally high value of computer runs per line of
code and an abnormally low value of programmer

In &dition to general problems, negative
effects are compounded when the knowledge to be
included in such systems is incomplete. The sci-
ence of software engineering is not wefl-deflned yet,
and ,.huefore many details about the relationships
between various components is often unclear. As a
result. the knowledge base of any expert system
develomd in this fleld is particularly exploratory

hours per software change can be explained by the
combination of two interpretations, low produc-
tivity and good testing, and also by a single
interpretation. error prone code alone, then only
the single interpretation will be provided by this
system. This is because the single interpretation
has a lower cardinality than the two interpretations
agether.

.~

and p&otypical in nature- This is in c o n t r a One flnal. but very important, fact should be
expert systems developed in established flelds such noted here. ARROWSMITH-P was built using the
as medicine where the information contained in the data from one particular homogeneous environ-
knowledge base is based on many years 01 experi- ment. Therefore, the information in the knowledge
ence. base reflects this one environment and would not

Due to the uncert.nw of the data in the
knowledge base for a fleld such as software
engmeermg, one must deal with the m e s of com-
pleteness Venus correctness and completenois what Is important.

be transportable to other environments. However,
the ideas and methods used to build
ARROWSMITH-P are transportable, and thac IS

versus minimality. When dealing with a diagnostic
problem, the more certain one is of relationships
between causes and manifestations, the more exact
the answer can be, ultimately leading to the one
correct answer. However, when dealing with very
uncertain relationships, it is preferable to list many
outcomes so as to avoid missing the correct e x p b
nation, and to let the experienced person using the
expert SyStem decide what the correct explanation
reaily is. Therefore, mles with simple antecedents
were used in the rulebased deduction system (see
Figure la) because the more involved patterns
needed for complex antecedents are not yet known.
If one tried to “gues” what these patterns are
without actually being certain. this would lead to
incomplete solutions which miss some of the correct
interpretations. For example, a high value for com-
puter runs per line of code, a high value for com-
puter time per line of code, and a high value for
programmer hours per line of code are all indica-
tions of low productivity. So, we might construct
the following rule for this pattern:

5. EVALUATION OF EXPERT
SYSTEMS

A prelminary evaluation of
ARROWSMITH-P has been done The method
used to do the evaluation was simply to compare
the interpretations provided by the expert systems
against what actually happened during Lhe develop
ment of the projects, thereby obtaining a measure
of agreement. The actual results were gathered
from information in the database, mostly from sub-
jective evaluation forms and project statistics
forms. The subjective evaluation form contains
mostly subjective information (such as a rating of
the progrmming team’s performance) and some
objective numbers (such 35 total number of errors)
concerning the project’s overall development Alto-
gether, 20 out of the 33 possible interpretations
could be checked awnst measures from these
forms. (These are starred in Table 2.)

IF’ Computer Runs per Line of Code is above Since the vast majority of the ratings in the
normal, and Computer Time per Line of subjective evaluation form is not divided by phase
Code is above normal, and Programmer of the project, there prcbably exist some discrepan-
Hours per Line of Code is above normal cies between the results indicated in the forms and
THEN the interpretation is Low Produc- the actual interpretations for a particular phase.
tivity. However, these are the closest data that me avail-

H ~ ~ ~ ~ ~ ~ , what if it turns that computer time
per line of code is almost never above normal?
Then this will almost never succeed, and we

able. so we must -me that most of the internre
tations for each phase are similar to the interprea
tions for the entire project. In addition. some of
the interpretations derived from analyzing the data the interpretation of low

3-64

in the database were very evident, while others
were somewhat uncertain. Therefore, these two
classes were partitioned in the analysis of agree-
ment between the expert systems and the informa-
tiOn in the database.

The interpretations for the acceptance test
phase were evaluated for all nine Projects, and this
analysis was performed for both expert systems.
The results are displayed in Table 3. The entries
in the agreement column are the number oi
interpretations which were indicated by both the
expert system and the information in the database.
The h t number depicts those interpretations
which were explicit in the database, while the
second number represents thcse which were margi-
nally indicated. The entries in the disagreement
column are those interpretations indicated by the
database, but not listed by the expert system.
Again. the first number represents those which are
certain and the second number is those which are
marginal. Finally, the column labeled “Ertra”
specifies the number of extra interpretations (out of
the 20 possible from the information in the d a b
basej iisted by the expert system. This number is
not that meaningful in determining the perfor-
I p ~ c I : 0; the -..- I--. > ruteoasea system at this time
because, as discussed previously, the rulebased sys
tern was built to provide as complete a list of
interpretations as possible. The manager would
then have to decide which interpretations are
meaningful and disregard the others. However, in
general, i t is better to have as few extra interprew
tions as possible.

The expert systems performed moderately
well given that (1) so much of the knowledge and
relationships are unclear in this fleld, (2) the expert
systems used only flve variables and only nine
metrics derived from these variables to achieve the
list of intemretations. (3) many of the

Rule-Based Deduction System
Project Agreement Disagreement Extra

interpretations in the database are subjective in
nature and therefore may not always be correct,
and (4) there may be discrepancies between the
interpretations of the particular phase and the
overall interpretations for the project. The rule-
based system performed better, agreeing with 45%
(15/33) of the very evident interpretations from the
database and 35% (8/23) of the more uncertain
interpretations. The frame-based system agreed
with 33% (11/33) of the clearcut database conclu-
sions and 22% (5/23) of the more uncertain
interpretations. Of course, the agreement with the
more evident database interpretations is much
more important than agreement with the uncertain
conclusions. It is interesting to observe that both
expert systems provided the exact same interpreta-
tions (with respect to the 20 interpretations d i s
cussed here) in seven out of nine projects. The
only differences occurred in projects 2 and 7, where
the frame-based system resulted in very few
interpretations (adding the number of interpreta-
tions in agreement with ‘the database to the
aumber of extra interpretations, there were 5 for
project 2 and 1 for project 7) which covered all o!
the manifestations. The rulebased system per-
formed much better on these two projects, ~nraelng
with 43% (3/7) of the combined clearcut and mar-
ginal database interpretations for project 2 and
100% (7/7) of the interpretations for project 7.
The frame-based system agreed with only 29%
(2/7) of the database conclusions for project 2 and
14% (1/7) of the database conclusions for project 7.
Also, these differences resulted in 31% (llj36)
fewer extra interpretations for the frame-based sys-
tem, but again, i t is better to have extra interpreta-
tions than to miss correct interpretations. I t should
be noted that evaluation and testing of these expert
systems will continue, and any information learned
about incorrect relationships, etc. will be incor-
porated into the systems to make them stronger.

Frame-Based Abduction System
Agreement Disagreement Extra

Total 15 - 8 18 - 15 36

1 - 0
0 - 3
0 - 0
2 - 0
3 - 0
1 - 1
5 - 2
1 - 0
2 - 2

11 - 5 22 - 18 25

3 - 3
3 - 1
0 - 2
4 - 3
3 - 0
0 - 2
0 - 0
4 - 3
1 - 1

1 - 0
0 - 2
0 - 0
2 - 0
3 - 0
1 - 1
1 - 0
1 - 0
2 - 2

3 - 3
3 - 2
0 - 2
4 - 3
3 - 0
0 - 2
4 - 2
4 - 3
1 - 1

Table 3 - Agreement between Expert System and Information in Database

3-65

6. DISCUSSION
The god of this study was to build useful

expert systems for software engineenng; a major
subgoal w a s to determine what type of expert sys-
tem might be best suited for this field with respect
to ease of implementation and accuracy of results.
Two methods, rule-based deduction and frame-
based abduction, were chosen as methods lor imple-
mentation. Another common method for building
expert systems is statistical pattern classiflcation,
but this method was not used because the needed
statistics are not available yet in this relatively new
field. It should be noted that estimate are not
acceptable because system performance is greatly

The initial knowledge was derived from
empirical software engineering research and organ-
ized in a table format, so the drst set of simple
rules and frames which were not timeline specific
were straightforward to develop. The situation
became more complex when the interpretations
were made time-line speciflc. The frame-based sys-
tem was divided into five systems based on time
period because the second dimension of time could
aot be incorporated into the frames in a reasonable
manner. Furthermore, an attempt was made to
rewrite the r u l a to contain more meanineful and
complex relationships among the manifestations in
the antecedents. However, i t was decided to retain
the format of simple rules in order to be as com-
plete as possible. It should be noted that for this
type of diagnostic problem in a well-defined
domain, i t is generally much easier and more
natural to write frames than to encode the same

20 information in complex rules .
The two expert systems performed

moderately well, especially when one considers that
a relatively small number of metrics were used to
suggest many interpretations, and that many of the
relationships between the metrics and the interpre-
tations are unclear. In seven out of nine projects,
the two systems provided the same interpretations.
However, when analyzing the results from all nine
projects, the rulebased spstem provided more
interpretations and exhibited a higher rate of agree-
ment with the database than did the framebased
system. This is directly attributable to two facts:
(1) simple rules were used in the rulebased system,
allowing completeness of the list of interpretations,
and (2) the frame-based system only provides those
explanations of minimum cardinality. Therefore,
we conclude that the rule-based system with simple
rules is probably more applicable to the fleld of
software engineering at this point in time. How-
ever, this may very well not be true in the future,
as more is learned in this field.

Tbs study has provided many additional
new insights into the development of expert sys
cems for software engineering by stressing the need

21, 22, 23 . reduced when estimates are used

to deflne relationships that exist between the com-
ponents. In particular one must deflne what
development characteristics would result in wha t
types of abnormal measures, how this changes
through various project development phases, and
how certain one is that an abnormal meaSure
results from a certain characteristic.

7. FUTURE RESEARCH DIRECTIONS
The development of ARROWSMITH-P is a

preliminary attempt at constructing expert systems
for software engineering management. The infor-
mation contained in the knowledge base can be
reflned, and new knowledge, such as information
about e m r metrics 24’ 25, can be incorporated into
these systems as more is learned. As these systems
are evaluated further and incorrect relationships
are brought to the surface, they can be changed to
incorporate the knowledge gained from testing.
Eventually, the rules should become more complex
as relationships between manifestations and causes
become better defined. In addition, .the testing of
current, ongoing projects will be performed on the
two systems. The data from the new projects will
then be incorporated into the environment-speciflc
baselines of metrics so the systems continue to be
updated as the environment changes. Another
extension of this project will be to redesign the sys-
tems using a topdown approach, loolung Erst at
the possible interpretations and t3en deciding what
metrics might provide information about those
interpretations. This should provide new insights
and a more complete picture.

In a more general sense, a theoretical frame
work for developing expert systems for software
engineering is needed. For example, a categoriza-
tion scheme, which would address such issues as
when a top-down system is better than a bottom-
up system and vice versa, should be built. Also,
perhaps a new and different type of inference
mechanism or method for building expert systems
would better suit the needs of some aspects in this
fleld. All of these issues require a great deal of
further research and analysis.

8. ACKNOWLEDGEMENT
The authors are grateful to Frank McGarry,

Dr. Jerry Page, Dr. James Reggia, James Ramsey.
Bill Decker, and Dave Card for their invaluable
assistance in this project. The authors would aiso
like to thank the members of their research group
for enlightening comments and ideas.

3-66

9. REFERENCES

J. Reggia and B. Perricone. KMS Refer-
ence Manual, Tech. Report TR-1136.
Computer Science Department, Univer-
sity of Maryland, 1982.

F. Hayes-Roth, D. Waterman, and D.
Lenat. Principles of Pattern-Directed
Inference Systems, pp. 577-601 in
Pattern-Directed Inference Systems, ed.
Waterman and HayesRoth, Academic
Press. 1978.

E. Shortliffe, Computer-Based Medical
Consdtation8: MCm, Elsevier, 1976.

A. N. Campbell, V. F. Hollister, R. 0.
Duda, and P. E. Hart, Recognition of a
Hidden Mineral Deposit by an Artiflcial
Intelligence Program, Science 21.7, pp.
927-928. 3 September 1982.

M. Minsky. A Framework for Represent-
ing Knowledge, pp. 211-217 in The
Psychology of Computer Vision, ed. P.
Winston. McGraw-Hill. Inc., 1Q15.

J. Reggia. Computer-Assisted Medical D o
cision Making, pp. 198-213 in Applica-
tiona of Computers in Medicine, ed. M.
Schwartz, IEEE Press. 1982.

R. Miller, H. Pople, and J. Myers,
Internistr 1: An Experimental
Computer-Based Diagnostic Consultant
for General Internal Medicine, New
England Journal of Medicine 307. pp.
468-476, 1982.

J. Reggia, D. Nau, and P. Wang, Diagnos
tic Expert Systems Based on a Set Cov-
ering Model, International Journal of
Man-Machine Studies, pp. 437-460.
Nov. 1983.

S. et a1 Pauker, Towards the Stmulation
of Clinical Cognition, American Journal
of Medicine 60. pp. 981-996, 1976.

H. Shubin and J. Ulrich. IDT: An Intelli-
gent Diagnostic Tool, pp. 290-295 in
Proceedings of the National Conference
on Artificial Intelligence, A,#J, 1982.

1111 J. Reggia, D. Nau, and P. Wang. A
Theory of Abductive Inference in Diag-
nostic Expert Systems, Tech. Report
TR-1338, Computer Sci. Dept., Univ. of
Maryland, College Park, MD, December
1983.

(121 D. S. Nau and J. A. Reggia, Relationships
Between Deductive and Abductive
Inference in KnowledgeBased Diagnos-
tic Expert Systems, pp. 500.509 in
Proceedings of the First International
Workshop on Ezpert Database Systems,
1984.

1131 Y. Pen& A General Theoreticd Model for
Abductive Diagnostic Expert Systems,
Tech. Report TR-1402. Computer Sci-
ence Department, University of Mary-
land, May 1984.

1141 C. Doedinger and V. Basili, Monitoring
Software Development Through Dynam-
ic Variables, pp. 434-445 in Proceedings
of the IEEE Computer Society’s Inter-
national Computer Software and Appli-
cations Conference, Nov. 1983. (also to
appear in IEEE Transactions on
Software Engineering).

1151 V. R. Basili, M. V. Zelkowitz, F. E.
McGarry, R. W. Reiter, Jr., W. F.
Truszkowski, and D. M. Weiss. The
Software Engineering Laboratory, SEL-
77-001. Software Engineering Laborate
ry, NASA/Goddard Space Flight
Center, Greenbelt,Maryland, May 1977.

[IS] V. R. Basili and D. M. Weiss. A Methodol-
ogy for Collecting Valid Software En-
gineering Data, IEEE Transactions on
Software Engineering SE-10, 6, pp.
728-738. Nov. 1984.

(171 V. R. Basili and M. V. Zelkowitz, Analyz-
iog Medium-Scale Software Develop-
ments, pp. 116-123 in Proceedings of
the Third International Conference on
Software Engineering, Atlanta, Georgia,
&lay 1978.

[la] D. N. Card, F. E. McGarry, J. Page, S.
Eslinger, and V. R. Basili, The Software
Engineering Laboratory, SELai-104,
Software Engineering Laboratory,
NASA/Goddard Space Flight Center,
Greenbelt,Mwland. Feb. 1982.

3-67

Annotated Bibliography of Software En-
gineering Laboratory (SEL) Literature,
SEL-82-006. Software Engineering La-
boratory, NASA/Goddard Space Flight
Center, Greenbeit,Maryland, Nov. 1982.

C. Ramsey, J. Reggia, D. Nau, and A.
Ferrentino, A Comparative Analysis of
Methods for Expert Systems, Interna-
tional Journal of Man-Machine Studies,
1985. Submitted.

A. Shapiro, The Evaluation of Clinical
Predictions, New' England Journal of
Medicine 296, pp. 15041514. 1977.

A. m e w . Assessing Uncertainty, 36 (B),
pp. 148-159, 1974.

D. et al Leaper, Computer-Assisted Diag-
nosis of Abdominal Pain Using Esti-
mates Provided by Clinicians, British
Medical Journd 4, pp. 350.354, 1972.

D. M. Weiss and V. R. Basili. Evaluating
Software Development by Analysis of
Changes: Some Data From the Software
Engineering Laboratory, IEEE Transac-
tions on Software Engineering SE-11.
2, pp. 157-168. Feb. 1985.

V. R. Basili and B. T. Perricone, Software
Errors and Complexity: An Empirical
Investigation. Communicationa of the
A C M 2 7 , 1, pp. 42-52, Jan. 1984.

APPENDIX la - A sample interactive session with the rule-based deduction expert syssem.

THIS EXPERT SYSTEM WlLL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS O N SCHEDULE OR IN TROUBLE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

COMPUTER RUNS PER LINE OF SOURCE CODE.
(1)ABOVE NORMAL
(2)NORhUL
(3)BELOW NORMAL
= ?

2.

COMPUTER TfME PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL
(2)NORMAL
(3)BELOW NORMAL
= ?

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1)hBOVE NORMAL
(PINORMAL
(3)BELOW NORMAL
- ?

3-68

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE
(1)ABOyE NORMAL
(2)NORMAL
(3)BELOW NORMAL
= ?

Z.

COMPUTER TIME PER COMPUTER RUN:
(1)hBOVE NORMAL
('2)NORMAL
(3)BELOW NORMAL
= ?

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1)ABOVE NORMAL
(2)NORMAL
(3)BELOW NORMAL
a ?

2.

PROGRAMMER HOURS PER COMPUTER RUN:
(1mOVE NORMAL
(2)NORMAL
(3)BELOW NORMAL
* ?

3.

PROJECT TYME PHhSE:
(1)EARLY CODE PHASE
('2)MIDDLE CODE PHASE
(3)LATE CODE PHhSE
(4)SYSTEMS TEST PHASE
(5)ACCEPTANCE TEST PHASE
- ?

2.

COMPUTER TIME PER SOFTWARE CHANGE:
(1)ABOVE NORMAL
(?)NORMAL
(3)BELOW NORMAL
= ?

2.

PROGRAMMER HOURS PER SOFTWARE CHANGE
(1)ABOVE N O W
(2)NORMhL
(3)BELOW NORMAL
a ?

3.

possmm INTERPRETATIONS m
ERROR PRONE CODE cost>
EASY ERRORS OR CHANGES BEING FOUND OR FlXED CO.81)
LOTS OF TESTING C0.75)
LOTS OF TERMINAL JOCKEYS <0.75>
UNSTABLE SPECIFICATIONS < O . J o >
INEAR BUILD OR MILESTONE DATE <0.50>
GOOD TESTING OR GOOD TEST PLAN ~ 0 . 2 5 ~
MODIFICATIONS BEING MADE TO RECENTLY TR-SPORTED CODE <0.25>

Note - User answers are in boldface.

3-69

APPENDIX l b - A sample interactive session with the framobased abduction expert system.

THIS M P E R T SYSTEM WlLL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.
THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING PHASE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

FOCUS OF SUBPROBLEM:
THIS SUBPROBLEM IS CURRENTLY ACTIVE
GENERATOR

COMPETING PossrnLLITIEs:
UNSTABLE SPECPICATIONS
LATE DESIGN
NEW OR LATE DEVELOPMENT
LOW P R O D U C T M
HIGH PRODUCTMTY
HIGH C O M P L M I T l OR TOUGH PROBLEM
HIGH COMP OR COMPUTE BOUND ALGORITHMS RUN OR TESTED
LOW COMPLEXITY
SIMPLE SYSTEM
REMOVAL OF CODE BY TESTING OR TRANSPORTING
INFLUX OF TRANSPORTED CODE
LITTLE EXECUTABLE CODE BEING DEVELOPED
ERROR PRONE CODE

NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND M G E R TESTS
LOTS OF TESTING
LITTLE OR NOT ENOUGH ONLINE TESTING BEING DONE
GOOD TESTING OR GOOD TEST PLAN
UNlT TESTING BEING DONE
LACK OF THOROUGH TESTING
POOR TESTING PROGRhM
SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACXUOG OR HOLDING CI-LWGES
CHANGE BACIUOG OR HOLDING CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE
EASY ERRORS OR CHrUvGES BEING FOUND OR F E E D
MODIFICATIONS BEING MADE T O RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV
TIGHT MANAGEMENT PLAN OR GOOD CONFICr'URhTION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS
LOTS OF TERMINAL J O V S

GOOD soLm AND RELWLE CODE

COMPUTER RUNS PER LINE OF SOURCE CODE:
(I) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
a ?

1.

COMPUTER TIME PER LINE OF SOURCE CODE:
(I) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
a ?

a.

3-70

PROGRAMMER HOURS PER LJNE OF SOURCE C O D E
(1) ABOVE N O R M U
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

SOFTWARE CHANGES P m COMPUTER RUN:
(1) ABOVE NORMAL
(2)NORMAL
(3) BELOW NORMAL
= = ?

2.

COMPUTER TIME PER COMPUTER RUN:
(1) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

a.

PROGRAMMER HOURS PER COMPUTER RUN:
(1) ABOVE NORMAL
(2) NO-
(3) BELOW NORMAL
= ?

3.

FOCUS OF SUBPROBLEM:
GENERATOR:

COMPETING POSSIBILm:
LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
LOTS OF TESTING
ERROR PRONE CODE
?STAB= SPECIFICATIONS

PROGRAMMEP. HOURS PER SOFTWARE CHANGE:
(1) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
=!

3.

FOCUS OF SUBPROBLEM:
GENERATOR:

COMPETING PossmurIEs:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
ERROR PRONE CODE

COMPUTER TIME PER SOFTWARE CHANGE:
(1) ABOVE NORMAL
(2) NOR=
(3) BELOW NORM&
- ? -

Z.

possmm INTERPRETATIONS ARE:
M Y ERRORS OR CHANGES BEING FOUND OR FLXED <H>
ERROR PRONE CODE <L>

Note - User answer8 are in boldface.
- Both interpretations listed as solutions can explain all of the manifestations. but the flrst is
given a high measure of likelihood (shown by the <H>) of being correct, while Error Prone
Code is rated low.

3-7 1

SECTION 4 - SOFTWARE MEASUREMENT

The technical. papers included in this section were origi-
nally published as indicated below.

"Finding Relationships Between Effort and Other
Variables in the SEL," V. R; Basili and
N. M. Panlilio-Yap, Proceedings of the Ninth Inter-
national Computer Software and Applications Confer-
ence October 1985

"Calculation and Use of an Environment's Charac-
teristic Software Metric Set," V. R. Basili and
R. W. Selby, Jr., Proceedings of the Eighth Inter-
national Conference on Software Engineering, August
1985
"Criteria for Software Modularization," D. N. Card,
G. T. Page, and F. E. McGarry, Proceedings of the
Eighth International Conference on Software Engi-
neerinq, August 1985

"Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering
Laboratory," D. M. Weiss and V. R. Basill, IEEE
Transactions on Software Engineerinq, February 1985

0087 4-1

