
I .I

i

NASA Contractor Report 178319

ICASE REPORT NO. 87-37

ICASE
IMPLEMENTATION OF MULTIGRID METHODS FOR SOLVING
NAVIER-STOKES EQUATIONS ON A MULTIPROCESSOR SYSTEM

(NASA-CR-178319) IHPLEHENTATION OF N 87-2 5902
H U L T I G R I D HETHODS FOR S O L V I N G NAVIER-STJKES
EQUATXONS ON A HOLTIPROCESSOR SYSTEH (N A S A)
34 p A v a i l : N T I S HC A03/11F A01 C S L L 09B U n c l a s

G3/62 0083977

Vijay K. Naik
Shlomo Ta'asan

Contrac t No. NASl-18107
June 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Wampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronauticsand
Space Administration

Hampton,Vrginla 23665
~ R 6 S O W C h C O l l t W

https://ntrs.nasa.gov/search.jsp?R=19870016369 2020-03-20T10:52:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42836021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- -

Implementation of Multigrid Methods for Solving

Navier-Stokes Equations on a Multiprocessor System

Vuay K. Nak

Shlomo Ta’asan

Institute for Computer Applications in Science & Engineering

NASA, Langley Research Center, Hampton, Va 23665.

ABSTRACT

In this paper we present schemes for implementing multigrid algorithms on message

based MIMD multiprocessor systems. To address the various issues involved, a nontrivial

problem of solving the 2-D incompressible Navier-Stokes equations is considered as the model

problem. Three different multigrid algorithms are considered. Results from implementing these

algorithms on an Intel iPSC are presented.

.

Research suppotted by the National Aeronautics and Space Administration under NASA ContraU NO
NAS1-18107 while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

i

1

1. Introduction

Multigrid algorithms are found to be optimal and efficient for solving a large class of

problems involving partial differential equations on sequential machines [l]. Recently there

has been increased interest in parallelizing these algorithms [Ref. 2-6, 131. In most of the

work that has been reported, simple problems such as the solution of Poisson equations are

considered. Although these results are important for verifying the suitability of multigrid

methods for parallel processing, they neither completely expose the data dependencies govern-

ing the communication costs nor do they bring out the difficulties involved in implementing

real life problems - problems that will be solved on the future multiprocessor systems. The

necessity for paying close attention to the data dependencies involved is further underlined by

the fact that multigrid algorithms do not always perform optimally on the multiprocessor sys-

tems, even though the individual operations involved exhibit a high degree of parallelism [7].

To understand the limitations as well as the effectiveness of parallelizing the multigrid algo-

rithms, we consider, in this paper, the problem of solving the the 2-D steady state incompressi-

ble Navier-Stokes equations. The solution of these equations represent some of the difficulties

that are present in solving hard problems, but at the same time the equations are not too com-

plex to experiment on the currently available multiprocessor systems. We also present methods

for minimizing the communication costs on the architectures considered here.

In the following section we briefly describe the idea behind the multigrid methods and

present three different algorithms based on this idea. In Section 3 the model problem is given.

In Section 4 the implementation issues involved are discussed. Some performance results

obtained by implementing the three multigrid algorithms on the Intel’s Personal Supercomputer

(iPSC) are described in Section 5. Conclusions are given in Section 6.

2

2. Multigrid Algorithms

Here we briefly describe the various multigrid techniques that are generally applied in

solving partial differential equations. This discussion is by no means exhaustive, but is meant

to illustrate the highlights of the multigrid methods. In Section 4 we describe methods of paral-

lelizing these techniques.

Basic Idea

Consider a differential equation given by LU = F with boundary conditions BU = g

defined on an n-dimensional domain in R". For simplicity of exposition let L be an elliptic

operator. Let the difference scheme LhUh = with boundary conditions B * P = gh, approxi-

mate this differential equation. If this difference scheme is solved by relaxation, (Gauss-Seidel

in lexicographic order, for instance), the error can be written as,

(1)

where, u: is the current approximation after the n-th relaxation sweep. Now consider the ratio,

h e, = U" - u:

pll = Ilek~lI / Ilejl where, II I1 denotes the b-norm. From numerical experiments it is seen that

the ratio increases with n from some value k c 1 and approaches a number that may be very

close to one. That is, convergence is fast in the first few steps and then slows down.

It is found that whenever the error e: is not smooth p, is small, giving a good conver-

gence rate. When e: is smooth the resulting convergence rate becomes poor. That is, relaxation

smoothes the error. The main idea of multigrid is this: if the error is smooth , approximate it

by a coarse grid, say of mesh size 2h.

Coarse Grid Correction

Let trh be the approximation obtained on the fine grid after a few relaxation sweeps. The

error P = P - iih satisfies

3

L V = fl (2)
where, ? = Fh - L'P. If vlk is a smooth function we can approximate it by a coarser grid

function VH that satisfies

LHV" = P (3)
where, LH is a coarse grid approximation of L" (e.g., a finite difference approximation on grid

H to the same differential operator approximated by L*) and ?" is defined by,

?" = IF?

where, 1: is a fine to coarse grid transfer operator (e.g., injection).
(4)

Note that the grid H has significantly fewer points than the grid h (one quarter of the

points in two dimensions, if H = 2h) and hence, it is less expensive to solve Eqn. (3) than to

solve Eqn. (2). Let #' be the approximate solution obtained by solving Eqn. (3) by some

method. We can use fl to accelerate convergence of the fine grid by,

Ph c P + IivH (5)
where, Ih is an interpolation operator (e.g., linear interpolation). The process of calculating t",

solving for and interpolating the result to the fine grid is called the course grid correction.

The above described scheme, where equations corresponding to the error term P are

solved on the coarse grid, is known as the Correction Scheme (CS). Instead of V", if we use

UH = TF iih + P, where, TF is some fine to come grid transfer operator, as the unknown

function on the coarse grid then the resulting scheme is known as the Full Approximation

Scheme (FAS). The coarse grid function V" approximates I f f l , the full solution represented on

the coarse grid. Such a scheme is useful when local refinement is needed or when nonlinear

problems are to be solved. The FAS equations are

LH@ = FH (6)
where, PH = LHTF iik + IF?. After solving the last equation approximately, we use the

approximation # to correct the fine grid approximation as follows:

4

d t iih + Ik(ii" 3: i?).

Multigrid Cycles

To solve Eqn. (3) or (6), if the underlying idea in the CS or the FAS is applied recur-

sively, then one arrives at a general multigrid algorithm. These algorithms involve a cyclic

order of computation and are referred to as the multigrid cycles. Different multigrid algorithms

have been developed depending on the order and the frequency with which the grids are visited

within a cycle. The most commonly used ones are the V and W cycles. In addition to these

two types there is another type of multigrid cycle called the F cycle. For the sake of clarity,

we will refer to the multigrid algorithms based on these three cycles as the V, W, and F algo-

rithms, respectively. The recursive definitions of these algorithms are given in the Appendix.

An important property of these multigrid algorithms is that, when the approximation scheme is

appropriately chosen the rate of convergence of these methods can, in general, be made

independent of the size of the problem. This is true for the F and W algorithms even if the

L0v.l L0v.l

Figure 1 (a) V Cycle (b) F Cycle

problem is non-linear.

Figures 1 and 2 illustrate the order in which the V, F, and W algorithms visit different

levels within a single cycle. Increasing level numbers correspond to finer mesh sizes. The

letters rl and r2 within the circles denote the number of relaxation sweeps on the corresponding

levels. In all the three cases the values of tl and r2 usually range from 0 to 2. On levels with

empty circles rl + r2 number of relaxations are performed. It can be easily verified that for the

V algorithm each level is visited exactly once within a multigrid cycle. For the F algorithm,

level i is visited I - i + 1 times where I is the highest level for that cycle. For the W algorithm,

level i is visited zk’ times. Thus, the number of visits to the coarsest level grows exponentially

for the W algorithm, whereas for the F algorithm it grows linearly.

Full MultiGrid (FMG) algorithms

To obtain a fast solution to the finest grid equations, a good initial approximation is

needed on that level. A solution of the same problem on a coarser level can provide such an

4

3

2

1

Figure 2 W Cycle

6

approximation. By applying the idea recursively one gets the Full MulfiGrid (also referred to

as nested iteration) algorithms for the three multigrid cycles described earlier. The FMG algo-

rithm is defined in the Appendix.

In the following we first present the model problem and then describe its solution using

the above described multigrid techniques.

3. Model Problem

The model problem considered here is that of solving the 2-D steady state incompressible

Navier-Stokes equations. Such equations arise, for example, in studying the fully developed

flow between two parallel plates where one plate may be moving with respect to the other

plate. Their solutions present some of the difficulties involved in solving real life problems,

but at the same time are simple enough for experimentation on currently available multiproces-

sor systems. Furthermore, all the three multigrid algorithms can be tested with these equations.

The equations in terms of vorticity w and stream function w are:

A v = w (7a)

1
Re UW, + VCI+ = -Am.

Re is the Reynold’s number of the fluid flow and u and v are the velocity components in the X

and Y directions, respectively. The velocity components are given in terms of the stream func-

tion w by, u = - vr, and v = v,.

If the computational domain is f2 = { (x, y) I 0 5 x s 1, 01 y 5 1) and if U,, is the velocity

of the moving plate, then the boundary conditions for such a flow are given by,

.

7

L

u = v = o at y = 0.
u = Uo, v = 0 aty = 1.
Periodicity is imposed in the X direction and
a constant pressure gradient is imposed on the flow.

In terms of w and y~ the above boundary conditions are,

where, c is a constant and v is periodic in the X direction.

Discretization

The Eqns. (7) are discretized as the following:

where,

J

O l i l N , O l j l N , (N - l) - h = 1,andpisaconstant.

The discrete boundary conditions are as follows:

8

For a derivation of Eqns. (1Oc) and (10d) see [lo].

Multigrid Implementation

The above defined problem is solved using the FMG algorithms presented earlier. Here

we describe some important aspects in applying the multigrid techniques.

Eqns. (9) are relaxed by Gauss-Siedel relaxation in a Red-Black ordering where at each

color Eqn. 9b is relaxed first for wij, followed by the relaxation of the y equation (Eqn. 9a).

The relaxations of the boundary conditions (Eqns. 1Oc and 1Od) are done in a different way.

Note that a small change (O(R)) in y may result in a large change (O(1)) in o. Hence a

straightforward Gauss-Siedel relaxation of the'boundary conditions (Eqns. 1Oc and 1Od) is not

appropriate; it may ruin the smoothness of o obtained by the interior relaxation. The relaxation

of the boundary conditions for o should be such that it smoothes the residuals on the boundary

and not make them zero as does the Gauss-Siedel relaxation. One way of achieving this is to

change oij at the boundary such that the new residual at the point (i , n is the average of the

neighboring residuals, that is = - + [l]. On the coarsest grid, a straightfor-

ward Gauss-Siedel is applied for the boundary conditions as well.

2 ' [

To transfer only the smooth part of the residuals to the coarser level, in general a full-

weighting operator is applied. Since the residuals after a red-black relaxation on the fine level

are zero at half the points, we use a half-injection operator. A bi-linear interpolation operator

9

is applied during the interpolation within a given cycle and bi-cubic interpolation is used in

obtaining a first approximation on any new level of the Fh4G algorithm. The necessity of

employing the bi-cubic interpolation arises because of the following reasons. To solve the

problem to the level of truncation errors in just a few cycles (that is, independent of the grid

size) the initial residuals should behave like O(hz) so that in a few cycles we can reduce them

to the level of truncation errors (which are also O(l?)). The use of bi-linear interpolation will

introduce high frequency errors of order h2 on the new level that will have residuals of order

one. Hence, if this interpolation is used, the number of multigrid cycles needed to solve the

problem to the level of truncation errors (O(h2)) will depend on h. Bicubic interpolation, on

the other hand, introduces errors of order O(h4). Their residuals are of order O(h2) and there-

fore it is possible to get, in a few cycles, (independent of the mesh size) the level of truncation

errors. For the definitions of full-weighting, injection, half-injection, bi-linear, and bi-cubic

operators see [12].

4. Implementation on a Message Passing System

In this section we discuss some of the implementation aspects of the above described

multigrid algorithms on message based MIMD multiprocessor systems. We consider the mul-

tiprocessor systems based on hypercube interconnection topology; but the principles developed

here are applicable to other message passing systems as well. Experimental results from a

specific message passing system are presented in the next section. A detailed discussion of the

performance issues involved is given in [7]. Descriptions on the hypercube topology and some

relevant properties can be found in [8], [l 11.

An efficient implementation of the multigrid algorithms on a local memory system

involves partitioning the domain such that the computational load is distributed as evenly as

10

possible at all the times and the communication cost is kept minimum. It may not always be

possible to achieve both at the same time and hence we try to reach a balance between the

two. The partitioning scheme must take into account both the interior and the boundary points

of the domain so that the load is evenly distributed, whereas the communication costs must

take into account the communication parameters of the underlying architecture as well as the

data dependencies involved in various operations. In general the interior points have a higher

computational work associated with them whereas the boundary points have higher communi-

cation demands. Furthermore, for the type of equations we are solving, the boundary conditions

drive the problem and so the order in which the interior and the boundary points are treated is

extremely important. All these constraints must be taken into account by any partitioning

scheme adopted for achieving good performance. In the following, we first describe the main

implementation issues that include schemes for partitioning the domain on various levels and

mapping these partitions on the individual processors of the hypercube multiprocessor system

so that the total cost of a general multigrid algorithm is minimized. After that we describe

methods that further reduce the communication costs for the problem being solved here.

Partitioning Schemes

For the sake of simplicity consider a 2-D square domain with x mesh units on &e

highest level L of the multigrid algorithm being implemented. When boundary conditions are

periodic, this implies that the number of interior points along that direction is also a power of

two. Along the direction in which the boundary conditions are non-periodic the number of

interior points is one less than a power of two. To describe the partitioning schemes we

assume that the number of points is a power of two in both directions. We divide the domain

on the finest level into Y partitions along the X direction and 2Y partitions along the Y direc-

tion. Thus we get 2*y partitions with each partition having P points along the X direction

11

and

levels among the partitions one gets different partitioning schemes.

points along the Y direction. Depending on the distribution of the work on various

A fired region partitioning strategy is the one where on the successive comer levels each

partition contains the same region of the domain, i.e., the region formed by the points that are

the coarse level counterparts of points on the partition on the finest level. Under this partition-

ing scheme, with each coarsening the number of points associated with each partition decreases

by a factor of four until the level max(x, y) is reached. Below level max(x, y) each partition has

at most one line of points. With further coarsening the number of points per partition is halved

until level min(x, y) is reached. On that level each partition has at most one point of the

domain. Furthermore, in moving from level 1 to level 1-1, where max(x, y) 2 1 > min(x, y), the

number of partitions having any points and hence any computational work reduces by a factor

of two. When 1 is less than or equal to min(x, y) this number reduces by a factor of four.

The parameters x and y in the above described scheme determine the size and the shape

of the partitions of the domain on any given level. In general, the partition size determines the

total computational work associated with a partition, whereas the partition shape affects the

communication costs, since the values on the boundary of the adjacent partitions must be

exchanged. For the fixed region partitioning scheme the shapes affect the overall distribution

of work as well. Note that the shape of a partition is meaningful only on the levels where the

number of points per partition is greater than one. A detailed discussion on the combined

effect of the iteration stencil, the partition shape, and the communication parameters of the

underlying architecture on the total communication costs for single grid algorithms is given by

Reed et al. in [9]. Their discussion concentrates on minimizing the communication cost when

the computational work is evenly dismbuted and it remains the same throughout the computa-

tion. For multigrid algorithms, the fact that the computational work decreases on the coarser

12

levels must also be taken into account. We explain this point with the help of an example.

Consider a domain with 64 by 64 points on the fine level. Assume that 64 partitions are to be

made on the fine level. In the fixed region partitioning scheme, if square partitions are used,

then each partition has at least one point on levels 3, 4, 5, and 6. (Level 1 is the coarsest

level.) On the other hand if one were to partition the domain in strips (one column of 64 points

in each partition, for example), then only on level 6 would all partitions have some points

assigned to them. Note that in both cases each partition has the same computational work on

the finest level. Thus among squares, rectangles, and strips, squares balance the computational

load best. In our implementations we assume that the partitions are square in shape on all

grids.

In the fixed region partitioning scheme considered above, the regions of the domain are

permanently assigned to the processors on all the levels even when the associated computa-

tional work is small. Sometimes it is advantageous to resort to a shifiing region partitioning

scheme. In this scheme below a certain level 1' the work on the entire domain is shifted to one

node so that on all the successive coarser levels there is no communication cost. On levels f

and above the computational work is uniformly distributed among all the partitions, but below

level I' the computation is serialized. Thus, every time there is transition between levels 1' and

I' - 1 either the data has to be gathered to one partition or scattered to all partitions from one

partition. This scheme performs well if f is such that

where, CVt, and 6,1, denote the computation and communication costs, respectively, associ-

ated with a partition on level 1. C D ~ ~ is the computation cost associated with the entire domain

on level 1. G, and St are the costs of gathering and scaaering the domain on level f, respec-

tively.

13

In both the schemes described above, below a certain level some of the partitions do not

contribute to any useful work, but for the fixed region scheme this occurs at a level below

which there is not enough work to distribute among all the partitions, whereas for the shifting

region scheme this may occur even when some work can be distributed but is not, in order to

reduce the communication costs. The computational load is better balanced in the former case,

but the computation and the communication load together may be balanced better for the later

scheme. Although the later scheme promises better performance, generally accurate prediction

of f is difficult. Furthermore, this scheme has a higher programming cost that must also be

taken into account.

It is possible to further reduce the communication costs in the shifting region partitioning

scheme by replicating the work for the entire domain below level 1' at each node. Here the cost

of scattering the domain on level f is avoided. The gather operation can be performed in a tree

fashion where each node acts as the root of a binary tree. Thus, the cost of gathering remains

the same. So do the total computational costs. We refer to this scheme as the modified shifring

region scheme.

Mapping

Depending on the interconnection network incorporated in the underlying architecture and

depending on the parameters that determine the communication costs, partitions are mapped

onto the processors so that the communication costs are minimized while the computational

load is uniformly distributed. To illustrate the appropriate mapping techniques for hypercubes,

we consider the fixed region partitioning scheme. The other two partitioning schemes have

similar communication properties on levels f and above, and so the same mapping schemes

can be applied. In the following discussion we assume that each node is assigned a single par-

tition on each level.

14

On the fine level each partition has one or more points in each direction. Furthermore,

the neighboring points of the domain reside on the same partition or on neighboring partitions.

Thus, by mapping the partitions onto neighboring nodes one can minimize the communication

costs on the fine level since most of the data dependencies are of the nearest neighbor type. As

mentioned earlier with each successive coarsening the number of points associated with each

partition decreases by a factor of four and on some level 1 each partition has only one point of

the domain. Below this level with each coarsening not only the number of partitions having

any points of the domain decreases by a factor of four, but also the distance between the parti-

tions having the neighboring points keeps doubling. Thus, to avoid the increase in the com-

munication costs on the lower levels the mapping scheme employed should be such that on any

level the neighboring points are always on the neighboring partitions. Since in the hypercube

topology each node has lo@ neighbors, where N is the total number of nodes, each partition

has logN neighboring partitions and so one might expect to find such a mapping strategy.

Unfortunately, it is not possible to map the partitions on the fine level so that on all the lower

levels the neighboring partitions are found on the neighboring nodes without any remapping.

For such mappings to be possible, the network should contain odd length cycles', which the

hypercube network does not support. But it is possible to map the partitions on the fine level

so that up to and including the level 1 all neighboring partitions are on neighboring nodes and

below that level the neighboring partitions are at most two hops away. This is achieved by

making use of the binary reflected gray code scheme [3]. Note that in this scheme once the

partitions are mapped onto the nodes, they remain stationary on the same node on all levels.

One way to avoid having to communicate to nodes that are two hops away below some

level 1 is by remapping the partitions on levels below level 1 so that the distance between

t A cycle is a path formed by the edges connecting adjscent nodes such that @I begins and ends at the same d e . The
length of the cycle is the number of edges forming the cycle.

neighboring partitions is again one hop. The exchange algorithm given in [3] performs such a

remapping. With the exchange algorithm normal communication costs are reduced because the

neighboring partitions are always one hop away, but on each level it has the extra overhead of

the exchange operation. The complexity of the code is also higher. The overall gains are

higher if a large number of relaxations are performed on each level, otherwise, it may not be

worth the additional programming complexity. Furthermore, if the overhead of message initial-

ization is significantly higher than the actual transmission cost then the difference in sending a

message to a node one hop away or two hops away may not be high. For the MIMD architec-

ture we are considering here, each processor is associated with substantial local memory and so

several points of the finest level are assigned to each processor. In such cases the level I,,, is

small compared to L, the finest level. The message initialization costs are also higher than the

actual transmission costs. So we do not consider the exchange algorithm.

Additional Communication Cost Considerations

The partitioning and the mapping strategies discussed so far take into account only the

general structure of the multigrid algorit?uns. For extracting the best possible performance it is

necessary to take a close look at the data dependencies of the individual multigrid operations

such as relaxation, injection, and interpolation. Such an inspection allows one to have a better

handle on the scheduling as well as on the frequency of the messages being transmitted. In

addition to the data dependencies involved in the algorithm one must take into account the

architecture dependent parameters such as the message initialization cost, message size, and per

unit transmission cost. In the architecture that we are considering the message initialization cost

is high as compared to the actual per byte transmission cost. The packet sizes are also large

(1024 bytes). So the emphasis would be on reducing, whenever possible, the number of times

the messages are being initialized by looking ahead and sending data that is needed in the

16

future. In the following, we describe how these considerations can be incorporated in the

implementation schemes. The case of at most one point per partition is considered since it

represents the worst case. When there are more points per partition, the communication

requirements are less stringent. Note that some of the techniques may not be advantageous if

the message initialization costs are low or when the message sizes are small.

As discussed earlier the relaxation process uses a five point stencil with red-black order-

ing. Here first the interior black and then the interior red points are treated. For the points

along the boundary at y = 0 and y = 1 equations are solved only for o and the amount of com-

putation associated with a boundary point is smaller than that at an interior point. But to

achieve the desired convergence rate the boundary points must be relaxed after relaxing the

interior points during each iteration. Thus, a straightforward implementation may add two extra

phases of communication during each iteration. Since the computational work is small, but the

communication cost is high, the boundary points tend to become a bottleneck. This can be

avoided if we couple the boundary points on a given grid with the nearest interior point. By

coupling we mean the following. The boundary points alone, on any level do not form a parti-

tion. The partition that has the interior points belonging to the first and/or last row of the

domain on a given grid contains the adjacent boundary points. If the partition to which the

boundary points are assigned does not have any interior points on the next coarser level then

the relevant boundary points are moved to the next interior partition on the coarser level.

Because of the small amount of computation associated with the relaxation of the boundary

points, the load imbalance is quite small. On the other hand the savings in communication cost

are significant. In this scheme we relax the interior black points first and send the values of the

black points and of the domain boundary red points (values of which are from the previous

iteration) on the partition boundary to appropriate processors containing the neighboring parti-

tions. After this the red interior points and then the domain boundary black points (if the

17

partition contains the domain boundary) are relaxed. Now both the values of the interior red

points and the domain boundary black points are sent to the neighboring partitions. On receiv-

ing the values from the neighboring partitions the domain boundary red points (if any belong

to the partition) are relaxed. This completes one iteration. Thus during each iteration messages

are exchanged exactly twice everywhere, at the same time the desired order of relaxation for

the interior and the boundary points is maintained.

The restriction operation may require one phase of communication among the appropriate

partitions to completely define the residuals and to have all the necessary data for relaxing the

black points on the coarse level. But this communication phase can be avoided by sending

additional information at the end of relaxing red points just before coarsening. Here in addi-

tion to sending the new values of the red points on the boundary, we also send the values of

the adjacent black points from the interior of the partition (or from the opposite partition if

there is only one point per partition along that direction) to the appropriate neighboring parti-

tions. Furthermore, this arrangement allows one to start the relaxation on the coarse level

without any additional communication.

For analyzing the communication requirements of the interpolation process there are two

points that should be noted. For simplicity we consider linear interpolation. First only the red

points on the fine level need to be interpolated since immediately after the interpolation black

points are relaxed. Secondly, the interpolated values of the red points are needed only at the

black points during the relaxation after the interpolation. Thus, when each partition has at

most one point (on coarse as well as fine level), the fine level red points can be interpolated at

the partitions having black points and the relaxation on the fine level can begin without having

to communicate to the red points. Some amount of information has to be transmitted to the

partitions containing black points that were not present on the coarse level (only half of all the

18

fine level black points are present on the coarse level). It can be shown that during the relaxa-

tions after interpolation if one were to perform communication first and then computation, the

communication phase in the interpolation process can be avoided even if there is at most one

point per partition. This is true only for linear interpolation and simpler boundary conditions.

For higher order interpolation or if the boundary conditions are complex as in our model prob-

lem, and if we couple the boundary points with the interior points, then at least one phase of

communication is required during the interpolation process.

Thus, we have shown that by suitablely rearranging and combining the messages, usually

the communication phases can be restricted to those during th relaxation process. In the next

section we show some results obtained by applying these strategies in solving the model prob-

lem using multigrid algorithms on an Intel iPSC.

5. Results

The three multigrid algorithms discussed in Section 2 were implemented for solving the

model problem on an Intel iPSC. The details of this architecture can be found in [8]. The

experimental results presented here were obtained with the Release 3.0 iPSC operating system.

Here we present the results of implementing both the fixed region and the shifting region parti-

tioning schemes. Additional performance results can be found in [7].

The effect of the number of processors available to solve the problem to the level of

discretization error on the execution time is shown in Figure 3. The figure also compares the

parallelizability of the three algorithms studied. Clearly, the V algorithm takes the highest

advantage of the added processors in reducing the total execution time, whereas the W algo-

rithm gains the least. On the other hand, on a single processor the V algorithm performs

poorly as compared to the other two algorithms. The three algorithms have different numerical

19

.

properties and hence different convergence rates. For the problem we are considering here,

both the F and W algorithms need about three FMG cycles to solve a 128 x 128 problem to

the level of discretization error, whereas the V algorithm takes about seven cycles to obtain the

same accuracy. Over the range of the cube sizes and the problem sizes considered the F algo-

rithm performs the best.

The effect of the problem size on the system efficiency is shown in Figure 4 for the F

algorithm. The other two algorithms show similar trends. The efficiency of the system is

computed using the time taken by the F algorithm to solve the problem on a single node. From

Figure 4 it is clear that increasing problem size for a given number of nodes results in

improvements in efficiency. This is expected because by increasing the problem size while

keeping the number of nodes the same, the partition size assigned to each node increases

resulting in a larger computation cost per node without increasing the communication cost.

In Figure 3 the three algorithms were compared using the absolute execution times. To

compare the three algorithms qualitatively it is necessary to look at the relative efficiencies of

the system for the three algorithms. As stated earlier, the algorithms have different numerical

properties as well as different communication requirements. Hence, we compute the

efficiencies using the best sequential timing (given by the F algorithm for our problem). We

refer to such an efficiency as the normalized efficiency. In Figure 5 , the normalized

efficiencies of the three algorithms are compared as the dimension of the hypercube is varied.

In all the cases the problem is solved to the same level of numerical accuracy. It can be seen

that when the partition sizes are large or when the hypercube size is small, both F and W algo-

rithm perform better than the V algorithm in spite of the adverse communication costs. For

the problem and machine sizes considered here, the FMG F algorithm has the best overall per-

formance. When partition sizes are small the V algorithm may perform better even though its

convergence properties are inferior.

The effect of employing the shifting region partitioning scheme on the performance is

shown in Figure 6. Recall that in this scheme the work is serialized below some level r by

moving all the regions of the domain to a single node. The percent increase in efficiency by

serializing the work below levels 2 through 5 on a 16 node hypercube are shown for two prob-

lems having 64x64 and 128x128 points on the fine level. In this figure r = 1 corresponds to

the fixed region partitioning scheme, i.e., no moving of regions takes place. It can be seen that

the performance peeks out at a particular value of t. The savings in the communication costs

achieved by serializing the work above this level is offset by the increase in the computation

cost. Note that when the problem size is small or when the size of the partitions assigned to

each processor is small, the gains are higher. Here each partition has a smaller piece of work

on the highest level and so the communication costs are more dominant. By serializing the

computation below a certain level, the percentage reduction in the total cost is higher than that

in the larger size problems. In Figure 7 we show the effect of the above described partitioning

scheme when the computing power is increased by adding more processors. Note that for the

larger size hypercube, the cost of scattering and gathering the data is also higher. But now the

computational work associated with each partition has decreased and so the communication

costs form a higher proportion of the total cost.

6. Conclusions

Schemes for efficient implementation of three multigrid algorithms for solving 2-D

incompressible Navier-Stokes equations on a message passing system are presented. It is

shown that, the communication costs can be reduced even in such moderately difficult prob-

lems by simultaneously taking into account the data dependencies of the various operations as

well as the communication parameters of the underlying architecture. Performance of the three

21

.

algorithms are compared by implementing the schemes on an Intel iPSC. It is found that the

FMG algorithm based on the F cycle performs the best over the range of the problem and

machine sizes considered.

ACKNOWLEDGEMENTS

We would like to thank the Mathematics and Statistics Research Section at Oak Ridge

National Laboratory for granting us the use of their iPSC. We are particularly indebted to Tom

Dunigan for his help during the course of the experimental work We are grateful to Bob

Voigt and Memll Patrick for their continued support and encouragement

22

REFERENCES

A. Brandt, Multigrid Techniques: I984 Guide, GMD Studien 85, Gesellschaft fur
Mathematik und Datenverarbeitung, St. Augustin, 1984.

B. Brigs, L. Hart, S. McCorrnick, and D. Quidan, Multigrid methods on a hypercube,
Proc. Third Copper Mountain Conference on Multigrid Methods, Copper Mountain,
Colorado, 1987.

T. F. Chan and Y. Saad, Multigrid algorithms on the hypercube multiprocessor, IEEE
Trans. Cornput, vol. 35, pp. 969-977, 1986.

T. F. Chan and R. S. Tuminaro, Design and implementation of parallel multigrid algo-
rithms, Roc. Third Copper Mountain Conference on Multigrid Methods, Copper Moun-
tain, Colorado, 1987.

G. M. Johnson and J. M. Swisshelm, Multigrid for parallel-processing supercomputers,
Roc. Third Copper Mountain Conference on Multigrid Methods, Copper Mountain,
Colorado, 1987.

H. Mierendorff, Parallelizatwn of multigrid methods with local refinements for a class of
non-shared memory systems, Roc. Third Copper Mountain Conference on Multigrid
Methods, Copper Mountain, Colorado, 1987.

V. K. Naik and S. Ta'asan, Performance studies of the multigrid algorithms implemented
on hypercube multiprocessor systems, Proc. Second Conference on Hypercube Multipro-
cessors, Knoxville, Tennessee, 1986.

J. Rattner, Concurrent processing: a new direction in scientific computing, AFIF'S
Conference Proceedings, National Computer Conference, vol. 54, pp. 157- 166, 1985.

D. A. Reed, L. M. Adams, M. L. Patrick, Stencils and problem partitionings: Their
influence on the performance of multiple processor systems, IEEE Trans. Comput., 1987,
to appear.

[lo] P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, 1972.

[l 11 Y. Saad and M. H. Schultz, Topological properties of hypercubes, Research Report, Yale
University, YALEUDCSRR-389, 1985.

[12] K. Stuben and U. Trottenberg, Multigrid methods: fundamental algorithms, model prob-
lem analysis and applications, in MULTIGRID METHODS, W. Hachbusch and U. Trot-
tenberg (eds.), lecture notes in mathematics, vol. 960, pp. 1-176, Springer-Verlag, 1982.

23

[13] C. Thole, The SUPRENUM approach: MIMD architecture for multigrid algorithmr, Proc.
Third Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado,
1987.

.

I

24

where, Lk approximates Lbl (A e M) (they all approximate some differential operator).

V and W Algorithms
Given gn approximate solution ii', to Eqn. (A.1) on grid 1, the V or W algcitidms impmtrc!

fi' by,
ii' t l4GVW(v, 1, a', F').

The recursive definition of function MCVW() is given below. For v = 1 we get the V a!@-
rithm and v = 2 we get the W algorithm. Level 1 denotes the coarsest le& and k i l any lee1
less than or equal to 1.

MGVW(v, k, iik,F1
begin

pedorm rl relaxation sweeps on grid k
and store the new values in isk;

ifk > 1
begin

perform coarsening:

end coarsening
for i = 1 until v do

iibl t M G W (v, k-1, iikl, pl);

perform correction inferpolation:
iik t iik + I& - e1 iikJ;

end

perform r2 relaxation sweeps on grid k
and store the new values in 0';

return iik;
end MGVW.

25

.

F Algorithm
Given an approximate solution ii' to Eqn. (A.l) on grid 1, the F algorithm improves d by,

ii' t MGVF(v, 1, ii', F').

The function MGVF() is defined recursively below. As before level I denotes the coarsest
level and k is any level less than or equal to 1. When v = 2 we get the F algorithm and when
v = 1 we get the V algorithm.

MGVF(v, k, ii", f i
begin

perform rl relaxation sweeps on grid A
and store the new values in ii";

i f k > 1
begin

perform coarsening:
begin

iikl t i f 1 it;

end coarsening
for i = 1 until v-1 do

iikl t MCVF(V, k-I, P, P);

perform a V cycle:
iikl t M G W (1, k-I, tik1, Fkl);

perform correction inferpolation:

perform r2 relaxation sweeps on grid k
and store the new values in iik;

return ii";
end MGVF.

26

FMG Algorithm

level 1 is obtained by,

The definition of the FMG() algorithm is given below. In that definition MG() either MCWV()
or MGVF() defined above. Depending on the appropriate selections of MG() and the value of
the parameter v, either V, F, or the W cycles are performed. Parameter n denotes the number
of times a cycle is to be repeated at each level.

If ii' is an approximate solution to a n . (A.l) on the coarsest grid, then a fast solution on

ii' 4- FMG(n, I , P', F').

FMC(n,l,$,F')
begin

solve for Ti' by direct method
or by several relaxation sweeps on grid 1 ;

for k = 1 until 1 do
begin

perform interpolation:
iik c I@-' &';

for i = 1 until n do
iik c MG(v, k , i i k ~ ;

end
return ii'

end FMG

27

.

c

Y
I
I
I 4

i I

I
I
I
I
I

I

I I I - 0' 0'
0 0 0 0 0 0
<u 0 0 0 0 0
rl rl 03 w Tr <u

A
I

* e
0
-1
v)

c
p a ,

E

a
w a ,

-1

a
3
u

m

TP

M

rl

28

(v 0 co W v cv
rl 4 0 0 0 0

c

w w w - r l u - 1 a, c u h

29

c

c:
0
-Ii
cn
d

$
-Ii
a
a,
A
9
c)

(0

3

h
u
d
a,
-4
u
-Ii
w
w
w
Tb
a,
N
-4
4
cd
E
k
0
z
..
ul

rn
-d
LU I I I I I I

cv 0 00 u v cv

rl rl 0 0 0 0
.

2 0 Ll E w l u w - I i u-Ii a, d u h

30

03
cv

w rl
W x
X 00
v hl
Lo rl

I I I I I I

31

I I I I I I

Standard Bibliographic Page

. Report No. NASA CR-178319
ICASE Report N o . 87-37

2. Government Accession No.

~~

’. Author(s)
V i j ay K. Naik and Shlomo Ta’asan

L7. Key Words (Suggested by Authors(s))

’. P W @ P W $ P Y ~ ~ P T ~ B ~ ~ @ %$$*cat ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

and Engineering

18. Distribution Statement

2. Sponsoring Agency Name and Address

Nat iona l Aeronautics and Space Adminis t ra t ion
Washington, D.C. 20546

5 . Supplementary Notes

21. 39 of Pages 19. ~ n u r f g C & ~ ~ ~ & t h i s report)

3. Recipient’s Catalog No.

22. Price
A03

5. Report Date

June 1987
6. Performing Organization Code

8. Performing Organization Report No.
87-37

505-90-21-01
10. Work Unit No.

13. Type of Report and Period Covered

Cont rac tor Report
14. Sponsoring Agency Code

Langley Technical Monitor: Submitted t o t h e Proc. of t h e 6 t h
J. C. South IMACS I n t . Symp. on Computer

F i n a l Report PA, June 23-26, 1987
Methods f o r PDE’s, Lehigh Univ.,

6. Abstract

I n t h i s paper we p re sen t schemes f o r implementing mul t ig r id a lgor i thms on
message based MIMD mul t iprocessor systems. To address t h e va r ious i s s u e s
involved , a n o n t r i v i a l problem of so lv ing t h e 2-D incompressible Navier-Stokes
equa t ions is considered as
a lgo r i thms are considered.
I n t e l iPSC are presented.

t h e model problem. Three d i f f e r e n t mu l t ig r id
Resu l t s from implementing t h e s e a lgor i thms on an

mul t ip rocesso r systems, hypercube,
m u l t i g r i d a lgori thms, Navier-Stokes
equa t ion

62 - Computer Systems
64 - Numerical Analysis

