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ABSTRACT 

In this paper we present schemes for implementing multigrid algorithms on message 

based MIMD multiprocessor systems. To address the various issues involved, a nontrivial 

problem of solving the 2-D incompressible Navier-Stokes equations is considered as the model 

problem. Three different multigrid algorithms are considered. Results from implementing these 

algorithms on an Intel iPSC are presented. 
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1. Introduction 

Multigrid algorithms are found to be optimal and efficient for solving a large class of 

problems involving partial differential equations on sequential machines [l]. Recently there 

has been increased interest in parallelizing these algorithms [Ref. 2-6, 131. In most of the 

work that has been reported, simple problems such as the solution of Poisson equations are 

considered. Although these results are important for verifying the suitability of multigrid 

methods for parallel processing, they neither completely expose the data dependencies govern- 

ing the communication costs nor do they bring out the difficulties involved in implementing 

real life problems - problems that will be solved on the future multiprocessor systems. The 

necessity for paying close attention to the data dependencies involved is further underlined by 

the fact that multigrid algorithms do not always perform optimally on the multiprocessor sys- 

tems, even though the individual operations involved exhibit a high degree of parallelism [7]. 

To understand the limitations as well as the effectiveness of parallelizing the multigrid algo- 

rithms, we consider, in this paper, the problem of solving the the 2-D steady state incompressi- 

ble Navier-Stokes equations. The solution of these equations represent some of the difficulties 

that are present in solving hard problems, but at the same time the equations are not too com- 

plex to experiment on the currently available multiprocessor systems. We also present methods 

for minimizing the communication costs on the architectures considered here. 

In the following section we briefly describe the idea behind the multigrid methods and 

present three different algorithms based on this idea. In Section 3 the model problem is given. 

In Section 4 the implementation issues involved are discussed. Some performance results 

obtained by implementing the three multigrid algorithms on the Intel’s Personal Supercomputer 

(iPSC) are described in Section 5. Conclusions are given in Section 6. 
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2. Multigrid Algorithms 

Here we briefly describe the various multigrid techniques that are generally applied in 

solving partial differential equations. This discussion is by no means exhaustive, but is meant 

to illustrate the highlights of the multigrid methods. In Section 4 we describe methods of paral- 

lelizing these techniques. 

Basic Idea 

Consider a differential equation given by LU = F with boundary conditions BU = g 

defined on an n-dimensional domain in R". For simplicity of exposition let L be an elliptic 

operator. Let the difference scheme LhUh = with boundary conditions B * P  = gh, approxi- 

mate this differential equation. If this difference scheme is solved by relaxation, (Gauss-Seidel 

in lexicographic order, for instance), the error can be written as, 

(1) 

where, u: is the current approximation after the n-th relaxation sweep. Now consider the ratio, 

h e, = U" - u: 

pll = Ilek~lI / Ilejl where, II I1 denotes the b-norm. From numerical experiments it is seen that 

the ratio increases with n from some value k c  1 and approaches a number that may be very 

close to one. That is, convergence is fast in the first few steps and then slows down. 

It is found that whenever the error e: is not smooth p, is small, giving a good conver- 

gence rate. When e: is smooth the resulting convergence rate becomes poor. That is, relaxation 

smoothes the error. The main idea of multigrid is this: if the error is smooth , approximate it 

by a coarse grid, say of mesh size 2h. 

Coarse Grid Correction 

Let trh be the approximation obtained on the fine grid after a few relaxation sweeps. The 

error P = P - iih satisfies 
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L V  = fl (2) 
where, ? = Fh - L'P. If vlk is a smooth function we can approximate it by a coarser grid 

function VH that satisfies 

LHV" = P (3) 
where, LH is a coarse grid approximation of L" (e.g., a finite difference approximation on grid 

H to the same differential operator approximated by L*) and ?" is defined by, 

?" = IF? 

where, 1: is a fine to coarse grid transfer operator (e.g., injection). 
(4) 

Note that the grid H has significantly fewer points than the grid h (one quarter of the 

points in two dimensions, if H = 2h) and hence, it is less expensive to solve Eqn. (3) than to 

solve Eqn. (2). Let #' be the approximate solution obtained by solving Eqn. (3 )  by some 

method. We can use fl to accelerate convergence of the fine grid by, 

Ph c P + IivH (5 )  
where, Ih is an interpolation operator (e.g., linear interpolation). The process of calculating t", 

solving for and interpolating the result to the fine grid is called the course grid correction. 

The above described scheme, where equations corresponding to the error term P are 

solved on the coarse grid, is known as the Correction Scheme (CS). Instead of V", if we use 

UH = TF iih + P, where, TF is some fine to come grid transfer operator, as the unknown 

function on the coarse grid then the resulting scheme is known as the Full Approximation 

Scheme (FAS). The coarse grid function V" approximates I f f l ,  the full solution represented on 

the coarse grid. Such a scheme is useful when local refinement is needed or when nonlinear 

problems are to be solved. The FAS equations are 

LH@ = FH (6) 
where, PH = LHTF iik + IF?. After solving the last equation approximately, we use the 

approximation # to correct the fine grid approximation as follows: 
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d t iih + Ik(ii" 3: i?). 

Multigrid Cycles 

To solve Eqn. (3) or (6), if the underlying idea in the CS or the FAS is applied recur- 

sively, then one arrives at a general multigrid algorithm. These algorithms involve a cyclic 

order of computation and are referred to as the multigrid cycles. Different multigrid algorithms 

have been developed depending on the order and the frequency with which the grids are visited 

within a cycle. The most commonly used ones are the V and W cycles. In addition to these 

two types there is another type of multigrid cycle called the F cycle. For the sake of clarity, 

we will refer to the multigrid algorithms based on these three cycles as the V, W, and F algo- 

rithms, respectively. The recursive definitions of these algorithms are given in the Appendix. 

An important property of these multigrid algorithms is that, when the approximation scheme is 

appropriately chosen the rate of convergence of these methods can, in general, be made 

independent of the size of the problem. This is true for the F and W algorithms even if the 

L0v.l L0v.l 

Figure 1 (a) V Cycle (b) F Cycle 



problem is non-linear. 

Figures 1 and 2 illustrate the order in which the V, F, and W algorithms visit different 

levels within a single cycle. Increasing level numbers correspond to finer mesh sizes. The 

letters rl and r2 within the circles denote the number of relaxation sweeps on the corresponding 

levels. In all the three cases the values of tl and r2 usually range from 0 to 2. On levels with 

empty circles rl + r2 number of relaxations are performed. It can be easily verified that for the 

V algorithm each level is visited exactly once within a multigrid cycle. For the F algorithm, 

level i is visited I - i + 1 times where I is the highest level for that cycle. For the W algorithm, 

level i is visited zk’ times. Thus, the number of visits to the coarsest level grows exponentially 

for the W algorithm, whereas for the F algorithm it grows linearly. 

Full MultiGrid (FMG) algorithms 

To obtain a fast solution to the finest grid equations, a good initial approximation is 

needed on that level. A solution of the same problem on a coarser level can provide such an 

4 

3 

2 
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Figure 2 W Cycle 
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approximation. By applying the idea recursively one gets the Full MulfiGrid (also referred to 

as nested iteration) algorithms for the three multigrid cycles described earlier. The FMG algo- 

rithm is defined in the Appendix. 

In the following we first present the model problem and then describe its solution using 

the above described multigrid techniques. 

3. Model Problem 

The model problem considered here is that of solving the 2-D steady state incompressible 

Navier-Stokes equations. Such equations arise, for example, in studying the fully developed 

flow between two parallel plates where one plate may be moving with respect to the other 

plate. Their solutions present some of the difficulties involved in solving real life problems, 

but at the same time are simple enough for experimentation on currently available multiproces- 

sor systems. Furthermore, all the three multigrid algorithms can be tested with these equations. 

The equations in terms of vorticity w and stream function w are: 

A v  = w (7a) 

1 
Re UW, + VCI+ = -Am. 

Re is the Reynold’s number of the fluid flow and u and v are the velocity components in the X 

and Y directions, respectively. The velocity components are given in terms of the stream func- 

tion w by, u = - vr, and v = v,. 

If the computational domain is f2 = { (x,  y) I 0 5 x s 1, 01 y 5 1) and if U,, is the velocity 

of the moving plate, then the boundary conditions for such a flow are given by, 

. 
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L 

u = v = o  at y = 0. 
u = Uo, v = 0 aty = 1. 
Periodicity is imposed in the X direction and 
a constant pressure gradient is imposed on the flow. 

In terms of w and y~ the above boundary conditions are, 

where, c is a constant and v is periodic in the X direction. 

Discretization 

The Eqns. (7) are discretized as the following: 

where, 

J 

O l i l N ,  O l j l N ,  ( N - l ) - h  = 1,andpisaconstant. 

The discrete boundary conditions are as follows: 
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For a derivation of Eqns. (1Oc) and (10d) see [lo]. 

Multigrid Implementation 

The above defined problem is solved using the FMG algorithms presented earlier. Here 

we describe some important aspects in applying the multigrid techniques. 

Eqns. (9) are relaxed by Gauss-Siedel relaxation in a Red-Black ordering where at each 

color Eqn. 9b is relaxed first for wij, followed by the relaxation of the y equation (Eqn. 9a). 

The relaxations of the boundary conditions (Eqns. 1Oc and 1Od) are done in a different way. 

Note that a small change (O(R)) in y may result in a large change (O(1)) in o. Hence a 

straightforward Gauss-Siedel relaxation of the'boundary conditions (Eqns. 1Oc and 1Od) is not 

appropriate; it may ruin the smoothness of o obtained by the interior relaxation. The relaxation 

of the boundary conditions for o should be such that it smoothes the residuals on the boundary 

and not make them zero as does the Gauss-Siedel relaxation. One way of achieving this is to 

change oij at the boundary such that the new residual at the point ( i , n  is the average of the 

neighboring residuals, that is = - + [l]. On the coarsest grid, a straightfor- 

ward Gauss-Siedel is applied for the boundary conditions as well. 

2 ' [  

To transfer only the smooth part of the residuals to the coarser level, in general a full- 

weighting operator is applied. Since the residuals after a red-black relaxation on the fine level 

are zero at half the points, we use a half-injection operator. A bi-linear interpolation operator 
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is applied during the interpolation within a given cycle and bi-cubic interpolation is used in 

obtaining a first approximation on any new level of the Fh4G algorithm. The necessity of 

employing the bi-cubic interpolation arises because of the following reasons. To solve the 

problem to the level of truncation errors in just a few cycles (that is, independent of the grid 

size) the initial residuals should behave like O(hz) so that in a few cycles we can reduce them 

to the level of truncation errors (which are also O(l?)). The use of bi-linear interpolation will 

introduce high frequency errors of order h2 on the new level that will have residuals of order 

one. Hence, if this interpolation is used, the number of multigrid cycles needed to solve the 

problem to the level of truncation errors (O(h2)) will depend on h. Bicubic interpolation, on 

the other hand, introduces errors of order O(h4). Their residuals are of order O(h2) and there- 

fore it is possible to get, in a few cycles, (independent of the mesh size) the level of truncation 

errors. For the definitions of full-weighting, injection, half-injection, bi-linear, and bi-cubic 

operators see [12]. 

4. Implementation on a Message Passing System 

In this section we discuss some of the implementation aspects of the above described 

multigrid algorithms on message based MIMD multiprocessor systems. We consider the mul- 

tiprocessor systems based on hypercube interconnection topology; but the principles developed 

here are applicable to other message passing systems as well. Experimental results from a 

specific message passing system are presented in the next section. A detailed discussion of the 

performance issues involved is given in [7]. Descriptions on the hypercube topology and some 

relevant properties can be found in [8], [l 11. 

An efficient implementation of the multigrid algorithms on a local memory system 

involves partitioning the domain such that the computational load is distributed as evenly as 
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possible at all the times and the communication cost is kept minimum. It may not always be 

possible to achieve both at the same time and hence we try to reach a balance between the 

two. The partitioning scheme must take into account both the interior and the boundary points 

of the domain so that the load is evenly distributed, whereas the communication costs must 

take into account the communication parameters of the underlying architecture as well as the 

data dependencies involved in various operations. In general the interior points have a higher 

computational work associated with them whereas the boundary points have higher communi- 

cation demands. Furthermore, for the type of equations we are solving, the boundary conditions 

drive the problem and so the order in which the interior and the boundary points are treated is 

extremely important. All these constraints must be taken into account by any partitioning 

scheme adopted for achieving good performance. In the following, we first describe the main 

implementation issues that include schemes for partitioning the domain on various levels and 

mapping these partitions on the individual processors of the hypercube multiprocessor system 

so that the total cost of a general multigrid algorithm is minimized. After that we describe 

methods that further reduce the communication costs for the problem being solved here. 

Partitioning Schemes 

For the sake of simplicity consider a 2-D square domain with x mesh units on &e 

highest level L of the multigrid algorithm being implemented. When boundary conditions are 

periodic, this implies that the number of interior points along that direction is also a power of 

two. Along the direction in which the boundary conditions are non-periodic the number of 

interior points is one less than a power of two. To describe the partitioning schemes we 

assume that the number of points is a power of two in both directions. We divide the domain 

on the finest level into Y partitions along the X direction and 2Y partitions along the Y direc- 

tion. Thus we get 2*y partitions with each partition having P points along the X direction 
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and 

levels among the partitions one gets different partitioning schemes. 

points along the Y direction. Depending on the distribution of the work on various 

A fired region partitioning strategy is the one where on the successive comer levels each 

partition contains the same region of the domain, i.e., the region formed by the points that are 

the coarse level counterparts of points on the partition on the finest level. Under this partition- 

ing scheme, with each coarsening the number of points associated with each partition decreases 

by a factor of four until the level max(x, y) is reached. Below level max(x, y) each partition has 

at most one line of points. With further coarsening the number of points per partition is halved 

until level min(x, y) is reached. On that level each partition has at most one point of the 

domain. Furthermore, in moving from level 1 to level 1-1, where max(x, y) 2 1 > min(x, y), the 

number of partitions having any points and hence any computational work reduces by a factor 

of two. When 1 is less than or equal to min(x, y) this number reduces by a factor of four. 

The parameters x and y in the above described scheme determine the size and the shape 

of the partitions of the domain on any given level. In general, the partition size determines the 

total computational work associated with a partition, whereas the partition shape affects the 

communication costs, since the values on the boundary of the adjacent partitions must be 

exchanged. For the fixed region partitioning scheme the shapes affect the overall distribution 

of work as well. Note that the shape of a partition is meaningful only on the levels where the 

number of points per partition is greater than one. A detailed discussion on the combined 

effect of the iteration stencil, the partition shape, and the communication parameters of the 

underlying architecture on the total communication costs for single grid algorithms is given by 

Reed et al. in [9]. Their discussion concentrates on minimizing the communication cost when 

the computational work is evenly dismbuted and it remains the same throughout the computa- 

tion. For multigrid algorithms, the fact that the computational work decreases on the coarser 
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levels must also be taken into account. We explain this point with the help of an example. 

Consider a domain with 64 by 64 points on the fine level. Assume that 64 partitions are to be 

made on the fine level. In the fixed region partitioning scheme, if square partitions are used, 

then each partition has at least one point on levels 3, 4, 5, and 6. (Level 1 is the coarsest 

level.) On the other hand if one were to partition the domain in strips (one column of 64 points 

in each partition, for example), then only on level 6 would all partitions have some points 

assigned to them. Note that in both cases each partition has the same computational work on 

the finest level. Thus among squares, rectangles, and strips, squares balance the computational 

load best. In our implementations we assume that the partitions are square in shape on all 

grids. 

In the fixed region partitioning scheme considered above, the regions of the domain are 

permanently assigned to the processors on all the levels even when the associated computa- 

tional work is small. Sometimes it is advantageous to resort to a shifiing region partitioning 

scheme. In this scheme below a certain level 1' the work on the entire domain is shifted to one 

node so that on all the successive coarser levels there is no communication cost. On levels f 

and above the computational work is uniformly distributed among all the partitions, but below 

level I' the computation is serialized. Thus, every time there is transition between levels 1' and 

I' - 1 either the data has to be gathered to one partition or scattered to all partitions from one 

partition. This scheme performs well if f is such that 

where, CVt, and 6,1, denote the computation and communication costs, respectively, associ- 

ated with a partition on level 1. C D ~ ~  is the computation cost associated with the entire domain 

on level 1. G, and St are the costs of gathering and scaaering the domain on level f, respec- 

tively. 
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In both the schemes described above, below a certain level some of the partitions do not 

contribute to any useful work, but for the fixed region scheme this occurs at a level below 

which there is not enough work to distribute among all the partitions, whereas for the shifting 

region scheme this may occur even when some work can be distributed but is not, in order to 

reduce the communication costs. The computational load is better balanced in the former case, 

but the computation and the communication load together may be balanced better for the later 

scheme. Although the later scheme promises better performance, generally accurate prediction 

of f is difficult. Furthermore, this scheme has a higher programming cost that must also be 

taken into account. 

It is possible to further reduce the communication costs in the shifting region partitioning 

scheme by replicating the work for the entire domain below level 1' at each node. Here the cost 

of scattering the domain on level f is avoided. The gather operation can be performed in a tree 

fashion where each node acts as the root of a binary tree. Thus, the cost of gathering remains 

the same. So do the total computational costs. We refer to this scheme as the modified shifring 

region scheme. 

Mapping 

Depending on the interconnection network incorporated in the underlying architecture and 

depending on the parameters that determine the communication costs, partitions are mapped 

onto the processors so that the communication costs are minimized while the computational 

load is uniformly distributed. To illustrate the appropriate mapping techniques for hypercubes, 

we consider the fixed region partitioning scheme. The other two partitioning schemes have 

similar communication properties on levels f and above, and so the same mapping schemes 

can be applied. In the following discussion we assume that each node is assigned a single par- 

tition on each level. 
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On the fine level each partition has one or more points in each direction. Furthermore, 

the neighboring points of the domain reside on the same partition or on neighboring partitions. 

Thus, by mapping the partitions onto neighboring nodes one can minimize the communication 

costs on the fine level since most of the data dependencies are of the nearest neighbor type. As 

mentioned earlier with each successive coarsening the number of points associated with each 

partition decreases by a factor of four and on some level 1 each partition has only one point of 

the domain. Below this level with each coarsening not only the number of partitions having 

any points of the domain decreases by a factor of four, but also the distance between the parti- 

tions having the neighboring points keeps doubling. Thus, to avoid the increase in the com- 

munication costs on the lower levels the mapping scheme employed should be such that on any 

level the neighboring points are always on the neighboring partitions. Since in the hypercube 

topology each node has lo@ neighbors, where N is the total number of nodes, each partition 

has logN neighboring partitions and so one might expect to find such a mapping strategy. 

Unfortunately, it is not possible to map the partitions on the fine level so that on all the lower 

levels the neighboring partitions are found on the neighboring nodes without any remapping. 

For such mappings to be possible, the network should contain odd length cycles', which the 

hypercube network does not support. But it is possible to map the partitions on the fine level 

so that up to and including the level 1 all neighboring partitions are on neighboring nodes and 

below that level the neighboring partitions are at most two hops away. This is achieved by 

making use of the binary reflected gray code scheme [3]. Note that in this scheme once the 

partitions are mapped onto the nodes, they remain stationary on the same node on all levels. 

One way to avoid having to communicate to nodes that are two hops away below some 

level 1 is by remapping the partitions on levels below level 1 so that the distance between 

t A cycle is a path formed by the edges connecting adjscent nodes such that @I begins and ends at the same d e .  The 
length of the cycle is the number of edges forming the cycle. 



neighboring partitions is again one hop. The exchange algorithm given in [3] performs such a 

remapping. With the exchange algorithm normal communication costs are reduced because the 

neighboring partitions are always one hop away, but on each level it has the extra overhead of 

the exchange operation. The complexity of the code is also higher. The overall gains are 

higher if a large number of relaxations are performed on each level, otherwise, it may not be 

worth the additional programming complexity. Furthermore, if the overhead of message initial- 

ization is significantly higher than the actual transmission cost then the difference in sending a 

message to a node one hop away or two hops away may not be high. For the MIMD architec- 

ture we are considering here, each processor is associated with substantial local memory and so 

several points of the finest level are assigned to each processor. In such cases the level I,,, is 

small compared to L, the finest level. The message initialization costs are also higher than the 

actual transmission costs. So we do not consider the exchange algorithm. 

Additional Communication Cost Considerations 

The partitioning and the mapping strategies discussed so far take into account only the 

general structure of the multigrid algorit?uns. For extracting the best possible performance it is 

necessary to take a close look at the data dependencies of the individual multigrid operations 

such as relaxation, injection, and interpolation. Such an inspection allows one to have a better 

handle on the scheduling as well as on the frequency of the messages being transmitted. In 

addition to the data dependencies involved in the algorithm one must take into account the 

architecture dependent parameters such as the message initialization cost, message size, and per 

unit transmission cost. In the architecture that we are considering the message initialization cost 

is high as compared to the actual per byte transmission cost. The packet sizes are also large 

(1024 bytes). So the emphasis would be on reducing, whenever possible, the number of times 

the messages are being initialized by looking ahead and sending data that is needed in the 
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future. In the following, we describe how these considerations can be incorporated in the 

implementation schemes. The case of at most one point per partition is considered since it 

represents the worst case. When there are more points per partition, the communication 

requirements are less stringent. Note that some of the techniques may not be advantageous if 

the message initialization costs are low or when the message sizes are small. 

As discussed earlier the relaxation process uses a five point stencil with red-black order- 

ing. Here first the interior black and then the interior red points are treated. For the points 

along the boundary at y = 0 and y = 1 equations are solved only for o and the amount of com- 

putation associated with a boundary point is smaller than that at an interior point. But to 

achieve the desired convergence rate the boundary points must be relaxed after relaxing the 

interior points during each iteration. Thus, a straightforward implementation may add two extra 

phases of communication during each iteration. Since the computational work is small, but the 

communication cost is high, the boundary points tend to become a bottleneck. This can be 

avoided if we couple the boundary points on a given grid with the nearest interior point. By 

coupling we mean the following. The boundary points alone, on any level do not form a parti- 

tion. The partition that has the interior points belonging to the first and/or last row of the 

domain on a given grid contains the adjacent boundary points. If the partition to which the 

boundary points are assigned does not have any interior points on the next coarser level then 

the relevant boundary points are moved to the next interior partition on the coarser level. 

Because of the small amount of computation associated with the relaxation of the boundary 

points, the load imbalance is quite small. On the other hand the savings in communication cost 

are significant. In this scheme we relax the interior black points first and send the values of the 

black points and of the domain boundary red points (values of which are from the previous 

iteration) on the partition boundary to appropriate processors containing the neighboring parti- 

tions. After this the red interior points and then the domain boundary black points (if the 
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partition contains the domain boundary) are relaxed. Now both the values of the interior red 

points and the domain boundary black points are sent to the neighboring partitions. On receiv- 

ing the values from the neighboring partitions the domain boundary red points (if any belong 

to the partition) are relaxed. This completes one iteration. Thus during each iteration messages 

are exchanged exactly twice everywhere, at the same time the desired order of relaxation for 

the interior and the boundary points is maintained. 

The restriction operation may require one phase of communication among the appropriate 

partitions to completely define the residuals and to have all the necessary data for relaxing the 

black points on the coarse level. But this communication phase can be avoided by sending 

additional information at the end of relaxing red points just before coarsening. Here in addi- 

tion to sending the new values of the red points on the boundary, we also send the values of 

the adjacent black points from the interior of the partition (or from the opposite partition if 

there is only one point per partition along that direction) to the appropriate neighboring parti- 

tions. Furthermore, this arrangement allows one to start the relaxation on the coarse level 

without any additional communication. 

For analyzing the communication requirements of the interpolation process there are two 

points that should be noted. For simplicity we consider linear interpolation. First only the red 

points on the fine level need to be interpolated since immediately after the interpolation black 

points are relaxed. Secondly, the interpolated values of the red points are needed only at the 

black points during the relaxation after the interpolation. Thus, when each partition has at 

most one point (on coarse as well as fine level), the fine level red points can be interpolated at 

the partitions having black points and the relaxation on the fine level can begin without having 

to communicate to the red points. Some amount of information has to be transmitted to the 

partitions containing black points that were not present on the coarse level (only half of all the 
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fine level black points are present on the coarse level). It can be shown that during the relaxa- 

tions after interpolation if one were to perform communication first and then computation, the 

communication phase in the interpolation process can be avoided even if there is at most one 

point per partition. This is true only for linear interpolation and simpler boundary conditions. 

For higher order interpolation or if the boundary conditions are complex as in our model prob- 

lem, and if we couple the boundary points with the interior points, then at least one phase of 

communication is required during the interpolation process. 

Thus, we have shown that by suitablely rearranging and combining the messages, usually 

the communication phases can be restricted to those during th relaxation process. In the next 

section we show some results obtained by applying these strategies in solving the model prob- 

lem using multigrid algorithms on an Intel iPSC. 

5. Results 

The three multigrid algorithms discussed in Section 2 were implemented for solving the 

model problem on an Intel iPSC. The details of this architecture can be found in [8]. The 

experimental results presented here were obtained with the Release 3.0 iPSC operating system. 

Here we present the results of implementing both the fixed region and the shifting region parti- 

tioning schemes. Additional performance results can be found in [7]. 

The effect of the number of processors available to solve the problem to the level of 

discretization error on the execution time is shown in Figure 3. The figure also compares the 

parallelizability of the three algorithms studied. Clearly, the V algorithm takes the highest 

advantage of the added processors in reducing the total execution time, whereas the W algo- 

rithm gains the least. On the other hand, on a single processor the V algorithm performs 

poorly as compared to the other two algorithms. The three algorithms have different numerical 
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properties and hence different convergence rates. For the problem we are considering here, 

both the F and W algorithms need about three FMG cycles to solve a 128 x 128 problem to 

the level of discretization error, whereas the V algorithm takes about seven cycles to obtain the 

same accuracy. Over the range of the cube sizes and the problem sizes considered the F algo- 

rithm performs the best. 

The effect of the problem size on the system efficiency is shown in Figure 4 for the F 

algorithm. The other two algorithms show similar trends. The efficiency of the system is 

computed using the time taken by the F algorithm to solve the problem on a single node. From 

Figure 4 it is clear that increasing problem size for a given number of nodes results in 

improvements in efficiency. This is expected because by increasing the problem size while 

keeping the number of nodes the same, the partition size assigned to each node increases 

resulting in a larger computation cost per node without increasing the communication cost. 

In Figure 3 the three algorithms were compared using the absolute execution times. To 

compare the three algorithms qualitatively it is necessary to look at the relative efficiencies of 

the system for the three algorithms. As stated earlier, the algorithms have different numerical 

properties as well as different communication requirements. Hence, we compute the 

efficiencies using the best sequential timing (given by the F algorithm for our problem). We 

refer to such an efficiency as the normalized efficiency. In Figure 5 ,  the normalized 

efficiencies of the three algorithms are compared as the dimension of the hypercube is varied. 

In all the cases the problem is solved to the same level of numerical accuracy. It can be seen 

that when the partition sizes are large or when the hypercube size is small, both F and W algo- 

rithm perform better than the V algorithm in spite of the adverse communication costs. For 

the problem and machine sizes considered here, the FMG F algorithm has the best overall per- 

formance. When partition sizes are small the V algorithm may perform better even though its 



convergence properties are inferior. 

The effect of employing the shifting region partitioning scheme on the performance is 

shown in Figure 6. Recall that in this scheme the work is serialized below some level r by 

moving all the regions of the domain to a single node. The percent increase in efficiency by 

serializing the work below levels 2 through 5 on a 16 node hypercube are shown for two prob- 

lems having 64x64 and 128x128 points on the fine level. In this figure r = 1 corresponds to 

the fixed region partitioning scheme, i.e., no moving of regions takes place. It can be seen that 

the performance peeks out at a particular value of t. The savings in the communication costs 

achieved by serializing the work above this level is offset by the increase in the computation 

cost. Note that when the problem size is small or when the size of the partitions assigned to 

each processor is small, the gains are higher. Here each partition has a smaller piece of work 

on the highest level and so the communication costs are more dominant. By serializing the 

computation below a certain level, the percentage reduction in the total cost is higher than that 

in the larger size problems. In Figure 7 we show the effect of the above described partitioning 

scheme when the computing power is increased by adding more processors. Note that for the 

larger size hypercube, the cost of scattering and gathering the data is also higher. But now the 

computational work associated with each partition has decreased and so the communication 

costs form a higher proportion of the total cost. 

6. Conclusions 

Schemes for efficient implementation of three multigrid algorithms for solving 2-D 

incompressible Navier-Stokes equations on a message passing system are presented. It is 

shown that, the communication costs can be reduced even in such moderately difficult prob- 

lems by simultaneously taking into account the data dependencies of the various operations as 

well as the communication parameters of the underlying architecture. Performance of the three 
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algorithms are compared by implementing the schemes on an Intel iPSC. It is found that the 

FMG algorithm based on the F cycle performs the best over the range of the problem and 

machine sizes considered. 
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where, Lk approximates Lbl (A e M) (they all approximate some differential operator). 

V and W Algorithms 
Given gn approximate solution ii', to Eqn. (A.1) on grid 1, the V or W algcitidms impmtrc! 

fi' by, 
ii' t l4GVW( v, 1, a', F'). 

The recursive definition of function MCVW() is given below. For v = 1 we get the V a!@- 
rithm and v = 2 we get the W algorithm. Level 1 denotes the coarsest le& and k i l  any lee1 
less than or equal to 1. 

MGVW( v, k, iik,F1 
begin 

pedorm rl relaxation sweeps on grid k 
and store the new values in isk; 

ifk > 1 
begin 

perform coarsening: 

end coarsening 
for i = 1 until v do 

iibl t M G W (  v, k-1, iikl, pl); 

perform correction inferpolation: 
iik t iik + I& - e1 iikJ; 

end 

perform r2 relaxation sweeps on grid k 
and store the new values in 0'; 

return iik; 
end MGVW. 
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F Algorithm 
Given an approximate solution ii' to Eqn. (A.l) on grid 1, the F algorithm improves d by, 

ii' t MGVF( v, 1, ii', F'). 

The function MGVF() is defined recursively below. As before level I denotes the coarsest 
level and k is any level less than or equal to 1. When v = 2 we get the F algorithm and when 
v = 1 we get the V algorithm. 

MGVF( v, k, ii", f i  
begin 

perform rl relaxation sweeps on grid A 
and store the new values in ii"; 

i f k  > 1 
begin 

perform coarsening: 
begin 

iikl t i f 1  it; 

end coarsening 
for i = 1 until v-1 do 

iikl t MCVF( V, k-I, P, P); 

perform a V cycle: 
iikl t M G W (  1, k-I, tik1, Fkl); 

perform correction inferpolation: 

perform r2 relaxation sweeps on grid k 
and store the new values in iik; 

return ii"; 
end MGVF. 
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FMG Algorithm 

level 1 is obtained by, 

The definition of the FMG() algorithm is given below. In that definition MG() either MCWV() 
or MGVF() defined above. Depending on the appropriate selections of MG() and the value of 
the parameter v, either V, F, or the W cycles are performed. Parameter n denotes the number 
of times a cycle is to be repeated at each level. 

If ii' is an approximate solution to a n .  (A.l) on the coarsest grid, then a fast solution on 

ii' 4- FMG( n, I ,  P', F'). 

FMC( n,l,$,F') 
begin 

solve for Ti' by direct method 
or by several relaxation sweeps on grid 1 ; 

for k = 1 until 1 do 
begin 

perform interpolation: 
iik c I@-' &'; 

for i = 1 until n do 
iik c MG( v, k , i i k ~ ;  

end 
return ii' 

end FMG 
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