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I. INTRODUCTION 

The Advanced Transport Operating Systems (ATOPS) program conducted by the 

Langley Research Center of the National Aeronautics and Space Administration is a re- 

search and development program aimed at developing capabilities for increased termi- 

nal area capacity, safe and accurate flight in adverse weather conditions including shear 

winds, the avoidance of wake vortices and reduced fuel consumption. Advances in mod- 

ern control design techniques and increased capabilities of digital flight computers coupled 

with accurate guidance information from the Microwave Landing System (MLS) make the 

achievement of some of these goals feasible. The development of the stochastic feedfor- 

ward/feedback control design methodology and its application to the design of a digital 

automatic landing system for a small transport jet aircraft was performed within the con- 

text of the ATOPS program. 

I 
I 

The main objective of a control system may be described as to enable the plant to 

track a desired trajectory, usually selected out of a given class of trajectories, as closely as 

possible in the presence of random and deterministic disturbances and despite uncertainties 

I 

I about the plant. Thus, a control system generally has a feedforward controller which tries 
I 

to track a desired trajectory, and a feedback controller which tries to maintain the plant 

state near the desired trajectory in the presence of disturbances and system uncertainties. 

It is essential that the feedback law produce a closed-loop system which is stable about 

the desired trajectory so that small disturbances can be accommodated while maintaining 

the plant state near the desired trajectory once the feedforward control law has brought 

the plant state to the desired trajectory. 

The part of a control law which uses only the desired or commanded trajectory ex- 

plicitly will be referred to as the feedforward control law. On the other hand, the part of a 

control law which explicitly uses only measurements of the plant state will be referred to 



as the feedback control law. Even though in some cases involving nonlinear control laws 

the distinction between the feedforward and feedback control laws may become somewhat 

ambiguous, in linear control laws, the distinction is rather straight-forward. 

The design of the feedback controller has received considerable attention in the modern 

control literature in the last two decades; e.g., see [l] - [5], and the references therein. 

On the other hand, the design of the feedforward controller has received relatively little 

attention [6] - [lo]. In this study, a combined stochastic feedforward and feedback control 

design methodology is developed and is applied to the design of a digital automatic landing 

system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. 

The feedforward control problem is formulated as a stochastic optimization problem 

and is imbedded into a stochastic output feedback problem [ll], [12] where the plant 

contains unstable and uncontrollable modes. As the standard output feedback algorithm 

requires an initial gain which stabilizes the plant, a new algorithm is developed to obtain 

the feedforward control gains. The necessary conditions are shown to result in coupled 

linear matrix equations, implying that when a solution exists, it is indeed the globally 

optimal control gain. 

The formulation of the feedforward problem in a stochastic, rather than the standard 

deterministic, setting is significant in two ways. First, the class of desired trajectories 

from which the actually commanded path is selected can be effectively described as a 

random process generated by a dynamical system driven by a white noise process. The 

second, and more important, implication of a stochastic optimization formulation is the 

tacit understanding that “perfect tracking” is often not possible due to various reasons 

i ~ c ! a ~ i ~ g  ~ ~ ~ ~ r t ~ i ~ t i ~ ~  vaiiatioiia ifi, t h e  p!iiiit paizieteis, the picseiite af plant 

nonlinearities and unmatched initial conditions. Thus, questions about the robustness and 

sensitivity of the feedforward controller arise naturally in this context. 

A combined stochastic 

the main objectives of the 

feedforward/feedback control methodology is developed where 

feedforward and feedback control laws are clearly seen. Fur- 

2 



thermore, the inclusion of error integral feedback, dynamic compensation, rate command 

control structure, etc. is an integral element of the methodology. Another advantage 

of the methodology is the flexibility that a variety of feedback control design techniques 

with arbitrary structures may be employed to obtain the feedback controller; these in- 

clude stochastic output feedback, multi-configuration control, decentralized control [ 131 or 

frequency and classical control methods. 

Finally, a specific incremental implementation is recommended for the combined feed- 

forward/feedback controller. Some advantages of this digital implementation are the sim- 

plicity of implementation, the fact that trim values are not needed and that problems 

such as integrator wind-up can be largely avoided. The closed-loop eigenvalues using this 

implementation are shown to contain the designed closed-loop eigenvalues which would 

result if an incremental implementation were not used. 

A digital automatic landing system for the ATOPS Research Vehicle (a Boeing 737- 

100) is designed using the stochastic feedforward controller and stochastic output feedback. 

The system control modes include localizer and glideslope capture, localizer and glideslope 

track, crab, decrab and flare. Using the recommended incremental implementation, the 

control laws are simulated on a digital computer and interfaced with a nonlinear digital 

simulation of the aircraft and its systems. 

3 



11. STOCHASTIC FEEDFORWARD/OUTPUT FEEDBACK 

CONTROL DESIGN 

A control system generally contains a feedforward and a feedback control subsystem. 

The feedforward controller tries to track a desired input (or commanded) trajectory, while 

the feedback controller tries to maintain the plant state near the desired trajectory despite 

the presence of disturbances, random noises and system uncertainties usually by using 

error feedback. In the modern control literature, the design of the feedback controller 

has received considerable attention, while the design of the feedforward controller and its 

relationship to  the feedback controls has received relatively little attention. On the other 

hand, classical control techniques have treated the design of both feedback and feedforward 

controllers jointly. 

In this section, we will formulate the design of a feedforward controller as a stochastic 

optimization problem. We will present the solution to this problem for two important 

special cases. Then we will present a control design methodology which combines the 

feedforward and feedback control designs and addresses various questions which arise in 

practical control law design. 

A.  FEEDFORWARD CONTROL - A STOCHASTIC FORMULATION 

In general terms, the objective of a control law is to  enable the plant to track a 

“desired or commanded trajectory” as closely as possible, in the presence of disturbances 

and despite uncertainties about the plant. 

In this study, for purposes of discussing terminology, the part of a control law which 

uses only the desired trajectory, or the command state, explicitly will be referred to as the 

feedforward control law. On the other hand, the portion of the control law which explicitly 

uses measurements of the plant state will be referred to as the feedback control law. Even 

4 



though in some cases it is difficult to separate the feedforward and feedback controllers, in 

most linear control laws, the distinction is relatively straight-forward. 

Command Model. 

Consider the desired trajectory or command model 

where zk is a n,-component command state vector; the order, nz, of the command model 

is arbitrary, and can be higher or lower than the order of the plant to be controlled. Note 

that not all the components of the command state, zk, need correspond to actual physical 

quantities such as plant states or measured sensor outputs. Let H ,  be a no x n, matrix. We 

assume that only the vector Hzzk will be directly commanded as the desired trajectory. 

For example, in an altitude control law, only the altitude may be commanded as the desired 

trajectory; however, the command state vector may be defined with two components (i.e., 

n, = 2) possibly corresponding to commanded altitude and sink rate. 

From Eq. (l), it is clear that for an arbitrary command state history {zk, k 2 0}, it 

is always possible to determine the “forcing function” (or vector) {a, k 2 0) such that 

the command model Eq. (1) holds. This can simply be achieved by solving for C&. If 

the command state history {zk, k 2 0 )  is fixed or completely known a ‘priori’, then a 

control sequence which makes the plant track this trajectory can be obtained provided 

that the trajectory is realizable [5].  However, this control sequence would be a k e d ,  open 

loop control sequence corresponding only to that specific trajectory, rather than being a 

feedforward control law. 

In most applications, we are interested in designing a feedforward control law which 

can track any one trajectory selected from a given class of command trajectories, say z(.C). 

One method of specifying a class of trajectories is to specify a dynamical model driven by 

a random process with given statistics. 

5 



For example, consider the command model in Eq. (l), where the sequence {ck, k 2 0) 

is specified as a vector random sequence with white noise statistics. The class of command 

trajectories thus specified would be the family of command state histories {zk, k 2 0) 

which can be generated by any realization of the random sequence {ck, k 2 0). On the 

other hand, {ck, k 2 0) may be specified as a random sequence with colored noise statistics. 

If fk itself can be obtained as the output of a discrete dynamical system driven by white 

noise, then the command state may be augmented to obtain a new system of higher order 

driven by white noise but still having the form of Eq. (1). 

It is clear that a large family of command trajectory classes can be expressed by the 

model given in Eq. (1) by appropriate selection of the system order n,, transition matrix 

&, and the covariance of {ck, k 2 0). In the remainder of this study, we will assume that 

the random sequence {ck, k 2 0 )  in Eq. (1) has white noise statistics, unless specified 

otherwise. 

Feedforward Control Optimization. 

Consider a linear plant model of the form 

where Zk is the n-component plant state vector, uk the r-component control vector, wk the 

plant noise process, q5= the plant state transition matrix and rU the control effectiveness 

matrix. The vectors zk and ck are the command state vector and the command forcing 

vector, respectively. 

It should be noted that when the matrices rr and rs are selected to be zero, the plant 

state zk does not depend on the command trajectory, which is the usual case. However, 

it is often desirable to include in the plant model, states which describe the error, or the 

deviation from the command value. To accommodate design models of this type, it is of 

interest to include the command trajectory terms at this point in the formulation. 

6 



Let H, be a no x n matrix. The objective is to obtain a feedforward control law so that 

the plant variables H ,  z k  continuously track the commanded variables H,  zk as closely as 

possible when {zk, k 2 0) belongs to a given class of command trajectories, f!. 

By its nature, a feedforward control law is intended not to modify the stability, noise 

attenuation and robustness properties that are already present in the plant model. These 

properties are generally obtained by appropriate design of the feedback control law. For 

the purpose of designing the feedforward control law, we will assume that the plant model 

already incorporates the feedback control law. Thus, in this section, Eq. (2) represents 

the closed-loop plant model where the feedback control law has satisfactorily achieved the 

desired closed-loop objectives. In particular, we will assume that the closed-loop system 

is stable; i.e., all the eigenvalues of the state transition matrix 4, lie inside the unit circle. 

We will consider feedforward control laws of the form 

where Kz and Ks are control gains to be selected in order to track the command tra- 

jectory as closely as possible. It is important to note that Eq. (3) is one of the simpler 

control structures that can be selected. More complex feedforward structures should be 

investigated to extend the results obtained in this study. 

In order to  obtain a set of feedforward gains K,, and K,, it is desirable to select a 

criterion or objective function which describes the goals to be achieved, and then optimize 

this criterion. Since our goal is to track H ,  zk, an obvious selection would be 

N 

While more general yet quadratic objective functions can be selected, some properties 

of this expression may be noted. Since only the tracking error is penalized, if a control can 

achieve perfect tracking then it will optimize the criterion. Thus, the optimal control will 

7 



result in perfect tracking when that is possible with the form of control selected in Eq. (3). 

Otherwise, the optimal solution will minimize a quadratic function of the tracking error. 

It should be noted that, in this context, perfect tracking implies that almost all command 

trajectories in the class L can be tracked by the plant using the feedforward control law 

in Eq. (3). 

While the lack of control weighting allows perfect tracking, when possible, it may 

also result in more control activity than desired. To accommodate such cases, it is always 

possible to include a non-zero control weighting term. However, this inevitably results 

in less than perfect tracking; in such cases, it may be a better policy to change (e.g., to 

smooth) the commanded trajectory so that tracking it does not require as high a level of 

control sctivity. 

In the following, we will use the objective or cost function 

which does not explicitly contain a control weighting term. The case given in Eq. (4) is 

obtained when 

m r  . ~ i i e  aiocliarjiic ieediorward optimization probierxi can now be yuae6 zlj; Given the 

plant model in Eq. (2) and the command model in Eq. (l), find a feedforward control law 

of the form of Eq. (3) which minimizes the cost function J in Eq. (5 ) .  

When the plant model is augmented by the command model, the feedforward control 

optimization problem posed is seen to be a stochastic output feedback optimization prob- 

8 



lem (61 - [8],  where the “feedback” vector contains only the command variables zk and ck.* 

Thus, it would appear that the stochastic feedforward problem can be embedded in the 

stochastic output feedback problem. In fact, when the command model transition matrix, 

d., is stable, the output feedback algorithm can be directly used to determine the optimal 

feedforward gains K,, K,.  

However, most realistic command models require the use of unstable, in particular 

marginally (un)stable, systems. For example, the command model for the usual case of a 

constant command would have an eigenvalue of unity. 

zk+ l  = zk + 0 h, z, = const. (7) 

Therefore, for the stochastic feedforward problem, the assumption that the command 

system is stable is not a realistic hypothesis, and is of limited use. Since the command 

model is not controllable, it is not stabilizable except when it is already stable. Thus, 

it is not realistic to assume that the augmented system is output stabilizable. Since the 

output feedback algorithm [9], [12], requires a stabilizing gain, it cannot be used to obtain 

the optimal feedforward gain. The fact that, in most cases of interest, the command 

model is not output stabilizable produces the major difficulty in determining the optimal 

feedforward gains. 

In overcoming this problem to obtain an optimal feedforward control law, we will 

consider two cases. However, first we restate the necessary conditions for the optimal 

stochastic infinite-time output feedback problem [4], (91. 

*Note that $k can also be included in the augmented state and, hence, in the “feedback” 

vectors, as is shown in Case 2 which is discussed later. 

9 



F ( K )  K g ( K )  = rT P ( K )  d S ( K )  CT 9 

d ( K ) = d - I ' K C  , 

F(K)=rTP(K)r  + R , S ( K )  = C S ( K )  CT + P 

where P(K) and S ( K )  represent the discrete cost and state covariance matrices, respec- 

tively, when the gain K is used. Q and R are the discrete state and control weighting 

matrices, respectively; @ and P are the plant and measurement noise covariance matrices, 

respectively; C is the output gain matrix, as described in [12], and K is in the stability set 

S. 

CASE 1. u k  = -KzZk. 

The augmented system for this problem can be expressed as 

In order to determine necessary conditions for the case considered, we rewrite the 

general necessary conditions given in Eqs. (8) - (12) after partitioning the matrix equations 

according to the partition in Eq. (13). This results in the following equations. 

10 



~ where 

From these equations, it may be noted that the optimal feedforward control gain 

matrix, K,, does not directly depend on Pap nor S,,. Furthermore, recall that, strictly 

speaking, the necessary conditions hold when the closed-loop system is output stabilizable. 

For the current problem this requires that 4, be stable. 

It should be noted that whefi 4, is unstable, the covariance of the command vector 

grows without bounds; so that Eq. (19) does not have a non-negative definite solution, 

Szz. On the other hand, Eq. (17) has a finite solution, Pzz, under relatively unrestricted 

conditions [13]. In particular, if 

P(4z)P(4T) < 1, (23) 

then a finite P,, satisfies Eq. (17), where p(4 )  denotes the spectral radius of the matrix 

4. Since 4, is the closed-loop plant transition matrix, and is assumed to be stable ~(4:) 

11 



is strictly less than unity; if necessary, it could be designed to be smaller. On the other 

hand, in most cases of interest, a ~(4,)  value of unity is sufficient to model the desired 

trajectory class. 

Similar comments apply to the solution of Eq. (18) since the matrices involved have the 

same eigenvalues; Le., ~(4 , )  ~(4:) is equal to p ( @ )  ~(4,). However, the forcing function 

in Eq. (18) contains S,,. When S,, grows without bounds, so will S,,. However, this 

does not necessarily imply that the optimal feedforward gain, K,, will also grow without 

bounds. 

To investigate the nature of the optimal solution in the limiting case where the out- 

put stabilizability condition does not hold, we rewrite Eq. (18) in the following manner. 

Assuming that S,, is nonsingular, let 

then S,, satisfies the equation 

$2, = [42 sz, + (L - rz K z  CZ)][SZZ 4: SG1] + k x  SG1 (25) 

Further assuming that 4, is nonsingular, and manipulating Eq. (20) results in 

s,, (6: si1 = 4;1[1- fizz SGl] . 
Substituting Eq. (26) into Eq. (25), and manipulating, we find that 

Now, in many cases of interest, when 4, approaches an unstable matrix, the covariance 

of the command state, S,,, grows without bounds, while SA1 vanishes. In this report, we 

will limit attention to cases where the inverse of the covariance of the command state 

vanishes, unless stated otherwise. This results in simplifications in Eq. (27) and Eq. (20). 

12 



We will further assume that all the command state components are known without any 

error. This is certainly a reasonable assumption, since we cannot command a trajectory 

that we do not know; thus, we set the measurement noise covariance, P, to zero; i.e., 

The necessary conditions for optimality for this case can now be expressed as: 

It should be noted that P,, is independent of the feedforward gain matrix, K,, but 

depends only on the (closed-loop) plant transition matrix, +,, and the weighting matrix, 

Qzo. Similarly, the covariance matrix, S,,, is also independent of the feedforward gain 

matrix, Kz. However, S,, has been eliminated from the necessary conditions and does not 

explicitly appear in these equations. 

It is of interest to note that the solutions of Eq. (30) and Eq. (31), P,, and S,,, re- 

spectively, are linear functions of the feedforward gain, K,, as these are standard Lyapunov 

equations. Since P,,, $=, and 4, are independent of K,, Eq. (32) is also linear in the 

gain Ks. Thus, obtaining the optimal feedforward gain, K,, does not require the solution 

of highly nonlinear matrix equations, but can be obtained by solving a set of coupled but 

13 



linear equations. An algorithm to solve for the optimal feedforward control gains, K,, will 

be shown in a later section. 

In the preceding case, the feedforward control law was restricted to using only the 

command vector, Z k .  In this section, we will consider the additional use of the command 

model forcing function (or vector), <k ,  in the feedforward law. Since <k is necessary to 

determine the succeeding command vector, Z k + l ,  it contains lead information and can 

play an important part in satisfactorily tracking the desired trajectory. 

The augmented system for this problem 

v k  = <k + u k  = (0 0 1) (z) + u k  (34) 

Partitioning the necessary conditions given by Eq. (8 )  - Eq. (12) according to the 

partition of Eq. (33), results in the necessary conditions for the problem considered here. 

14 



It is important to note that the solutions Pzz and P,, to Eq. (35) and Eq. (36), 

respectively, are precisely the same as the solutions to Eq. (29) and Eq. (30) in Case 1. 

Thus, if P,, and Pzz are computed when obtaining the optimal gain for the command 

vector feedforward, the same matrices can be used in obtaining the optimal gain for the 

forcing vector feedforward. 

Furthermore, it should be noted that the command forcing vector feedforward gain, 

K,, given by Eq. (35) - Eq. (38) is optimized for an arbitrary command vector feedforward 

gain, Kz. In other words, Eq. (35) - Eq. (38) hold for an arbitrary gain, K,, not only for 

the optimal K,. 

Finally, note the simplicity of the expression for K,. Once the weighting matrices have 

been appropriately selected, and the feedback gains have been obtained so that satisfactory 

feedback characteristics are achieved, it is possible to compute K, on-line using the current 

values of the closed-loop plant transition matrix, r$,, and the control effectiveness matrix, 

I',. Thus, the simplicity of the necessary conditions for the optimal K, make it usable as a 

feedforward gain-scheduled controller. Similar comments apply to the optimal feedforward 

gain, K,, for the command vector. However, in the latter case, the necessary conditions, 

although linear, are not as simple and easily computed as for K,. 

It is of interest to consider the case where the command forcing vector is known with 

no error (Le., pc = 0), so that ck can be fed forward without noise. In this case, Eq. (37) 

becomes 

Thus, the optimal K, when ck is perfectly known at the kth sampling instant is 

independent of the covariance, W,, of ck. From an alternate point of view, the gain K, can 

be decreased, or altered, by appropriate selection of the "measurement noise" associated 

with the forcing vector. 
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An Algorithm for K,. 

As mentioned earlier, the necessary conditions for Case 1 which considers the feed- 

forward of the command vector, zk, are linear functions of the gain K,, which can be 

seen by observation of Eq. (29) - Eq. (32). Although linear, these matrix equations are 

coupled; so that an explicit expression for K, cannot be easily obtained. In contrast, the 

gain K,,  the feedforward of the command forcing vector, can be easily solved for in an 

explicit expression as shown in Eq. (35) - Eq. (38). 

In order to develop an algorithm which results in the optimal feedforward gain, K,, we 

will make use of a basic principle of linear operators. Let L be a linear transformation from 

some p-dimensional real linear space into itself, and let { e ; ,  1 5 i 5 p} be an arbitrary 

set of basis vectors spanning the space. To an arbitrary vector K in the space, having the 

represent at ion 

associate the column vector kcRP 

Then, the matrix representation, L, of the linear transformation, e, satisfies the equation 

L = (t,lL,I.. . lip) . 

If K is given by Eq. (40), then 

t F ) = L k  . 
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Now, rewrite Eq. (32) in the form 

Equation (45) can be viewed as a linear transformation from the space of r x n, matrices 

into itself. We will view Eq. (45) as corresponding to 

t ( K , ) + L o = O  , 

where Lo is a r x n, matrix. 

Consider the basis { e j ,  1 5 j 5 rn,} defined by 

1 0 ... 0 0 0 ... 0 
e l = ( :  0 0  : ::' 1) , e 2 = ( :  1 0  : ::: :) 

. .  . .  . .  
0 0 ... 0 0 ... 

0 1 ... 0 

e,+i = (0 0 ::: :) , etc. 

0 0 ... 
Of course, other basis selections are also possible. 

From the preceding discussion, it follows that 

L k z  + Lo = 0, 

.., 
I?, = -L-l L , ,  

whenever L is invertible. This leads to the following algorithm. 

ALGORITHM: 

STEP 1. Solve the Lyapunov equations 

(47) 

(48) 



Szzjdz - dzszzj  = -rz e j  1 5 j 5 rn, 

STEP 2. Compute L 

L = (i&*I. .. ) . 

STEP 4. Solve the Lyapunov equations 

szzo d z  - 42 sz*o = rr 

STEP 5. Compute Lo and form Eo 

L o  = r:pzz 42 szzo + pzz r z  + pzzo dz] 

STEP 6. Solve the h e a r  equation 

(55) 

(56) 

(57) 

(58) 



pzz K, - rT[Pzz 4, s,, + Pzz rr + PZ, 4,111 

STEP 8. Compute the forcing vector gain, K,. 

I 
The algorithm uses the fact that S,, and Pz,, although ‘linear’, are not homogeneous 

functions of K,; so that the non-homogeneous part is separated in the algorithm and 
~ 

I 
combined in a single term, namely Lo. 

It should be noted that the algorithm is not iterative, so that convergence questions 

do not arise. The problem solved is a set of coupled linear equations, and the solution is 

functionally obtained by inverting a rn, x rn, matrix, namely L. 

On the other hand, the algorithm requires the solution of 2(rn, + 1) Lyapunov equa- 

tions and the inversion of a square matrix of dimension rn,. When dealing with ill- 

conditioned matrices and high order problems, the accuracy of the solution may be of 

concern. Usual techniques to improve accuracy may be used in such, as yet hypothetical 

cases. Importantly, it is possible to test the accuracy of the solution, K,, by computing 

the ‘gradient’ of the cost function with the exception that S,, has been eliminated from 

the expression for the gradient. The norm of this pseudo-gradient which is computed in 

Step 7 of the algorithm provides an indication of the accuracy of the solution obtained. 

The solution is unique if L is invertible. In this case, the feedforward gain obtained 

is the global solution to the stochastic optimization problem considered. It is desirable to 

obtain conditions which determine the invertibility of the matrix L in terms of parameters 

such as &, $,, rZ, etc. which are more directly related to the physical aspects of the 

control problem under consideration. On the other hand, the author’s experience on this 

problem which has been necessarily limited, has always resulted in an invertible L, hence 

a unique solution of the global optimal solution. 
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Finally, it may be of interest to note an identity which can be used in the algorithm 

as an alternate expression for Eq. (53), Eq. (57) and Eq. (59). 

= E(P22  $2, + PZ,) d* - R K. (64) 

where Eq. (31) has been used in Eq. (63). The expressions in Eq. (63) and Eq. (64) may 

be interchanged when desirable. The latter expression is somewhat simpler, particularly 

when the control weighting matrix, R, vanishes. 

Constant Command, 4, = I. 

The most straightforward way in which a constant command can be modeled would 

be to simply select a command model where 

Zk+l = a  + $ k  (65) 

As a constant command is a commonly used desired trajectory, we will investigate this 

special case in more detail to obtain the feedforward control law for it. As will be seen, 

it is possible to obtain an explicit expression for the feedforward gain, K,, for this special 

case. 

The necessary conditions in Eq. (30) and Eq. (31) can now be solved explicitly for 
T/ A -  - % A _ ? -  
LL, L U  UULUIII 
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Substituting these expressions into the necessary conditions expressed in Eq. (64) and 

manipulating, we obtain 

-1 T K* = (r: pZz rz + R) rz [ p Z z  rr + (I - &)-l 

Pzz = U I  - + (1 - 4 y 4 :  Pzz 9 

+ (I - 4 p 4 :  Pzz Pzz = pzz + pzz 92(1- 

where Pzz is given by Eq. (29). 

It should be noted that since the closed-loop plant transition matrix, dz is stable, all 

its poles are strictly inside the unit circle. Therefore, (I - c$~) is invertible. In this case, 

the existence and uniqueness of an optimal solution is determined by the singularity of the 

matrix (rzPzzrz + R). 
For the constant command case considered here, it is therefore not necessary to use 

the algorithm given in the previous section. Finally, it is possible to obtain a similar 

expression for the command forcing vector feedforward gain, K,, by simply substituting 

Eq. (66) into Eq. (37). 

A Simple Example. 

To illustrate the stochastic feedforward control law optimization developed in the 

preceding sections, we will consider a simple ldt order example with a constant command 

model. 

where {wk}  is a white noise sequence with zero mean uncorrelated to the command state 

and forcing vector, Zk and 6, respectively. We model the class of desired trajectories by 

the l't order command model 
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where we model { C k }  as a zero mean white noise sequence uncorrelated to the initial 

command zo which may have a non-zero mean. 

Suppose that we would like h, x k  to track h, %k as closely as possible at all sampling 

instants irrespective of the control activity required. Now, using the results of the last 

section, we have 

7 Qzz + 7 Qzz 7 z  

7 Qzz + R  
(1 - PI2 

7 (74) 
( l - P ) Q z *  7, (1-Pep) (1-(P)2 - - 
7 Qzz 7 

+-  2 K, = 

where R has been assumed zero. If we further substitute -h, h, for Qzz, h, h, for Qzz, and 

null 72, 

K,=-- (1 - P) - hz 

7 hz 

Using the optimal feedforward of the command vector, Z k ,  

To see the effect of this control law, suppose that at some sampling instant I C ,  

then 

(75) 
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It is seen that, as would be expected from an feedforward controller designed for 

a constant command, this control law maintains Z k + l  at a constant desired value (with 

the exception of plant noise effects which are attenuated by the feedback design). This 

feedforward controller drives the state to the desired trajectory, based on the assumption 

that the command vector is most likely to remain constant. Note that 

so that the least-squares estimate of the next command h, &+I is in fact the last command 

hz Zk - 
Thus, when the feedforward controller is limited to using only the command vector, 

based on a constant command model, the design performs exactly as would be expected, 

and drives the state to the desired constant, and then maintains the commanded value. 

If the command state, Z k ,  is not completely constant, but moves slowly, the state will 

track the movement with some error. It may be noted that the Command-Generator- 

Tracker (CGT) deterministic feedforward controller for this problem is the same as the 

one obtained here; i.e., Eq. (75). It should also be noted that, for this example, non-zero 

control weighting (i.e., R > 0) produces less than perfect tracking. 

Now we remove the restriction that only the present command value, zk, be used in 

the feedforward law; by allowing the current value of <k to be used. Assuming that <k is 

perfectly known at sample k, we set Pf equal to zero. Using Eq. (39), the optimal gain for 

the forcing vector, t k ,  can be found to be 

Substituting the optimal Kz from Eq. (75) into Eq. (80), and manipulating 

1 hz 
K c = - ;  h, 



The full feedforward control law now becomes 

Assume, as before, that at sample k perfect tracking was achieved; i.e., Eq. (77) holds. 

Then, 

When the feedforward law is not restricted to Z k  alone, it is seen that the state 

tracks the command perfectly, neglecting the plant noise effects. This improvement in the 

tracking performance is due to the availability of accurate lead information in $k.  It is 

clear that, in this simple example, the feedforward law given by Eq. (82) will track the 

desired trajectory at every sampling instant, as long as the plant parameters (p and 7 are 

perfectly known and do not vary. 

Although illustrative of many true trends, this example is of low order and does not 

represent all the complexities of a realistic design problem. 

B. A STOCHASTIC FEEDFORWARD/ OUTPUT FEEDBACK DESIGN METHODOLOGY 

Having both feedforward and feedback control design techniques available for use, it 

is necessary to also have a methodology which combines these two control designs to solve 

realistic and practical control design problems. In particular, the control design method- 

ology should have the capability to: 1) accommodate a variety of control law structures, 

2) allow the use of different control design techniques to achieve desirable characteristics, 

and 3) have a simple and practical implementation free of the often-encountered problems. 

In many control design problems, the specification of the control objectives also imply 

and sometimes require a particular structure for the control law. For example, if it is 
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necessary to have zero steady state tracking error in some variable in response to a constant 

command despite small variations in the plant parameters, then an error integral feedback 

structure is necessary to achieve this objective. Whereas if a bias error in that variable 

can be tolerated, then only an error feedback is sufficient.* 

Similarly, in many problems the unavailability of sensors which accurately measure 

every state variable makes it desirable to use dynamic compensation in the feedback loop. 

In other cases, a decentralized control structure may be desirable. A methodology which 

can accommodate a rich collection of the combined feedforward and feedback control law 

structures is desirable. 

On the other hand, a large variety of feedback control design techniques are now avail- 

able. These include modern control design methods such as stochastic output feedback 

or full state feedback techniques, multi-configuration control (MCC) techniques, decen- 

tralized control techniques [13], as well as classical control and frequency domain design 

techniques. As most of these design methods focus on achieving certain desirable control 

characteristics, it is desirable to have a methodology which accommodates the use of many 

design methods. 

Finally, many modern control design techniques sometimes fail to adequately consider 

the digital implementation of the control law. For example, methods of avoiding the use 

of trim values, eliminating integrator wind up, minimizing the effects of control rate and 

control position limits, asynchronous sampling of sensor outputs, delays, etc. ought to 

be integral concerns of the design methodology. A design approach in which as many as 

possible of the practical implementation issues are explicitly treated is desirable. 

To develop a methodology which formulates a combined feedforward and feedback 

control design problem which addresses most of the realistic issues raised above, consider 

a linearized plant model of the form 



where the state z k ,  the control u k ,  correspond to the total values of the corresponding 

quantities rather than being perturbations about their trim values, W k  is the white plant 

noise and d,  is a constant vector arising from the linearization of the nonlinear plant about 

some operating point. When the plant operating point changes, all the plant parameters 

such as d,, rz, rZ, rS and d ,  may change; however, it is assumed here that the changes in 

these parameters occur at a much slower rate than the variations in the state Z k ,  controls 

U k ,  etc., so that the plant parameters are assumed constant except when explicitly stated 

otherwise. 

The feedback vector is assumed to admit a linearization of the form 

where d, again is a constant vector which depends on the point about which the lineariza- 

tion is obtained, and Uk represents the measurement noise assumed to be a white noise 

sequence. 

As in the previous section, we will limit attention to the class of command models 

which admit a discrete stochastic model of the form 

where { c k  , k 2 0) is a sequence of uncorrelated random vectors with zero mean, such that 

We consider the basic control objective to be the design of a combined feedfor- 

ward/feedback control law where only the vector, g k ,  is used in the feedback law, and .. 
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Hz ~k tracks HZ zk as closely as possible for a given class of commanded trajectories in the 

presence of disturbances and despite uncertainties about the plant. 

In many applications, the designer may be interested in a control law structure which 

contains dynamic compensation and integral feedback to achieve certain objectives. Fur- 

thermore, it may be desirable to have an inner loop/outer loop structure or to have some 

fixed (previously designed) filter provide some state estimates. Such dynamic subsystems 

as an inner loop or a filter can be included in the plant model described in Eq. (85) .  

Furthermore, in many cases it is desirable and important to distinguish between the 

variable describing the commanded control value and the actual position of the control 

(the physical quantity such as an elevator position, or an electrical current). These two 

quantities, the commanded and the actual control values, are usually related through an 

actuator subsystem which should be modeled and included in the plant dynamics model 

in Eq. (85) .  

In other cases, the designer may decide on a control rate command structure rather 

than using control position commands. This has a variety of advantages such as low-pass 

filtering the control command thus reducing unnecessary control activity, and providing the 

commanded control position for feedback when the actual control position is not measured 

and used for feedback. 

In most of these cases, it is necessary to use a formulation which accommodates 

output feedback for the controller. Here, it is assumed that the types of control structures 

mentioned above have been included in the plant dynamics and the feedback vector models 

given by Eq. (85)  and Eq. (86), respectively. 

Error Formulation. 

While the plant and feedback vector models can be used in the form given by Eq. (85)  

and Eq. (86), it is often convenient and desirable to have state variables which represent 

the error in some of these variables instead of their values with respect to some fixed frame 

of reference. In cases where a plant state variable is being commanded by a command 
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model state variable, defining the error as the difference is straight forward. Also state 

variables corresponding to the time rate of change of already defined error terms can be 

easily obtained. However, since many variables are not directly commanded, only some of 

the state variable errors terms can readily be defined in this manner, while the remaining 

ones maintain their previous representations. 

Let H be a n x n, dimensional matrix relating the command model state, Z k ,  to the 

plant model state, z k ,  and let 

Substituting Eq. (85) and Eq. (87) into Eq. (90) and manipulating, the dynamics 

equations for the new state vector, Z k ,  can be obtained. 

It is seen that while the plant model in Eq. (85), as is usually the case, does not 

depend on the commanded model state and forcing vectors, the description of the plant in 

terms of errors introduces such terms; hence, the inclusion of command state and forcing 

vector terms in the previous section dealing with the design of feedforward control. It 

should also be noted that the control vector U k  in the plant representations given by Eq. 

(85) and Eq. (91) is the same. So that the new plant representation still deals with the 

same control values that drive the plant. 

Now consider the feedback vector in Eq. (86). The components of the feedback gen- 

erally correapoxid io ciexmor ouiyuis, fiiier ouipuis, ciynaruic cornpensaiiori aiaies, coniroi 

command values, etc. It is possible to use the vector gjk by substituting Eq. (90). 

On the other hand, it is often convenient to think in terms of error feedback. So that 



a new feedback vector consisting of the error terms defined in Eq. (90) may also be used 

in the form of g k  - C, H Z k ;  i.e., 

g k  - C z H Z k  = C z x k  + l)k + d, (93) 

Since the command state, Z k ,  is known at the kth sampling instant, implementation of the 

error feedback vector in real time is clearly possible. 

To maintain further generality, we will consider the plant and feedback models in the 

form given below 

where the standard error feedback case shown above would correspond to C, being null. 

t From the limited experience and experimentation performed in this study, it appears 

I that better performance is achieved when the error formulation is used in as many vari- 
I , ables as applicable. Due to the limited time available, the reasons for the differences in 

performance or methods for best selection of H were not investigated in this study. 

Dynamic Compensation and Integral Feedback. 

In many cases, it is of interest to include dynamic compensation in the control law to 

achieve particular objectives. The objective may be to estimate a variable for purposes of 

feedback, or to provide more robustness or insensitivity. 

Similarly, it is usually of interest to have integral feedback of the tracking error, or of 

equivalent variables, in order to obtain a type 1 system. To accommodate these often used 

control structures, augment the plant state model given in Eq. (94) by the compensator 

and integral error models 
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H ,  = H,C, (98) 

Note that the “integrator” is a digitally implementable accumulator. Also note that 

the tracking variables, H ,  y k ,  have been assumed to be a linear combination of known or 

measured, y k ,  rather than possible unavailable state variables in Z k .  

The dynamic compensator is assumed to be of order n, which can be selected arbi- 

trarily, according to the desired objectives. The compensator state transition matrix, d C ,  is 
also arbitrary, and should be selected in accordance to the cost function which will produce 

the closed-loop compensator. The white noise sequences tuck and w r k  are included largely 

for generality. They could be interpreted as round-off error, variations in H,, jitter, etc.; 

however, most importantly, they can be used as design parameters which modulate the 

optimal feedback gains. 

The basic form of the combined feedforward/feedbak control law is assumed to be 

Note that, for the augmented problem, the feedback vector, y k ,  is also augmented by 

the compensator state, C k ,  and the error integral variables, r k .  The feedforward control 

law has been constrained to use only the command state and forcing vectors, zk and <k ,  

respectively. Finally, fiz and tic are unknown constant (with respect to k) variables arising 
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from the fact that the variables used are not the perturbed values, but correspond to the 

total values including the trim values of the variables. As an incremental implementation 

will be used, it is not necessary to actually compute the constant vectors. 

It should also be noted that the control vector, may be selected to be the rate of the 

actual control position variables by augmenting the plant model accordingly. This would 

result in a control rate command structure. 

Feedback Design Model. 

Suppose that the feedforward control sequences { U l k  , k 2 0) and { u , f k  , k 2 0) pro- 

duce a satisfactory trajectory. Then, when no plant noise or measurement noise is present, 

then trajectory will be given by 

Since the actual plant, compensator and integral states evolve according to Eq. (94), 

Eq. (96) and Eq. (97), respectively, the deviations, or error, in these variables can be 

defined as 



Manipulating, it is seen that the error in the state has the dynamics 

The deviations in the actual state relative to the desired trajectory are seen to be due 

to plant and measurement noise, and initial condition mismatch. Of course, in practice 

these deviations are also due to changing plant parameter values, unmodeled nonlinearities, 

unmodeled dynamics, sampling errors, etc. 

Since all the terms containing the command model have canceled, the deviation about 

the desired trajectory is seen to be independent of the command state. Thus, the possibly 

unstable command model has no direct impact on the feedback control law design. Where 

highly nonlinear effects which involve the command state exist, the command may not 

cancel; however, this is not a usually encountered case. 

Therefore, the design of the feedback control law can be done largely independently of 

the feedforward control law. The usual major objectives of feedback, such as stability about 

the desired trajectory in the presence of disturbances and despite unceriaiiitk &hut ,  &id 

variations in, the plant models, can thus be pursued using the dynamical system describing 

the deviations about the desired trajectory in Eq. (107) - Eq. (110 ). 

The feedback vector, in this case, is taken to be (6,' C"f fr)T. So that a control law 

of the form 
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can be designed using any modem or classical control design technique. In particular, 

note that stochastic output feedback [ll], [ 121, multi-configuration control or decentralized 

control techniques [13] can be used for this purpose. In the following, it will be assumed 

that the feedback control law thus designed stabilizes the closed-loop system. 

Feedforward Control Model. 

Having designed a satisfactory feedback control law, recall that the feedforward control 

in Eq. (101) - Eq. (104) is arbitrary, and can now be selected using a stable closed-loop 

system. 

Consider the following change of variables in the control vectors u:k and UZk. 

Substituting these expressions into Eq. (101) - Eq. (104), we obtain the feedforward 

control model 



where 

are constant vectors depending on the trim conditions for the particular operating points 

used. 

From the discussion above, it is clear that the feedforward control design problem is 

one finding control sequences {& , k 2 0) and { P E k ,  k 2 0) in terms of a given subset of 

the augmented state variables z;, c;, I;,  and zk, 6, when the command state transition 

matrix &, is not necessarily stable, such that { H y  y; - Hz Zk , k 2 0) is as "small" as 

possible. 

A full analysis of the many interesting cases where different subsets of the augmented 

feedforward model state are selected is beyond the scope of the current study. Only the 

two cases solved in the preceding section will be treated in some detail. However, the full 

state feedback case is worthy of note. 

Consider the case where the feedforward control law form is unrestricted and { I & ,  

k 2 0 )  is a Gaussian white noise process, with all initial conditions also being jointly 

Gaussian. With a quadratic cost function, it is well-known [4] that the optimal control 

is the solution to the LQG problem. The case where the plant contains unstable and 

uncontrollable modes, has been treated by the author as a disturbance accommodation 

problem [8], (71. It is clear that the most accurate feedforward control law would be 

obtained by this unconstrained solution. 
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While this solution has a variety of desirable characteristics, it also has a disadvantage. 

It requires the computation of the augmented desired trajectory z;, c; ,  I;, Z k ,  ck as a 

part of the feedforward controller. With the increasing speed and memory capabilities of 

flight computers, this is not necessarily impractical, but will not be pursued further in this 

study. 

Now consider the case where the feedforward control is restricted to the form 

Using a quadratic cost function of the form of Eq. (5 )  which includes the most common 

~ case 

1 
I 

it is possible to obtain the optimal feedforward gains K z z ,  KZs,  Kc,, and Kcs.  

It is important to note that the treatment of the feedforward control law in the 

preceding section accommodates the cases where any one of the feedforward gains is set 

to zero or some other constant. 

, 

I 

To obtain the total control law, recall that from Eq. (105), 



The combined feedforward/feedback control law with dynamic compensation and in- 

tegral error feedback can be obtained by closing the loop on the compensation in Eq. (96) 

with Eq. (125). 

Of course, it is also necessary to compute and update the command state and forcing 

vectors, Zk and h, respectively, according to the desired trajectory. Note that since the 

feedforward law only uses the current values Zk and $k,  these commands need not be 

available ahead of time and could be real-time pilot inputs or may be computed from 

real-time pilot inputs. 

C. IMPLEMENTATION 

While Eq. (126) - Eq. (128) with the addition of the command state and forcing 

vector constitute the combined feedforward/feedback control law, there are a number of 

advantages to implementing the control law in incremental form. 

First note that the constant terms pi  and pz have not been determined. Even though 

it is possible to compute these vectors using trim conditions, it is more convenient if the 

control law were not to require these vectors. A second advantage to an incremental 

implementation is the elimination of the integral terms. When the tracking error is, at 

least temporarily, large, the integral state I k  can reach very high values. This usually leads 

to the control commands reaching limits. Even though the tracking error may have been 

reduced to small levels, it can take a considerable amount of time before the integral state 
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reaches reasonable levels, and the limiting of the controls is eliminated. The unnecessary 
I 
I 
I 
I 
~ an incremental implementation. 

i 

effects of this phenomenon, referred to as "integral wind-up" can largely be eliminated by 

By simply differencing the control law, 

When UZk has been modeled as a control rate command with a zero order hold, the actual 

control position commanded is given by 6k. 

where the control position command 6 k  is part of the state Z k .  Other holds will result in 

similar expressions. 

Thus, the actual implemented digital control law is given by Eq. (129) - Eq. (133). 
It is seen that the constant terms depending on the trim conditions have canceled out and 

do not appear in this implementation. 
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It should be noted that the initial condition for the error integrator states, I,, is not 

needed in this implementation. Only the initial control variables uzo, and sometimes So, 

and the initial compensator increment Ac, are needed at initialization. The initial condi- 

tions for the control variables can be set equal to the actual control values at initialization. 

When a dynamic compensator is designed, the best selection of the initial compensator 

value is not clear; however, in many cases, the objective of the compensator and the initial 

plant operating point provide a good choice. For example, when the plant initially is in 

trim (i.e., in a steady state condition), the initial compensator increment, Ac,, would be 

selected as zero. According to circumstances, other choices are possible. A more detailed 

study of the selection of the initial conditions, particularly when obvious choices are not 

available, is necessary. 

When the plant, due to mechanical reasons, has limiting effects on the movement of 

the actual control variables, it is desirable not to command the controls to exceed these 

limits since such commands will not be followed. Therefore, it is often desirable to have 

control rate and control position limits set in the control law. In this implementation, such 

limits are easy to implement and generally have little negative impact. Rate limits can be 

applied to  uzk and position limits to 6k. 

It is important to distinguish between limiting action due to the feedforward com- 

mands as opposed to feedback related commands. It is important to note that, in a 

satisfactory design, there should be no plant limiting due to feedforward commands, ex- 

cept in some circumstances. The feedforward control design should include an analysis of 

maximum control commands implied by the class of commanded trajectories. In general, 

the p!zzt !kitkg cszditio~s ehiiiiX 'ut: avoided by appropriate changes in the command 

state and forcing vector. 

In other words, the feedforward design philosophy proposed taken here is to command 

only trajectories which can physically be achieved by the plant, and avoid,using up the 

control authority in the feedforward control, thus leaving some control authority to the 
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feedback controller. This has two desirable effects. The first is to allow the feedback 

controller to  close the loop and provide its main objective; i.e., stability. This is of utmost 

importance in plants which are open-loop unstable or have relaxed static stability, as is 

the case with many high performance aircraft. If the feedforward commands were to reach 

the plant control limits, the feedback law would not be able to close the loop and perform 

its critical objectives. The second effect of this philosophy is to maintain the nonlinearities 

in the command model generating the desired trajectory. If an unachieveable trajectory is 

commanded, the precise outcome is not clear; i.e., the actual and desired trajectories will 

diverge; however, the nature of the divergence is no longer controlled, and how to recover 

from the divergence is not clear. Whereas by commanding and tracking a trajectory which 

may be somewhat different than originally desired, tracking control is maintained, and 

can be used to converge with the originally desired trajectory. The ease with which such 

nonlinear command models can be implemented digitally, as opposed to analog designs, is 

also worthy of note. 

Finally, the usual type of “integrator wind-up” is eliminated in this implementation 

since the integral itself is not explicitly computed. Of course, when no limiting occurs, 

the effect of the integrator is unchanged; the integration is simply performed at a different 

location, namely in Eq. (131). However, when (nonlinear) limiting occurs, the effects are 

usually much more benign. 

Eigenvalues of Implementation. 

Since the implementation is obtained by differencing the control law designed, it would 

result in the same numerical control commands when all initial conditions are appropriately 

matched, no nonlinearities and no random disturbances are present. However, since these 

conditions rarely, if at all, hold, the implemented and designed control commands are not 

the same. 

It is important to note that the implemented control law is closely related to but 

different than the designed law. For example, the implemented law depends on both yk 
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and y k - 1 ,  whereas the designed law only uses y k .  It is therefore necessary to investigate 

the closed-loop characteristics of the implemented control law. 

After some manipulation, the implemented closed-loop system can be written as 

z k +  1 dz - I ' zKzycz  -rzKzc - r z K z ~  I'zKzyCz rz 
0 0 0 0 
0 

[ si.] (134) 
where the command model state and forcing vector, Zk and Ck, and the constant vector d k  

have been set t o  zero as they do not affect or modify the closed-loop eigenvalues. 

-KcyCz 4 c - K c c  - K ~ I  K c y c z  

0 0 0 X k -  1 

i21:) = [ AtH,C, I 
z k  

u z k  - K Z & Z  - K z c  - K ~ I  KzyCz I U z k - 1  

It is clear that the stability of the implemented closed-loop system is determined by 

the eigenvalues of the matrix, @ I ,  rather than the eigenvalues of the designed closed-loop 

system shown below. 

(z) = ( AtHyCz 0 -rzKj I (2) 9 (135) 
42 - I'zKzyCz -rzKzc 

-KcyCz 4 c  - K c c  - K c r  

where the vectors Z k ,  Ck and the trim related constant vectors, which do not influence the 

closed-loop eigenvalues have again been set to zero for convenience. 

The state transition matrix in Eq. (135) will be denoted by @ D ,  while the implemented 

(134) will be denoted by @ I .  Now, to investigate the state transition matrix in Eq. 

relationship between the eigenvalues of @ I  and @ D ,  consider 

T T T T T  @ z X = X X  , X T +  c I x - u )  

where X has n + n, + n_r + n + r components. 

THEOREM 1. Any eigenvalue of @ D  is an eigenvalue of @ I .  

PROOF: Suppose that (ZT ET I"T)T is an eigenvector of @ D  corresponding to the eigen- 

value A. Note that there is at least one eigenvector for each eigenvalue, no matter its 

multiplicity. Let 
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- z = X Z  , c =  ( X - 1 ) c "  , I =  (X-1)1" , z=z , (137) 

u = -Kzv C, Z - K,, c" - K z z  I , (138)  

for the augmented vector X according to the partition shown in Eq. (136) .  

I 

I 
To show that X is eigenvector of Q I  corresponding to the eigenvalue A,  we write @ I  X 

according to the partition and manipulate using the fact that X is also an eigenvalue of 

1 QD. 

-KcyC2(XZ) + (dC - Kcc)(X - 1)c" - Kcz(X - 1 ) I +  KCvCzz 

= (A  - l ) ( X E )  = Xz 

AtH,C,(XZ) = X ( X I -  I )  = X(X - 1 ) I  = XI 

Ix = Xj; = Xz 

-K,,C,(XZ) - K,,(X - 1);  - KZl(X - 1 ) j  + K z v c z Z  -I- u 

= (A  - l ) u  + u = Xu (143) 
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Therefore, X is eigenvector of corresponding to the eigenvalue A ,  and the assertion 

is proved. 

Thus, the designed eigenvalues are maintained in this implementation. Note that we 

have further shown that the eigenvectors of the implementation are very closely related to 

those designed; i.e., Eq. (137), Eq. (138). Note that other incremental implementations 

also maintain the designed eigenvalues [lo]. 

It should be noted that the case of eigenvalues with multiplicity greater than one has 

not been considered, although, it would seem that the multiplicity may also be preserved. 

THEOREM 2 .  9 1  has exactly n + nz + n, - rc zero eigenvalues, where 

rc = rank (4, - K,, - Kcz KcyCz) 

PROOF: Using Eq. (136) for X of zero, we obtain 

(144) 

AtH,C,x = XI = 0 

I x  = A s -  = 0 

(147) 

ii = - K z y C z ~  - KzCC - KZzI + KZYCZZ- . ,  u = X U  = 0 (149) 

From Eq. (148) and Eq. (149), it is seen that x and ii must vanish. Then, Eq. (145), 

Eq. (147), Eq. (148) and Eq. (149) are automatically satisfied. The remaining constraints 

are 
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where u is given by Eq. (151) and ( c ,  I , L )  satisfies Eq. 

@ I  corresponding to the zero eigenvalue. Since Eq. (150) has n, + n I  + n - R, linearly 

independent solutions, there are as many linearly independent vectors X satisfying Eq. 

(150) is an eigenvector of 

I (150) - Eq. (152), which is the desired result. 

Note that since rc 5 n,, the implementation has at  least n + n I  zero eigenvalues. 

When, as is usual, the number of integrals is selected to be the number of plant controls, 

all eigenvalues are accounted by the two theorems. 

COROLLARY. Let i p ~  have distinct Ron-zero eigenvalues and n I  = r; then the eigenvalues 

of @ I  consist of those of I and zero. 

I PROOF: By Theorem 1, the n+n,+nz eigenvalues of @ D  also belong to @ I .  By Theorem 

2, @ I  has n + r zero eigenvalues, which are necessarily different than those of @D. Thus, 

all 2(n + t) + n, eigenvalues of @ D  are accounted for. 

It is interesting to note that if the number of integrators used is greater than the 

number of plant controls, then some of the eigenvalues of @D must necessarily be zero. 

This seems to provide a further implication that the number of integrators should be 

selected to be no greater than the number of plant controls, irrespective of the order of 

the dynamic compensator. 

On the other hand, if the number of integrators is smaller than the number of plant 

controls, all the eigenvalues of 01 are not necessarily accounted for by Theorems 1 and 2. 
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In such cases, it is necessary to  investigate the implemented closed-loop eigenvalues further, 

to ascertain that unstable eigenvalues (e.g., X = 1) are not introduced in the process. To 

accommodate some cases, it is sometimes possible to use different implementations which 

circumvent implementation instabilities [ 14). 

To illustrate the possibility of unstable eigenvalues, the following Theorem will be 

stated without proof. 

THEOREM 3. @ I  has an eigenvalue of unity if, and only if, the matrix below is singular. 

This theorem illustrates that when no integrators are used in the design, so that 

H ,  vanishes, the matrix in Eq. (153) becomes singular, and the implementation has 

eigenvalues equal to unity which may, and often do, cause problems. This effect of the use 

of integrators provides a further incentive for their use in the control law. 

.l 
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III. DESIGN OF DIGITAL AUTOMATIC LANDING SYSTEM 

In this section, the design of a digital integrated automatic landing system for NASA’s 

Advanced Transport Operating Systems (ATOPS) Research Aircraft will be described. 

The ATOPS aircraft is a Boeing 737-100 which is used by Langley Research Center as a 

research vehicle equipped with special equipment and flight computers with which auto- 

matic control systems can be implemented in flight tests. 

The automatic landing system described in this report is the successor to the Digital 

Integrated Automatic Landing System (DIALS) designed by the author using full state 

feedback techniques and random disturbance accommodation results [ 141, [8]. This system 

was successfully flight tested by NASA Langley Research Center [15]. The automatic 

control system described here uses stochastic output feedback [12], [ll] and the stochastic 

feedforward techniques developed in the previous section. 

A. LATERAL CONTROL LAW DESIGN 

The design of the lateral control system follows the basic approach described in the 

previous section; i.e., the stochastic feedforward and output feedback design methodology. 

This requires the development of the design model, the feedback and the feedforward 

controller designs. 

Lateral Plant Design Model. 

As described in the previous section, the design model is needed for both the feed- 

back and the feedforward control law designs. This model contains the aircraft’s lateral 

aerodynamic and kinematic model, as well as the control actuator models, any inner loop 

control law and filtering which is already present and is intended to be part of the overall 

controller. The design model also includes basic elements of the control law structure such 
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as the open-loop models of any desired dynamic compensation, error integral feedback and 

control rate command. 

The aerodynamic aircraft model can be obtained by linearizing the general nonlinear 

equations of motion (e.g., [16], [17]) about a flight condition with level wings, constant 

airspeed, constant flight path angle corresponding to the desired glideslope, flaps and gear 

down in the landing configuration. The linearized equations obtained are of the following 

form. 

d = p + t a n O ,  r + d d  (157) 

where 4, $, 8 are the roll, yaw and pitch angles, respectively, p and r the roll rate and the 

yaw rate, respectively, V I  is the inertial velocity of the aircraft c.g. along the y body-axis 

normalized by the nominal airspeed; 6A, 6R and 68, are the aileron, rudder and spoiler 
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control surface positions, respectively; 8, is the nominal value of the pitch angle. The 

coefficients aij and bij are functions of the aircraft's stability and control derivatives at 

the flight condition used in the linearization. 

The lateral wind model included in the design model is a simple first order system 

describing the normalized lateral wind velocity, to:, driven by white noise. 

w: = -0.1w; + W" (159) 

The kinematics in the lateral axis consist of the y-position of the aircraft c.g. relative 

to some fixed axis. Figure 2 shows the lateral geometry and the definition of some of the 

relevant angles and distances. The Earth-fixed set of axes has its origin at the glide path 

intercept point (GPIP), with the positive x-axis pointing along the runway centerline in the 

direction of the aircraft velocity at landing. The z-axis is along the local vertical positive 

downwards; with the y-axis selected so as to make a right-handed coordinate frame. 

Let V, be the nominal airspeed of the aircraft and LEB = L be the 3 x 3 matrix 

representing the transformation from the aircraft body axes to the Earth-fixed coordinate 

frame described above. If Lij is the ( i , j )  element of the matrix L, then 

where u', u' and wl'are the normalized inertial velocity components along x, y and z body 

axes, respectively, and 

L22 = sin cp sin 8 sin t,b + cos cp cos rl, (162) 

L23 = cos cp sin 8 sin $ - sin cp cos t,b . (163) 
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The general expression in Eq. (160) can be approximated using small angle approxi- 

mations to give 

i 

I 
$' = u' - w; (0 + u; cose, + + d, 9 (164) 

where u', and w: are the normalized nominal velocity components along the x and y body 

axes, respectively. 

The lateral actuator models used for control law design purposes are given below 

(1 1) (1.53 1) 
1 + .00154 6A = -12.3786A + 6AC 9 

6 R  = -32.676R + 32.67(r1 + r2) + 32.676Rc , (166) 

where 6A and 6R represent the actual aileron and rudder surface positions, while 6Ac 

and 6Rc represent the aileron and rudder commands generated by the control law, respec- 

tively, and t j  is the dynamic pressure. The variables rl and r2 are inner loop (yaw damper) 

variables which will be discussed in more detail later. The aileron and rudder actuator 

models given above are linearized and approximated versions of nonlinear systems contain- 

ing servomechanisms, hydraulic and mechanical systems with usual nonlinearities such as 

hysteresis and limiting effects. A more detailed discussion of the actuator systems on the 

ATOPS research vehicle can be found in [IS]. The spoiler is not used as an independent 

control surface, but rather as an aid in producing further rolling moment during turns in 

c c c p e r ~ t i c ~  :...it!: $!:e zi!e:~; g i i f~ee .  This k ~&ie-;eij M B i idif ies i  p i ~ ~ i ~ ~ i i i i &  gain 

on the flight computers, which is approximated to a simple linear relation in the design 

model. 

6sp = 1.736A . 
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The ATOPS research aircraft incorporates a yaw damper. In the design of the auto- 

matic landing system, the yaw damper is taken to be part of the basic airplane stability 

control system and interpreted as an inner loop system which will be part of the overall 

controller. The yaw damper model given below is therefore included in the design model 

of the open-loop plant. 

+2 = -6.993 r2 + 10.7485 r , (169) 

where r is the yaw rate, modeled by Eq. (156). The variables r1 and r2 are then used to 

generate the overall rudder command as shown in the rudder actuator model in Eq. (165). 

Another system that is included in the design model as part of the open-loop plant is 

a third order complementary filter. This filter uses a body-mounted accelerometer triad 

along with position information from the Microwave Landing System (MLS) to obtain 

estimates of the aircraft velocity in the Earth coordinate system. The complementary 

filter is approximated as follows. 
I 

I 

(173) 
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where uy is the body-mounted accelerometer reading for the x-axis, while a: is its normal- 

ized form and 510 the filtered acceleration, zll and 5 1 2  are the filtered aircraft distance 

from the runway centerline and z 1 2  its rate of change. 

As mentioned earlier, the control variables are the aileron and rudder commands 6Ac 

and 6Rc, respectively. A rate command structure is used in the design of the control law, 

even though the actual implementation will command the surface positions. 

6Rck+l = 6Rck + Atu2k 9 (175) 

where At is the sampling interval of the control law. 

The design model accommodates a second order dynamic compensator, even though 

the actual design does not use the dynamic compensator. However, the model is given 

here for completeness. 

c2k+l = e-6AtC2k + At U&k 9 (177) 

Finally, the control law structure is modeled with two integrators, shown below as 

digital accumulators. 

I Z k + l  = I2k + At((Pk - (Pck) 9 (179) 

where &k,  

commanded values will be defined in the command model. 

and P c k  are the commanded values for yk,  y k  and P k ,  respectively. These 
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The open-loop plant model used for the design of the lateral control law is obtained 

by the augmented system consisting of the state equations (154) - (159), (164) - (166), 

(168) - (172) and (174) - (179). It is important to note that Eqs. (174) - (179) which 

contain the digital controller structure are defined in discrete form in exactly the way 

that they will be implemented. Whereas the remaining equations of the design model are 

given in differential equation form as they model continuous processes. The latter set of 

I 

I equations must first be discretized using the usual sampled-data formulation [19] based on 

the assumption that 6Ac and 6Rc remain constant over the sampling interval. Then this 

set of discrete equations are augmented by the already discrete set (174) - (179) to obtain 

the complete discrete design model for the open-loop plant of 20fh order. 

I Lateral Command Design Model. 
I 

I While the design model of the open-loop plant developed in the preceding is suffi- 

cient to design the feedback control law, the feedforward control law design requires the 
I 
I 
I command design model. The command design model is used to obtain the structure and 
I 

gains of the control law; however, the implementation of the actual commands may use a 

somewhat different set of equations as will be discussed in more detail in the following. 

The lateral co&and model is selected to be the 4th order system given by 



The command model state vector, z k ,  is 

The resulting command model is 

1 A t O  0 
0 1 0 0  

..=(O 0 1 At)  ' 

0 0 0 1  

As can be seen from the open-loop plant design model integral feedback equations 

(178) and (179), the tracking variables are the lateral position y and the roll angle p. In 

the case of the y-position, a linear combination of the position and velocity is used as 

the error integral feedback. Furthermore, since the actual position and velocity are not 

known, their estimates as obtained from the third order complementary filter are used in 

the feedback loop; thus, the position tracking error is defined to be 

(6; - Y t k )  + 5(& - Y r k )  3 (189) 

while the bank angle error is simply the difference p k  - p c k .  

An error formulation of the type described in the previous section is used for the 

design of the controller. The variables in which error terms are formed are the roll angle 

p, the roll rate p, the lateral position y ,  the yaw angle $, and the lateral position and 
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velocity estimates from the complementary filter. The yaw angle command used is the 

desired track angle. With this definition of H in the error formulation Eq. (180) becomes 

The error formulation of the open-loop plant model thus obtained is then used in 

designing the feedforward and feedback control laws. Table 1 shows the feedback vector 

and summarizes the structure of the controller. Table 2 shows the feedforward matrices 

r X  and rS which apply to the error formulation of the open-loop design model. 

While the command design model is given by Eqs. (181) - (188), the on-line generation 

of the actually commanded path is obtained using a more complex procedure. The lateral 

trajectory followed by the aircraft may be divided into two portions: the localizer capture 

path and the localizer. The localizer beam is assumed to be on the runway centerline. 

Figure 2 shows the basic geometry of lateral maneuvers. When the controller is 

engaged, the aircraft heading tl0, is extended until it intersects the runway centerline 

(hence the localizer) at X I .  It is assumed that the initial aircraft position and heading 

are such that the aircraft would intersect the runway centerline if the heading remained 

constant. A new independent variable, R, is defined as follows. 

(192) 
$0 $0 R = (z - X I )  cos - + y s i n  - , 2 2 

As can be seen from Figure 2, R is measured along the bisector of the heading tlr0 at the 

localizer intercept point, X I ;  it is the position component of the aircraft along this bisector; 

i.e., R is the distance between the localizer intercept point, X I ,  and the intersection of the 

perpendicular to the bisector. The localizer capture command path is defined with R as 

the independent variable. 
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The command path prior to the initiation of the localizer capture mode simply follows 

a straight line along the initial heading of 9,. The localizer capture path is commanded 

when the capture criterion is satisfied, at R = R,. The localizer capture path is a smooth 

curve with continuous first and second derivatives at both capture initiation and termi- 

nation. At R = R, + P ,  the commanded localizer capture path smoothly transitions into 

the straight-in localizer portion. The decrab mode is initiated when the decrab altitude is 

reached and continues until touchdown. I 
Thus, the actual lateral command path is generated using the equations 

(2 - x r )  tan$, R < RO or JLOC = F 
Y & < R < & + P  

R > R o + P  

R = 5 cos- 90 -+ 6 sin- 90 , v G = J m  , 
2 2 

(193) 

where v~ is the estimated ground speed. 

The smoothness of the localizer capture path is due to the selection of the functions 

fo(R) and j l ( R ) .  Over the interval [-$ $1, these functions are defined by 

f i ( R )  = f i (Ro)  + A 27r P (197) 
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where fo(Ro), fl(&), Ro, P and A are arbitrary parameters. These parameters are 

selected so as to satisfy the boundary conditions of continuity of the first and second 

derivatives of fo (R) ,  namely fl(R) and f z ( R ) ,  at both ends of the interval [-v, P P  ?] with 

the adjoining paths, resulting in 

1 $0 

A 2 
, R o =  - s i n -  2 $0 p=-- A sin - 

2 

$0 , f l (R0)  = 2 s i n  - 2 2 $0 fo(R0) = - s i n  - 
A 2 2 

where VO is the commanded airspeed and lfilmoz is the maximum inertial lateral accelera- 

tion which will be required to track y, perfectly. Since ljilma2 is a measure of the sharpness 

of the capture and of the maximum bank angle required, it is left as a parameter to be 

selected by the flight experimenter. When ljilmoz is increased the localizer capture ma- 

neuver will be engaged closer to the localizer and will be performed more quickly using a 

higher bank angle. 

The localizer capture criterion resulting from this trajectory is to engage the capture 

mode when 

2 1c15 1 (2vo s i n  +) 
IYlm4z 

, is satisfied for the first time. 

The commands for the roll angle, cp,, are chosen so as to produce a coordinated turn 

when perfect tracking is achieved. The commanded track angle can be found to be 
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Accordingly, the commanded roll is selected to be 

When the decrab altitude is reached, the commanded roll angle is selected so as to 

roll into the wind and perform a sideslip maneuver 

The actual command vector used on-line is thus obtained using the set of equations 

described above. On the other hand, the design of the control gains uses the command 

design model given by Equations (181) - (184). Using the design models for the open-loop 

plant and controller structure and the command trajectory, the feedback and feedforward 

design for the lateral control law is obtained using the stochastic feedforward and output 

feedback approach described in the previous section. The analysis and simulation results 

will be described in the next section. 

B. LONGITUDINAL CONTROL LAW DESIGN 

The longitudinal control law design is performed following the same approach as the 

lateral control law. Although the flight maneuvers performed in the longitudinal vertical 

plane are different than the lateral maneuvers, command path models similar to the lateral 

capture can be used in the glideslope capture and flare maneuvers. As in the lateral case, 

a longitudinal plant design model and a command design model are needed to obtain the 

longitudinal control law. 

Longitudinal Plant Design Model. 

The plant design model is obtained by combining the aircraft's longitudinal aerody- 

namics and kinematics model with the control actuator and complementary filter models, 

and then augmenting the resulting model with the controller model consisting of dynamic 

56 



compensation, integral feedback and control rate models. An inner loop controller is not 

included in the longitudinal open-loop plant model. However, dynamic models for the 

vertical position and velocity estimates of the third order complementary filter and for the 

elevator and engine dynamics are included. 

The aircraft's longitudinal aerodynamic model is obtained by linearizing the nonlinear 

aircraft equations of motion ([16], [17]) about the desired flight condition. The resulting 

equations are of the form 

where V' is the normalized inertial speed of the aircraft e.g., w f  the normalized velocity 

along the body z-axis, q the pitch rate, 8 the pitch angle, W& and Wh the normalized wind 

velocities along the x and z axes, respectively, 6e the elevator surface position, 6T the engine 

thrust, dV, dw, dp and de constants depending on the linearization point. The coefficients 

aij and 6 i j  are constants depending on the aircraft stability and control derivatives [16], 
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[17], [14]. The normalization factor for the affected variables is the aircraft's nominal 

airspeed, V,. 

It should be noted that, due to the presence of the linearization constants d v ,  d,, d, 

and de, the state variables VI, W', q and 0 are not the usual perturbations but the total 

value of these variables. 

~ 

The design model for the longitudinal wind velocity components Wb and W$ is taken 

to consist of first order dynamics in each of the velocity components. Thus, 

w; = -0.1 w; + w, 3 

where w v  and w, are assumed to be independent white noise processes driving the wind 

model. 

The position of the aircraft c.g. along the Earth-fixed x and z axes can be obtained 

from the kinematic equations. The general kinematic equations can be expressed as 

i t=  -V'sin 7 , (213) 

where V& is the normalized ground speed, $T the track angle and 7 the flight path angle. 

In the plant design model used here, the position along the Earth-fixed x-axis is taken 

as the independent variable, and is not modeled as a state variable. Accordingly, the 

expression for i given in Eq. (212) is not a state equation. On the other hand, the vertical 

position z is modeled as a state variable. After some manipulation, Eq. (213) can be 

approximated in the form 
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9 (214) I Et = COS r0 w - COS r0 8 - sin r0 VI + d, 

where r0 is the nominal flight path angle. 

The longitudinal controls used are the elevator surface position, 6e, and the engine 

thrust, 62'. The control actuator models used for design purposes are given by 

10.76 
1 + 0.00236 61 = -23.23 6e + 2.0779 9 

6 T  = -0.5 6T + 0.298 6th , (216) 

6t'h = -6th + 6thc 9 (217) 

where 6ec and 6thc represent the commanded elevator and throttle positions, respectively, 

and 6th the throttle position. The elevator actuator model includes the effect of cable 

stretch due to aerodynamic loading on the surface. It is also important to note that the 

engine dynamics are actually rather nonlinear, and respond faster when reducing thrust 

than when increasing thrust. A linear approximation to the latter condition has been used 

in the design model in Eq. (216). A 1 second time constant is used to model the throttle 

servo dynamics. Rate limiting and other nonlinear effects are not included in the open-loop 

plant design model. 

The third order complementary filter is modeled by 

O = 0.82 - 0.8; + E  

b, = -lo&, + loa, 



a, = -10 a, + 10 a,  

where 8, and 8,  are the filtered versions of the actual accelerations a, and a,, respectively. 

As in the case of the lateral design model, a second order dynamic compensator is 

included in the plant model; however, the design does not use dynamic compensator and 

purposefully results in vanishingly small gains. The open-loop compensator model is shown 

here for completeness. 

(221) 

C Z k + l  = u c 2 k  9 

where u c l k  and Ucqk are the compensator control variables. 

To obtain a Type-1 system in the commanded variables, integral feedback of the error 

in altitude and airspeed is included in the control structure as follows. 

I 2 k + l  = 1 2 k  -k At(vL -k W:k - v i k )  9 (225) 

where At is the sampling interval of the control law. Note that although the inertial 

speed V' is not known, the sum (V'+W:) is the airspeed which is measured and therefore 

available for feedback. v f 'k  here represents the normalized airspeed rather than inertial 

speed command. 

Finally, the design model uses a rate command structure for the control variables. 

Thus , 



where U l k  and u 2 k  are the control variables of the open-loop plant design model thus 

obtained. 

When the continuous system model described by linear differential equations are dis- 

cretized using the standard stochastic sampled-data formulation and the digital controller 

model is added, the discrete plant design model of 20fh order is obtained. 

To avoid confusing the vertical position variable, z ,  with the command state vector, 

the latter is denoted by 2 in Eq. (228) and in the following. 

Longitudinal Command Design Model. 

The longitudinal variables used in the design, as indicated by the error integral feed- 

back variables in Eqs. (224) and (225), are the airspeed and a linear combination of the 

vertical position and its rate of change. Note that this linear combination may be inter- 

preted as the predicted value of the vertical position in 5 seconds. Also recall that since 

the Earth-fixed z-axis is defined positive downward, the vertical position, z,  is the negative 

of the c.g. altitude, h. 

The longitudinal command model selected for designing the feedforward control gains 

is the 2"d order system given by 



The command state vector Z k  corresponds to (ZLk V&)T, where z r k  is the normalized 

vertical position command and v& is the normalized airspeed command. 

An error formulation is also used in the longitudinal control law. Thus, error terms 

are formed in the normalized vertical position, z,  the complementary filtered estimate of 

the vertical position, 9 ,  and the airspeed, V. With this definition of the matrix H, the 

plant equations become 

While the command design model given by Eqs. (229) and (230) are used to design the 

feedforward control gains, the actually commanded path is obtained as follows. Initially, 

the aircraft is assumed to be in level flight prior to the glideslope capture maneuver. The 

initial altitude of the aircraft is maintained until the glideslope capture criterion is satisfied, 

at which time the desired glideslope capture path is commanded. When the capture is 

completed, the desired glideslope is the vertical path commanded until the flare initiation 

criterion is satisfied. At that time, the altitude profile corresponding to the flare path is 

commanded until touchdown. 

The same functions fo, f l  and fi which have been used in the lateral command path 

generation are used in generating the glideslope capture and flare path. An important 

characteristic of these paths is their smoothness. The independent variable used in the 

longitudinal path command is the x-position of the aircraft c.g. in the Earth-fixed coor- 

dinate frame. The commanded path is given here as the altitude, h, which corresponds 

to the negative of the vertical position, z. Thus, the glideslope capture and flare vertical 

profiles are generated using the basic form 
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27r(z + Az) 
P - A (g) (1 + COS 

2 s ( z  + Az) 
P 

where 50 corresponds to the initiation of the maneuver, and the constants are selected 

according to whether the glideslope capture or flare maneuver is to be performed. The 

altitude, sink rate and vertical acceleration are given by 

The glideslope capture path starts from level flight and smoothly transitions to the 

desired glideslope angle 7 ~ s .  When the capture path starts at an altitude hGC and 

requires a vertical acceleration no larger than ILImaz, the parameters of the path given by 

Eqs. (234) - (235) are 

Thus, when the aircraft is at an initial altitude hGC and must track the glideslope 7cs  

without exceeding lilmaz of vertical acceleration the vertical profile given by Eq. (234) 

6 3  



using the parameters in Eqs. (238) - (240) will be denoted by ~ G C ( Z )  = ~ O G C ( Z ) ,  ~ I G C ( S )  

and h z ~ c ( z ) .  It should be noted that the smoothness of the glideslope capture can be 

easily adjusted by selecting the appropriate value for lilmaz. 
The criterion for initiating the glideslope capture can be expressed as follows. Com- 

mand the path h o ~ c ( z )  when the inequality 

A 

(241) 
PGC 

i?k t a n y ~ s  - hk 5 - - tan 7GS 2 

is satisfied.* Here i?k,  and f ik  are the current estimates of the aircraft’s x-position and 

altitude. 

For the flare maneuver, the constraints are placed at touchdown. It is desired that 

the aircraft touch down at X t d  with a flight path angle 7 t d .  Since flare must also initiate 

on the glideslope, the parameters for the flare profile ~ F ( z )  are uniquely determined. 

The flare initiation criterion resulting from this trajectory is to command the flare 

path h~ (z) when 

f i k  5 ZF t a n 7 ~ ~  + 12.75 (245) 

is satisfied for the first time. Note that the constant 12.75 allows for the fact that the 

altitude of interest for touchdown is measured to the bottom of the wheels on the landing 

*The glideslope capture criterion was later changed, replacing j i k  by ho(i?k) to eliminate 

a spike in the elevator. 
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gear rather than the aircraft c.g.. The overall vertical profile of the commanded path 

starting at level flight prior to glideslope capture until touchdown can be expressed as 

Recall that the sink rate and vertical acceleration can be easily obtained using Eq. 

(237). 

The airspeed command is generated as follows. Let Vo be the commanded airspeed, 

Po the initial measured airspeed and V& the airspeed commanded at the kth sample by the 

command model. Since a sudden jump in airspeed is undesirable, any difference between 

the initial and desired airspeeds, Vo - Po, is gradually eliminated starting with an initial 

command equal to the actually measured airspeed. 

, otherwise 

where Vmaz is the maximum acceleration or deceleration desired during the approach. 

Thus, the commanded airspeed starts from the actual one and commands a constant 

deceleration or acceleration until the desired airspeed command is reached. 
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During flare, the airspeed command decelerates the aircraft for touchdown as long as 

the airspeed remains above the minimum desirable airspeed Vmin which is selected higher 

than the stall speed and consistent with contingencies such as go-around maneuvers. 
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where T is the period of time in which a 25 ft/sec. decrease in airspeed will be commanded. 

Thus, during flare the commanded airspeed is reduced to aid in the maneuver and in 

touchdown as long as a safe speed of Vmin is maintained. 



N. ANALYSIS AND NONLINEAR SIMULATION 

The lateral and longitudinal/vertical control laws designed use the open-loop pant  

design models and the command design models described in the last section. The design 

approach used is the Stochastic Feedforward/Output Feedback methodology described in 

Section 11. In this section, the design is analyzed by obtaining the closed-loop eigenvalues 

and singular values, and by simulating the digital automatic landing system obtained to 

control a nonlinear computer simulation of the ATOPS Research Vehicle, a B-737-100 

aircraft. 

A. CLOSED-LOOP SYSTEM ANALYSIS 

The open-loop plant design models for the lateral and longitudinal/vertical dynamics 

have been discussed in Section In. As can be seen by simple observation of the equations 

making up the design models, both the lateral and longitudinal/vertical open-loop plants 

can be expressed in the form 

The lateral design model state consists of the twenty components: 

The control law structure is selected so that 13 out of the 20 lateral states are used 

in the feedback. In particular, the actual aileron and rudder surface positions, the yaw 

damper inner loop system states and the lateral wind velocity are not used for feedback, 

although some of these are measured and available for use. The feedback vector for lateral 

controller consists of 
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The control vector consists of the aileron and rudder rate commands SA, and SAc, 
respectively. Integral feedback is used for errors in lateral position and roll angle. The lat- 

eral control structure is summarized in Table 1. Table 2 summarizes the lateral command 

model parameters needed in designing the feedforward control gains. Table 3 shows the 

designed lateral gains for the feedforward and feedback control laws. The control gains in 

Table 3 follow the terminology of Eq. (128). 

It should be noted that the feedforward command state gain corresponds to  the case 

of error feedback. This is obtained intentionally to aid in steady state offset reduction. The 

reasoning can be illustrated as follows. Suppose that the altitude and sink rate errors and 

the airspeed error are null, and that the command system does not contemplate a maneu- 

ver, then it is reasonable to maintain the control surfaces at their current position, since 

changing the control commands to different values is likely to result in a non-zero error. 

The same approach is used in both the lateral and longitudinal feedforward controllers. 

Closing the loop with the feedback control gains given in Table 3 results in the closed- 

loop discrete system. The s-domain equivalent eigenvalues of the closed-loop lateral system 

are shown in Table 4. The singular values for the discrete plant with the loop broken at 

the input is shown in Table 5. 

The longitudinal/vertical design model state consists of the following twenty compo- 

nents: 

{V',w,q,  O,zr, Wb, Wh, ST, 6e, 6th, ti:, &:, S', itc1,c2, I I ,  I2,  6thc,6ec} 

The longitudinal feedback vector excludes some of the components of the state vector 

such as the inertial speed in vertical body axis w', the longitudinal and vertical wind 

velocities, the true aircraft altitude, the engine thrust and the elevator surface position. 
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On the other hand, the complementary filtered altitude (-;), sink rate and accelerations 

are used by the controller, as can be seen by the feedback vector components 

In the longitudinal/vertical control law, the commanded variables are predicted vertical 

position and airspeed. Thus, the integral of the error in the predicted vertical position 

and the airspeed are used in the feedback law. The throttle rate and elevator rate are, the 

control components; however, as discussed in Section I1 C, the actual control commands 

are the throttle and elevator positions 6thc and 6ec, respectively. The longitudinal/ve'rtical 

feedback control structure is summarized in Table 6. 

The command design model parameters required for the feedforward control of the 

longitudinal/vertical trajectory is summarized in Table 7. The gains designed for the 

feedforward and feedback controllers are shown in Table 8. 

Closing the loop with the output feedback gains obtained results in the closed-loop 

equivalent s-domain eigenvalues shown in Table 9. The singular value, eigenvalue and Bode 

plots of the closed-loop system are shown in Figure 4. 

B . NONLINEAR SIMULATION 

The performance of the digital automatic landing system described above is evaluated 

in this part through a digital computer simulation. The ATOPS B-737-100 aerodynamics, 

actuator systems, kinematics, servo, hydraulic and other systems have been simulated in 

considerable detail in a nonlinear digital computer simulation. In this simulation, dynamic 

systems such as the complementary filter, the yaw damper, the spoiler-aileron coupling, 

the engine, etc. are modeled as nonlinear systems which accurately describe their actual 

behavior rather than their linearized versions used in the open-loop plant model. 

The digital automatic control system described in the preceding sections is simulated 

in detail. The control law simulation is then interfaced with the aircraft simulation so that 
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the control commands computed by the design become the input to the aircraft control 

actuator systems. Numerous simulations of the closed-loop aircraft system were performed 

under a variety of different conditions. The aircraft response in simulations are shown in 

Figures 5 - 16. 
The digital control system simulates the incremental implementation shown in Section 

11. C Eqs. (129) - (133). While other incremental implementations are possible, they 

are not used here. It should be noted that, since both lateral and longitudinal/vertical 

controllers designed used a control rate structure, Eq. (133) is, in fact, implemented to 

obtain the commands for the aileron, rudder, elevator and throttle positions. The actual 

outputs of the control system are the control position commands 6,. 

The Boeing 737 aircraft used here has a baseline stabilizer automatic trim logic. 

The auto-trim logic drives the stabilizer surface so as to minimize the moment on the 

elevator hinge, thus providing maximum authority for the elevator to react to sudden 

changes in the flight parameters. The stabilizer movement is much slower than that of 

the elevator and does not introduce further dynamic modes in the models. The use of the 

incremental implementation is very suitable to accommodate such slow moving surfaces. 

In the nonlinear simulations of the automatic landing system designed here, the stabilizer 

automatic trim logic is turned on; so that the stabilizer automatically trims the aircraft 

even though the plQts shown do not include the stabilizer position. 

The control system iteration rate used in the simulation is 10 Hz which is also the 

sampling rate used in the control law design. Since the control law is digital, this update 

rate must be used for the controller simulation. Hnwever, the sixc!&kz of the ZiiciSt 

aerodynamic and on-board systems is performed at 20 Hz. Since these system describe 

continuous processes with some modes of high natural frequency, their simulation requires 

a higher update rate for accuracy. It is also important to note from Eqs. (129) - (133) 
that the control system output 6, at time t k  uses only variables available at time t k - 1 .  

Therefore, as long as the real-time computation of the commands, &, require no more 
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than 100 msecs, no computational delay will be present. It is assumed that a sufficiently 

fast flight computer will be used to compute the incremental implementation commands. 

Thus, the accuracy of the digital control system simulation is expected to be restricted 

to round-off errors due to limitations in the word length of the flight computer, possible 

mismatches in obtaining exactly a 10 Hz rate, input-output limitations, etc. 

The feedforward and feedback control gains used in the simulation are given in Tables 

3 and 8. The simulation of the actual commanded path shown by Eq. (132) in the 

incremental implementation equations is performed as described in Section 111. It should 

be noted that the actual command model uses estimates of the position and of the velocity 

of the aircraft c.g.. thus, the feedforward control law implementation actually contains 

nonlinear feedback. The coupling is usually rather low and may be neglected. However, a 

more complete evaluation should include these feedback effects as well as the effect of the 

feedback control law. 

The simulations shown in Figures 5 - 16 are initialized at an estimated altitude of 

950 ft. At initialization, the aircraft is flying a constant altitude path with level wings 

and a heading so as to intercept the localizer or the runway centerline at some point, X I .  

The automatic landing system is engaged at the initialization of the simulation. At that 

point, the control law checks to see whether the localizer glideslope capture criteria are 

satisfied. The initi-a1 conditions have been selected so that neither the localizer nor the 

glideslope capture criterion will be met at this point. Thus, according to the command 

path generated, the aircraft continues along the same track angle with level wings and 

maintains a constant altitude. 

At initialization, the aircraft calibrated airspeed is selected to be 135 knots. On the 

other hand, in most of the simulations, the commanded airspeed V, is 125 knots. Accord- 

ingly, the control law experiences an instantaneous error of about 10 knots at initialization. 

As described in Section 111, the feedforward command model generates a linearly decreasing 

airspeed profile from this initial speed to its commanded speed. As seen in the simulations, 

71 



the aircraft decelerates, following the commanded airspeed, until V, is reached. When the 

commanded airspeed V, is 135 knots, as shown in Figure 6,  then the initial airspeed error 

is zero, and the airspeed command is a constant value of V,. As can bee seen from Figure 

6,  the control law accurately maintains the commanded speed of 135 knots rather than 

reducing it to  125 knots as it does when the commanded airspeed is 125 knots. 

As the control law continually tests to see if the glideslope or localizer capture criteria 

are satisfied, whether the glideslope or the localizer capture will be the first to engage 

depends on the aircraft's position, its heading relative to the runway centerline and the 

commanded glideslope angle, with other parameters having generally a lesser effect. In 

almost all the simulations shown here, one capture mode is engaged soon after the other, 

so that the aircraft flight path is a curved 3D path in both the lateral and vertical planes. 

Ability to  perform both localizer and glideslope captures simultaneously is described in 

order to achieve close-in captures, as it is no longer necessary to perform localizer capture 

first and then engage the glideslope capture. 

When the desired glideslope angle is 3O, the glideslope capture criterion is satisfied 

first in most of the simulations. The initiation of the glideslope capture maneuvers can be 

clearly seen in the commanded and actual sink rate plots. Both commanded and actual 

sink rate smoothly transition from level flight to the sink rate required to remain on the 

desired glideslope at the desired airspeed. Also note the pitch angle and angle of attack 

movements during the glideslope capture maneuvers. Whereas the angles coincide when 

flying a constant altitude path, when glideslope capture is engaged automatically, the 

control law smoothly pitches the aircraft down to capture the glideslope. Note that there 

is no initial tendency to pitch in the 5rong" direction. 

Also note that prior to glideslope capture, the pitch and angle of attack have to 

increase slightly when the aircraft is decelerating in order to compensate for the reduction 

of lift due to the airspeed, hence dynamic pressure, reduction. The needed extra lift is 

obtained by pitching up and increasing the angle of attack, albeit with lag which results 
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in a small altitude offset. On the other hand, when the aircraft does not decelerate, as 

shown in Figure 6, the aircraft pitch and angle of attack remain essentially constant as it 

is not necessary to obtain extra lift to maintain altitude. 

It should be noted that since maneuvers are principally performed by the feedfor- 

ward controller, the glideslope capture performance is an indication that the feedforward 

controller is satisfactory for this type of maneuver. Observation of the throttle and eleva- 

tor positions shows that the feedforward controller pitches down by initially lowering the 

throttle rather than using the elevator. For the B-737 which has a thrust line considerably 

lower than the c.g., reducing thrust has the added effect of reducing the pitching moment. 

This control strategy is precisely the one that best suits this aircraft, since simply using 

the elevator to pitch would have the unwanted result of increasing the airspeed. Thus, the 

stochastic feedforward control approach is indeed making use of the plant design model 

information aa would be desired. 

At the end of the glideslope capture, the altitude error is redefined causing an instan- 

taneous move in its value. This causes a corresponding sudden and undesired transient 

in the elevator and throttle commands when the altitude error move is appreciable. This 

glitch can be removed in a number of ways, including the use of a simple easysn function 

at the appropriate time. 

It should be noted that the smoothness of the glideslope capture maneuver and its du- 

ration are directly related to the parameter lklmaz; i.e., the maximum vertical acceleration 

of the commanded altitude profile. By simply varying this parameter at any time prior to 

glideslope capture, the commanded capture path may be changed on-line to a smoother 

or faster maneuver as desired. 

In Figures 7 and 8, the automatic landing system captures steep glideslope of 4' and 

4.5', respectively. The glideslope capture path generated by the feedforward model given 

in the previous section by Eqs. (234) - (248) is automatically modified to result in a vertical 

profile which captures a steeper glideslope, tracks it and flares from this steeper glideslope. 
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Since the same maximum vertical acceleration value is used for all glideslope angles, it may 

be noted that the duration of the steeper glideslope captures is slightly longer. However, 

the basic characteristics of the response and of the control law remain unchanged. 

It should also be noted that the feedforward and feedback control gains remain un- 

changed while the commanded vertical path varies according to speed or glideslope angle. 

Thus, the feedforward control law tracks the commanded path within the class of com- 

manded trajectories. It is clear that if the commanded paths are sufficiently different 

from each other, feedforward controllers adapted to the specific characteristics of each 

path would result in =better" performance. One such approach would be to extend the 

stochastic feedforward approach to include optimal gain scheduling. 

In the simulation of the steep glideslope cases, it may be noted that glideslope capture 

occurs later. This is a consequence of the geometry, as the initial aircraft altitude is the 

same. In the case of the 4' glideslope both localizer and glideslope capture occur in the 

same period of time. Localizer capture occurs mostly before the aircraft captures the 

steeper 4.5' glideslope in part due to a larger localizer intercept angle of 47". In all cases, 

the control law captures the desired glideslope by satisfactorily tracking the commanded 

capture path. 

When the glideslope capture is performed, the aircraft tracks the desired glideslope 

until the flare mode i s  engaged. As can be seen from the simulations of different glideslope 

angles (i.e., Figures 5 - 8), the aircraft remains on the desired glideslope with essentially 

the same precision for shallow and steep glideslopes. 

The flare mode is engaged when the flare criterion in Eq. (245) is satisfied. In this 

mode, both the flare vertical profile generated as well as the airspeed reduction profile are 

commanded. As can be seen from the simulations, the aircraft pitches up increasing its 

angle of attack and the lift as desired; this results in a corresponding reduction in the sink 

rate and the airspeed until touchdown. This is achieved by using the elevator to pitch up 

while lowering the throttle to reduce the airspeed. 
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It can be seen that in all cases, the pitch angle at touchdown is comfortable above 

zero and still rising. This pitch attitude at touchdown is necessary to avoid landing on the 

nose wheel which is not designed for the high load at touchdown. 

As the flare maneuver is significantly sharper than the glideslope capture maneuver, 

it requires faster control action. Thus, the measurement noise covariance, pf, for the 

command model forcing vector was reduced to obtain the flare gains, resulting in a higher 

forcing vector gain, Kf, during flare as shown in Table 8. Due to the complexity of the 

flare maneuver and the high accuracy needed in tracking the altitude profile, a higher order 

altitude command model would model this profile more accurately. 

The localizer capture for a 3' glideslope and localizer intercept angle of 32O, as shown 

in Figure 5, is initiated near the end of the glideslope capture maneuver. As can be seen 

from the heading and roll plots, the aircraft yaw and roll angles track their commanded 

trajectories closely and capture the localizer. The lateral position is also seen to track its 

commanded profile accurately. Although a small deviation from the localizer is present, 

this does not resemble a usual overshoot pattern as it occurs after reaching the localizer. 

In all cases, this offset is quite small and tends not to exceed 3 m. As in the case of 

the glideslope capture, the high accuracy of the tracking of the lateral position indicates 

that the stochastic feedforward controller can produce satisfactory feedforward control law 

designs. 

During the maneuver, the roll angle and the lateral position commands are selected 

so as to produce a coordinated turn when perfect tracking occurs. The sideslip angle plots 

indicate that the sideslip angle remains well within 1' of sideslip during the whole final 

approach excluding, of course, the decrab maneuver shown in Figure 14. The maximum 

sideslip tends to occur during localizer capture slightly after the peak bank angle. On the 

other hand, note that the lateral acceleration is plotted on the same set of axes and follows 

the roll angle quite closely, as expected during a coordinated turn, whereas the lateral 

specific force in the body axes remains near zero in a coordinated turn. 
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The smoothness and duration of the localizer capture path command can be varied 

by varying the maximum commanded lateral acceleration Igimcrz. This maximum acceler- 

ation is set to 10 f t / s e c 2  in most of the simulations shown. However, Figure 10 shows a 

simulation where IClmaz is set to a value of 5 f t / s e c 2 .  Observation of the lateral variables 

shows that the localizer capture is smoother, lasts longer, requires a lower maximum roll 

angle to capture as well as resulting in a lower maximum lateral acceleration as expected. 

The turn coordination, although acceptable for IGlmoz value of 10, appears to be improved 

as indicated by a lower maximum sideslip angle. The tracking of the lateral position also 

shows some improvement. Thus, the feedforward control law can clearly track lateral com- 

mand paths where the lateral acceleration does not exceed 10 f t / s e c 2  with no change in 

the feedforward control gains. 

A number of simulations are shown in Figures 5 - 16 where the sensitivity of the 

automatic landing system to various parameters is shown. For example, the aircraft weight 

is varied among 85,000 Ibs, 90,000 lbs, and 95,000 Ibs. The center of gravity of the aircraft 

is also varied in tandem with the weight. Figures 13 - 16 shows the sensitivity to winds 

and noise including bias errors. The wind gust standard deviation used in the simulations 

containing gusts is 2 ft/sec. (0.61 m/sec.). The airspeed command is varied between 125 

and 135 knots, while the commanded glideslope angles simulated are 3 O ,  do and 4.5O. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

In this study, a combined stochastic feedforward/feedback control design methodology 

is developed, and a digital automatic landing system is designed using this approach. It 

is considered that the main objective of a control law is to enable the plant to track a 

desired or commanded trajectory selected from a given class of trajectories as closely as 

possible in the presence of random and deterministic disturbances and despite uncertainties 

about the plant. The feedforward controller tries to track the desired or commanded 

trajectory, whereas the feedback controller tries to maintain the plant state near the desired 

trajectory despite the presence of random, and possibly deterministic, disturbances and 

uncertainties about the plant. Modern control theory has concentrated more attention 

on the important feedback control problem, while the feedforward control problem has 

received less attention. 

The feedforward control problem is formulated as a stochastic output feedback prob- 

lem where the plant contains unstable and uncontrollable modes. As the standard output 

feedback algorithm requires an initial gain which stabilizes the plant, a new algorithm is 

developed to obtain the feedforward control gains. The necessary conditions are shown to 

result in coupled linear matrix equations, implying that when a solution exists, it is indeed 

the globally optimal control gain. 

The formulation of the feedforward problem in a stochastic, rather than the standard 

deterministic, setting is significant in two ways. First, the class of desired trajectories 

from which the actually commanded path is selected can be effectively described as a 

random process generated by a dynamical system driven by a white noise process. The 

second, and more important, implication of a stochastic optimization formulation is the 

tacit understanding that “perfect tracking” is often not possible due to various reasons 

including uncertainties about, or variation in the, plant parameters, the presence of plant 
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nonlinearities and unmatched initial conditions. Thus, questions about the robustness and 

sensitivity of the feedforward controller arise naturally in this context. 

A combined stochastic feedforward/feedback control methodology is developed where 

the main objectives of the feedforward and feedback control laws are clearly seen. Fur- 

thermore, the inclusion of error integral feedback, dynamic compensation, rate command 

control structure, etc. is an integral element of the methodology. Another advantage 

of the methodology is the flexibility that a variety of feedback control design techniques 

with arbitrary structures may be employed to obtain the feedback controller; these include 

stochastic output feedback, multi-configuration control, decentralized control or frequency 

and classical control methods. 

Finally, a specific incremental implementation is recommended for the combined feed- 

forward/feedback controller. Some advantages of this digital implementation are the sim- 

plicity of implementation, the fact that trim values are not needed and that problems 

such as integrator wind-up can be largely avoided. The closed-loop eigenvalues using this 

implementation are shown to contain the designed closed-loop eigenvalues which would re- 

sult if an incremental implementation were not used. It is further shown that when using 

an incremental implementation, it is advantageous to design the controller with as many 

integrators as the number of controls. Using fewer integrators results in marginally stable 

eigenvalues of unity, while using more integrators constrains the placement of eigenvalues. 

The choice of the same number of integrators as controls is also an intuitively pleasing one. 

A digital automatic landing system for the ATOPS Research Vehicle (a Boeing 737- 

100) is designed using the stochastic feedforward controller and stochastic output feedback. 

The system control modes include localizer and glideslope capture, localizer and glideslope 

track, crab, decrab and flare. Using the recommended incremental implementation, the 

control laws are simulated on a digital computer and interfaced with a nonlinear digital 

simulation of the aircraft and its systems. 

In this study, the feedforward controller takes an equal place along the feedback con- 



troller in achieving the overall control objective. While the stochastic feedforward/feedback 

approach has been successfully developed and applied to a significant problem, some signif- 

icant questions and extensions of the problem remain unanswered, and are recommended 

for further study and experimentation. Three general areas of study are worthy of further 

investigation: 

0 the structure of the feedforward controller 

0 the robustness and sensitivity of the feedforward controller 

0 optimal gain scheduling of the feedforward controller 

The structure of the feedback controller considers questions about the role of feedfor- 

ward dynamic compensation, the use of the "future values of the desired trajectory" in the 

current control command, the use of the full-state feedforward controller when fast flight 

computers are available. An argument can be effectively made that since a pilot knows 

the future desired trajectory and uses this information in his current control commands, 

the optimal feedforward controller should also take advantage of such information. 

The uncertainties about complex system parameters and nonlinear effects bring forth 

uncertainties about the trajectory which would be tracked when the actual plant parameter 

are different than those used in the feedforward design. Since the feedforward controller 

does not determine the stability of the closed-loop plant, instability does not generally 

result from such mismatching. However, since unsatisfactory performance would generally 

result from a high sensitive feedforward law, it is of interest to study measures of robustness 

and design methods which incorporate low sensitivity criteria. 

In applications where the plant will vary over a wide range of conditions resulting in 

large changes in plant model parameters, or in cases where the command model parameter 

vary to achieve some objective, it is necessary to adapt the feedforward control gains 

according to varying conditions. This can be achieved by extending the optimal gain 

scheduling studies to include feedforward controller. Due to the relative simplicity of the 

coupled linear necessary conditions, gain scheduling with respect to all the plant parameters 
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rather than a selected few may be feasible. In particular, the feedforward gain of the 

command model forcing vector seems extremely appropriate for such application. 
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TABLE 3 

LATERAL FEEDFORWARD DESIGN MODEL 

) H , =  ( 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0  

r. = 

'O  41,4 41,2 

43,4 43,2 
0 0 42,4 42,2 - 1 

0 4 4 , 2 -  A 
0 0 46,4 46,2 

0 0 48,4 48,2 

46,4 46,2 
47,4 47,2 

49,C 49,2 
h 0 , 4  410,2 
411,4 411,2 

0 0 412,4 412,2 
0 0 413,4 41S,2 

dl4,4 414,2 
0 0  0 0 
0 0  0 0 
0 0  0 0 
0 0  0 0 
0 0  0 0 
, o  0 0 0 ,  

rs = 

' 0  0 0 0' 
0 0 0 - 1  
0 0 0 0  
0 0 - 1 0  
0 - 1 0  0 
- 1 0  0 0 
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
- 1 0  0 0 
0 - 1 0  0 
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
n n n n  
0 0 0 0  
0 0 0 0  
0 0 0 0 ,  
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TABLE 4. 

- 2.991 
- 2.991 
- 1.813 
- 1.298 
- 1.298 
- 0.400 
- 0.400 
- 0.320 - 0.320 
- 0.221 
- 0.221 
- 0.101 
- 0.100 
- 0.045 

LATERAL EQUIVALENT S-DOMAIN EIGENVALUES 

2.565 0.759 3.940 
- 2.565 

0.000 

2.206 0.507 2.560 

~ 

--- --- 

- 2.206 
0.399 0.708 0.565 

- 0.399 
0.383 0.641 0.499 

- 0.383 
0.159 0.812 0.272 

- 0.159 
0.000 

0.000 --- --- 
0.000 --- --- 

--- --- 
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TABLE 7 

LONGITUDINAL/VERTICAL FEEDFORWARD DESIGN MODEL 

1 H.=( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0  

r. = 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

LO 

41,l - 1' 
4 2 , l  

46,l 

48,l 

410,l 
411,l 
412 , l  

43,l 
44,l 

d6,l 
47,l 

dQ,l 

dl3,l 
414,l 

0 
0 
0 
0 
0 
0 

rs = 

0 - 17 
0 0  
0 0  
0 0  
-1 0 
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
-1 0 
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

( 0  0 
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TABLE 9. 

LONGITUDINAL EQUIVALENT S-DOMAIN EIGENVALUES 

RE*L 
1 - 4 2 . 9  

-29.9 t- -10.0 

I MAG I NARY RATIO 

0.000 -7 0.000 

0.000 --- 

NATURAL 
FREQUENCY 

Wn 

--- 
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