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EFFECTS OF FIBER MOTION ON THE ACOUSTIC BEHAViOR OF AN 

ANISOTROPIC, FLEXIBLE FIBROUS MATERIAL 
I 

M i l o  D .  Dahl, Edward J. Rice, and Donald E. Groesbeck 
Na t iona l  Aeronautics and Space Admin i s t ra t i on  

Lewi s Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

The acous t ic  behavlor o f  a f l e x i b l e  f i b r o u s  ma te r ia l  was s tud ied  

exper imenta l ly .  The m a t e r i a l  cons is ted of c y l i n d r i c a l l y  shaped f i b e r s  arranged 

i n  a b a t t l n g  w i t h  t h e  f i b e r s  p r l m a r l l y  al igned p a r a l l e l  t o  the  face o f  the  

ba t t i ng .  Th is  type o f  m a t e r i a l  was considered an iso t rop i c ,  w i t h  t h e  acous t ic  

propagat ion constant  depending on whether t h e  d i r e c t i o n  o f  sound propagat ion 

was p a r a l l e l  or normal t o  the  f i b e r  arrangement. Normal inc idence sound 

absorpt ion measurements were taken f o r  both f i b e r  o r i e n t a t i o n s  over the  

frequency range 140 t o  1500 Hz and w i t h  bu lk  dens i t i es  ranging f rom 4.6 t o  

67 kg/m . When t h e  sound propagated i n  a d i r e c t i o n  normal t o  the  f i b e r  

alignment, t he  measured sound absorpt ion showed the  occurrence o f  a s t rong 

3 

resonance, which increased absorpt ion above t h a t  a t t r i b u t e d  t o  v iscous and 

thermal e f f e c t s .  When the  sound propagated i n  a d i r e c t i o n  p a r a l l e l  t o  t he  

f i b e r  a l ignment ,  i n d i c a t i o n s  o f  s t rong resonances i n  the data were n o t  present .  

From comparing these t w o  sets  o f  data and f rom consider ing the  m a t e r i a l  

s t ruc tu re ,  t he  resonance i n  the  data f o r  f i b e r s  normal t o  the d i r e c t i o n  o f  

sound propagat ion was a t t r i b u t e d  t o  f i b e r  motion. An a n a l y t i c a l  model was 

developed f o r  t h e  acous t lc  behavlor o f  t h e  ma te r ia l  t h a t  d lsp layed the  same 

f i b e r  mot ion c h a r a c t e r i s t i c s  shown i n  the measurements. 
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P f 
u viscous l oss  t e r m ,  Eq. (A5) 

w rad ian  frequency 

resonant frequency o f  a f i b e r  Wf 
INTRODUCTION 

Acoust ic propagat ion i n  porous mater ia ls  has been s tud led  s ince t h e  t lme 

o f  Raylelgh. The e a r l y  approach was t o  assume t h a t  t h e  ma te r ia l  was r i g l d  and 

t h a t  the  sound moved through smal l  pores and l o s t  energy through v i s c o s i t y  and 

heat conduct ion.  lP2 Later ,  t he  add i t i ona l  complex i ty  o f  ma te r ia l  mot ion was 

added. 

be sustained i n  the  m a t e r i a l  and i n t e r a c t  w i t h  the  wave propagat ing through the  

a i r .  Thus, a d d i t i o n a l  losses o f  acoust ic energy were made through deformat ions 

o f  the m a t e r i a l  frame. 

mater ia ls ,  I n  genera l ,  w h i l e  o thers have been based on modeling a s p e c i f i c  type 

o f  m a t e r i a l .  Attenborough7'* has reviewed most o f  these s tud ies,  so no at tempt  

w i l l  be made here. This  study w i l l  concentrate on the  behavior o f  one 

3-6 Since the  ma te r ia l  frame i t s e l f  was f l e x i b l e ,  an e l a s t i c  wave could 

Many o f  these studies have been done f o r  porous 

p a r t i c u l a r  type  of f i b r o u s  ma te r ia l .  
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Two characteristics of acoustic propagation in fibrous materials will be I 
considered in this report. The first is the effect of fiber motion on a I 
material's acoustic behavior. In this context, the term "fiber motion" means 

that the fiber moves only under the influence of a passing acoustic wave. 

ends of the fiber are assumed to be fixed in space at the joints of the complex 

interconnection of fibers that make up the material. 

expressed that no real material has shown the behavior described as fiber 

motion, Kawasima has analytically studied a model where flber motion was 

assumed to be present in the material. In this report, fiber motion is used I 

to describe some of the behavior seen in the data. When frame motion is 

discussed, it refers to the motion of the fibers under the influence of other 

fibers. An elastic, wavelike motion then occurs through the interconnected 

frame of the material. 

approach, and much data have been collected to verify the analysis. 

~ 

The 
I 
1 

8 ~ While Attenborough has 
I 

I 

I 9 

I 

Most analysis has been done with this flexible frame 

The second acoustlc characteristic to be considered here results from the 

forming of a fibrous material into a blanket. When the fibers are manufactured 

into a blanket, the fibers are primarily aligned in two-dimensional parallel 

planes, with some fibers arranged across these planes to hold the blanket 

together. 

is anisotropic, a characteristic of the medium where the acoustic propagation 

constant depends on the direction of propagation. Inside a fibrous material, 

the acoustic propagation constant depends on whether the sound is propagating 

parallel to the planes into which the fibers are arranged or whether the sound 

is propagating normal to these planes. 

This general alignment of the fibers creates an acoustic medium that 

This study considers a ftbrous bulk material called Kettlar. When it is 

used as a lining for wind tunnel test sections and for aircraft engine inlets, 

this material can withstand the severe environmental conditions that may occur 
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wi thou t  break ing down and d i spe rs ing  ln  the f low.  Kevlar  has a l s o  been the  

sub jec t  o f  prev lous work, lo-’* the resu l ts  o f  which are  used f o r  comparison 

w i t h  the  r e s u l t s  o f  t h i s  study. 

Data c o n s i s t i n g  o f  normal impedance measurements were taken f rom a se r ies  

o f  s ing le -dens i ty  Kev la r  samples, a l l  w i th  the  same dimensions. The d e n s l t l e s  

ranged f rom 4.6 t o  67 kg/m , and data were taken a t  i d e n t i c a l  d e n s i t i e s  i n  bo th  

d i r e c t i o n s  o f  sound propagat ion:  normal t o  the f i b e r s  and p a r a l l e l  t o  t h e  

f i b e r s .  A f t e r  a d e s c r l p t i o n  o f  t he  experlmental apparatus and procedure, the  

r e s u l t s  f o r  the  normal f i b e r  measurements and the p a r a l l e l  f i b e r  measurements 

a re  shown and compared i n  terms of the  normal absorp t ion  c o e f f i c i e n t s .  Th is  

i s  fo l lowed by desc r ip t i ons  o f  t he  models o f  Hersh and Walker” and of 

Kawaslma,’ which a re  compared w i th  data.  F i n a l l y ,  the  two models a re  

combined t o  ob ta in  an improved model f o r  t he  normal f i b e r  measurements. 
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EXPERIMENTAL APPARATUS 

An acous t ic  duct ,  o r i g i n a l l y  described i n  Ref. 13, was modi f ied f o r  use as 

an Impedance tube.14 As shown i n  F i g .  1, one end was c losed o f f  by a s t e e l  

p la te ,  and a 120-W compresslon d r l v e r  wi th an acous t ic  horn was at tached t o  the  

o ther  end. The rec tangu lar  duc t  had ins ide  dimensions o f  3.81 by 10.16 cm. 

The plane wave c u t o f f  f o r  these dlmenslons was approximately 1700 Hz, whlch 

se t  the upper frequency l i m i t  o f  the  measurements. To a l l o w  access t o  the  

i n t e r l o r ,  t h e  top  o f  t h e  duct  was made o f  removable p l a t e  sect ions.  

these duct  p la tes ,  two 0.64-cm condenser rnlcrophones were mounted w i t h  a 

3.81 -cm separat lon.  

I n  one o f  

The measurements were based on the  two-mlcrophone t r a n s f e r  f u n c t i o n  

technlque descr ibed by Chung and Blaser . ”  Wlth the  assumptlon t h a t  t h e  

microphones measured the  sound a t  a po in t ,  the  microphone outputs were  sent  t o  

a two-channel f a s t  Four le r  t rans form analyzer, which ca l cu la ted  the  t r a n s f e r  
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f u n c t i o n  between those two p o i n t s  i n  the duct .  Upon complet ion o f  t h i s  I I 

measurement, t he  two microphone systems were switched i n  p o s i t i o n ,  and the  

measurement was repeated. This  s w i  t ch ing  procedure r e s u l t e d  I n  two t r a n s f e r  

funct ions,  which were used t o  c a l c u l a t e  a geometric average t r a n s f e r  f u n c t i o n  

t h a t  was corrected f o r  any ga in  and phase d i f f e r e n c e  between the  t w o  microphone 

systems. 

I n  add i t i on  t o  t h e  measurement technlque, cons idera t ions  were g iven t o  

mln imiz lng  bias and random er rors .16  The b ias  e r r o r s  were minimized by 

l o c a t i n g  the microphones c lose  t o  the  sample and by us ing  a small ana lys l s  

bandwidth. 

11.18 cm, and the  ana lys i s  bandwidth was 5 Hz. The random e r r o r s  were 

minimized by ma in ta in ing  a h igh  coherence between the  acous t ic  source and the  

microphone s igna ls .  Th is  i s  d i f f i c u l t  t o  do a t  very low frequencies and when 

the microphone spacing equals a h a l f  wavelength. 

g rea ter  than 0.99 f o r  f requencies o f  140 Hz and above. 

was n o t  a concern s ince  t h e  hal f -wavelength frequency was about 4.5 kHz, w e l l  

above the frequency range o f  t he  measurements. 

I 

The d i s tance  o f  t he  microphone f a r t h e s t  f rom the  sample was 1 

The coherence Mas always 

The microphone spacing 

The Kevlar samples were  c u t  f rom a low-densi ty  b lanke t  i n  the  form o f  a 

b a t t i n g .  The f i b e r s  were layered and l i g h t l y  needled t o  ho ld  the  b a t t i n g  

together .  I n  a d d i t i o n ,  t he  b a t t i n g  had been t rea ted  w i t h  Zepel, a f l u i d  

r e p e l l a n t .  The nominal s p e c i f i c a t i o n s  f o r  t he  b a t t i n g  were a dens i t y  of 

6.4 kg/m and a th ickness o f  2.54 cm. Each p iece  was c u t  s l i g h t l y  l e s s  than 

the  cross-sect ional  s i z e  o f  t he  duc t  t o  minimize any b l n d i n g  o r  clamping o f  the  

ma te r ia l  a t  the duc t  w a l l s .  

3 

A f t e r  being weighed, the  i n d i v i d u a l  samples were placed through an opening 

i n  the  top  of t h e  duc t  i n t o  a sample holder ,  a 4-mesh screen at tached t o  the 

hard w a l l s  near  the end o f  the  duct ,  which he ld  the  samples i n  p lace  aga ins t  

6 



the hard end of the duct. With the screen In place, the sample holder was 

3.81 cm high by 10.16 cm wide by 10.16 cm deep. 

holder setup for measurements with the fiber planes normal to the direction of 

sound propagation (referred to as normal fiber measurements) is shown i n  

Fig. 2(a). When measurements were made with the fiber planes parallel to the 

direction of sound propagation (parallel fiber measurements), the samples set 

up for the normal fiber measurements were taken out and rotated 90°, as shown 

in Fig. 2(b). This arrangement allowed both the normal and the parallel fiber 

measurements to be taken with the same samples, the same sample holder volume, 

and the same density. At the lowest density, the samples were ightly expanded 

to fill the volume of the sample holder. Subsequently, to increase the 

density, more individual samples were compressed into the volume of the sample 

holder. Thus, the variation in density ranged from 4.6 to 67 kg/m . 

An example of the sample 

3 

RESULTS FROM MEASUREMENTS 

The transfer function data were used to calculate the specific impedances 

and the normal absorption coefficients for all the samples that were measured. 

These results, summarized in terms of the normal absorption coefficient, are 

shown in Fig. 3 for the parallel fiber measurements and i n  Fig. 4 for the 

normal fiber measurements. Each figure shows how the absorption coefficient 

curves (a versus frequency) evolve as a function of density, which is 

labeled on the third axis of the figures. The density is lowest at the front 

of the figure and increases to the hlghest density at the back of the figure. 

The frequency range for all the data begins at 140 Hz and ends at 1500 Hz.  

n 

The absorption coefficient curves f o r  the parallel fiber measurements, 

shown in Fig. 3, are smooth with gradual changes taking place as a function of 

frequency and density. The primary absorption mechanisms are v ~ s c o u s  losses 

across the fibers and heat transfer effects between the air and the fibers. 
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I n  comparison t o  the  p a r a l l e l  f i b e r  data, the normal f i b e r  data, shown i n  

F ig .  4, have a resonance present  i n  the  data.  This resonance i s  e s p e c i a l l y  

apparent i n  t h e  h igher  dens i t y  absorp t ion  c o e f f i c i e n t  curves, where a sharp 

peak I s  present i n  the  curves. When the  s t r u c t u r e  o f  t he  m a t e r i a l  I s  

considered, t h i s  resonance i s  a t t r i b u t e d  t o  f i b e r  motion. The viscous drag 

and the  pressure g rad ien t  across the  length  of a normal f i b e r  c rea te  enough 

f o r c e  t o  l a t e r a l l y  d isp lace  the  f i b e r .  I n  the  case o f  the  p a r a l l e l  f i b e r s ,  

the  viscous drag and pressure g rad ien t  forces created along a f i b e r  a r e  n o t  

enough t o  cause t h e  f i b e r s  t o  compress o r  buckle. 

The resu l t s  f o r  the  normal f i b e r  measurements a re  sub jec t  t o  d i f f e r e n t  I 

i n t e r p r e t a t i o n s .  A t  f i r s t  inspec t ion ,  i t  looks as i f ,  as t h e  dens i t y  

increases, the broad peak i n  the lowest dens i t y  curve i s  evo l v ing  i n t o  the  

sharp peak I n  the  h ighes t  dens i t y  curve. 

c o r r e c t  i n t e r p r e t a t i o n  and t h a t  t he  evo lu t i on  o f  the  sharp peak, which i s  

a t t r i b u t e d  t o  a f i b e r  resonance, a l s o  creates the  d i p  i n  the  lower d e n s i t y  

I t  w i l l  be shown t h a t  t h i s  i s  n o t  t he  

curves a t  t h e  lower frequency end. The f i b e r  resonance peak occurs a t  a 

frequency j u s t  above t h i s  d i p ,  and I t i s  broader and lower i n  ampl i tude a t  t he  

lower dens i t ies  on t h i s  p l o t ;  there fore ,  i t  i s  no t  c l e a r l y  v i s i b l e .  As t he  

dens i t y  Increases, t he  f i b e r  resonance peak becomes h igher  and sharper, and i t  

i s  always next t o  t h e  d i p .  A s  shown, the  d i p  and then the  peak g radua l l y  move 

t o  a h igher  frequency as the  dens i t y  Increases. 

The data f rom the  normal and p a r a l l e l  f i b e r  measurements show t h a t  t he  

m a t e r i a l  i s  an i so t rop i c .  The f i r s t  obvlous d i f f e r e n c e  i s  t h e  apparent 

presence o f  f i b e r  mot ion when the  sound propagates normal t o  the  f i b e r  

d i r e c t i o n .  The second d i f f e r e n c e  i n  the t w o  d i r e c t i o n s  i s  seen i n  the  o v e r a l l  

l e v e l s  o f  absorpt lon.  

cons ider ing the  broad shape and l e v e l  of the  normal f i b e r  and p a r a l l e l  f i b e r  

By i g n o r i n g  the normal f i b e r  resonance and by 
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absorpt ion c o e f f i c i e n t  curves, a comparison over the  range o f  d e n s i t i e s  

measured can be made. A t  the  l o w e s t  densi t ies,  the  p a r a l l e l  f i b e r  curves a re  

a t  the  same l e v e l  o r  lower than the  absorpt ion c o e f f i c i e n t  curves f o r  t he  

normal f i b e r  data.  For example, i n  F ig .  3 the  lowest dens i t y  sample has 

absorpt ion c o e f f i c i e n t s  such t h a t  0.16 <an< 0.67, and i n  F ig .  4 f o r  the same 

dens i ty ,  0.16 <an< 0.78. 

u n t i l ,  a t  the  h lghes t  dens i ty ,  t he  p a r a l l e l  f i b e r  absorp t ion  c o e f f i c i e n t  curve 

i s  3.5 t o  1 4  percent h igher  than the normal f i b e r  curve. Others2’17 have made 

s l m l l a r  measurements of absorp t ion  i n  mater ia ls  where the r e s u l t s  were 

dependent on the d i r e c t i o n  o f  sound propagation through the  m a t e r i a l .  As  i n  

t h i s  study, the  ma te r ia l s  were made I n  sheets, w i t h  the  f i b e r s  arranged i n  

planes p a r a l l e l  t o  t he  face o f  t he  sheet. 

t h a t  used here, t h e i r  r e s u l t s  showed that t he  absorpt ion Wac h igher  i n  the  

ma te r ia l  when the  sound propagated p a r a l l e l  t o  the  plane o f  t h e  f i b e r s .  This  

i s  cons is ten t  w l t h  the  r e s u l t s  shown i n  Figs.  3 and 4. 

As  the dens l ty  Increases, both s e t s  o f  da ta  s h i f t  

With h igher  dens i t y  m a t e r i a l s  than 

FIBROUS MATERIAL MODELS 

R i g i d  F i b e r  Model 

Hersh and Walker developed a model t o  descr ibe the  acous t ic  behavior o f  

f i b r o u s  bu lk  ma te r ia l  I t  i s  based on empir ica l  r e l a t i o n s  der ived  f rom work 

done on pressure drop and energy t rans fer  across bundles o f  c i r c u l a r  c y l i n d e r s  

o r  f i b e r s .  Because i t  assumes t h a t  the f i b e r s  a re  r i g i d ,  t he  model does no t  

consider frame mot ion o r  f i b e r  mot ion.  This model i s  use fu l ,  however, s ince  i t  

descr ibes t h e  general  behavior o f  Kevlar and i t  inc ludes both p a r a l l e l  and 

normal f i b e r  t e r m s .  

A f t e r  t he  development o f  the  empir ica l  r e l a t i o n s ,  the  me-dimensional  

equations f o r  c o n t i n u i t y ,  momentum, and s ta te  a re  g iven i n  the  f o l l o w i n g  form 

f o r  a d i f f e r e n t i a l  volume of  the  mater ia l ,  where wd / V  < 1 :  2 
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au 2 - ax 
I -  - uu au at ax 

P = CeP 
2 

( 3 )  I 
I 

i 
A l l  the  var iab les a re  acous t ic  q u a n t i t i e s  f o r  a i r ,  and t h e i r  d e f i n i t i o n s  a r e  

g iven 4n the L i s t  of Symbols. 

propagat ion v e l o c i t y  c e  a re  der ived i n  appendix A. The e f f e c t i v e  propagat ion 

The viscous loss  term u and the  e f f e c t i v e  

e f f e c t s  o f  heat v e l o c i t y  through t h e  porous m a t e r i a l  takes i n t o  account the  

t r a n s f e r  between the  a i r  and the  ma te r ia l .  

Combining Eqs. (1 )  t o  ( 3 )  and assuming t h a t  a l l  acoust 

p ropor t i ona l  t o  exp(1wt - kx ) ,  we can get  the  wave equat ion 

the  propagation constant.  

c q u a n t i t i e s  a re  

and subsequently 

The c h a r a c t e r i s t i c  impedance f o r  the  m a t e r i a l  i s  de f ined as the  r a t i o  of 

t he  pressure wave t r a v e l i n g  i n  one d i r e c t i o n  t o  the  volume v e l o c i t y  i n  the  same 

d i r e c t i o n ,  W = p/(uH). 

impedance o f  t h e  porous m a t e r i a l  i s  found t o  be 

From Eqs. ( 2 )  and ( 4 ) ,  t h e  normal ized c h a r a c t e r i s t i c  

The f i n a l  s tep  t o  determine the  surface impedance o f  the  m a t e r i a l  w i t h  a 

r i g i d  backing requ i res  the  f o l l o w i n g  boundary cond i t i ons  a t  the  surface: 

P '  = P 

U '  = HU 

The f i r s t  equation has pressure continuous across the  boundary, and the  second 

equat ion has mass f l u x  cont inuous across the  boundary. With t he  a d d i t i o n a l  

10 



c o n d i t i o n  t h a t  u = 0 a t  t he  r i g i d  boundary, t he  normalized impedance f o r  a 

sample w i t h  f i n i t e  depth L I s  

- - -  - coth(kL) 2 
poco poco 

and the  normal abso rp t i on  c o e f f i c i e n t  i s  
2 - 1  

t 1  

Z - 
poco 

poco 

a = 1 -  
7 

n 

A comparlson between the  p a r a l l e l  f i b e r  data and the  o r i g i n a l  model o f  

Hersh and Walker us ing  on ly  the  p a r a l l e l  f i b e r  viscous l o s s  term i s  shown i n  

F ig .  5 f o r  t h e  abso rp t i on  c o e f f i c i e n t ,  t h e  s p e c i f i c  acoust ic  res is tance,  and 

the  s p e c i f i c  acous t i c  reactance. The f i g u r e  inc ludes measured data ( l i n e  w i t h  

c i r c l e s ) ,  r e s u l t s  f rom the  model ( s o l i d  l i n e ) ,  and r e s u l t s  f rom a m o d i f i c a t i o n  

of the model (dashed l i n e )  t o  be described l a t e r  i n  t h i s  sect lon.  In t h i s  

sample o f  t h e  data, t h e  comparison i s  qu i te  good throughout most o f  t h e  

measured d e n s i t y  range. The model s p e c i f l c  res i s tance  has l a r g e r  dev ia t i ons  

f rom t h e  data than t h e  reactance a t  t h e  higher dens i t i es .  A t  lower d e n s i t i e s ,  

both res i s tance  and reactance show t h e l r  greatest  d e v i a t i o n  from t h e  data a t  

the higher f requencies.  This i s  espec ia l l y  ev ldent  i n  the  normal abso rp t i on  

c o e f f i c i e n t  p l o t  a t  t h e  lowest dens i t y .  

s e n s i t i v e  t o  small  changes i n  res i s tance  a t  small  values o f  res is tance.  Thus, 

t he  model underpredic ts  t h e  absorpt ion.  

The absorpt ion c o e f f i c i e n t  i s  

Frame f l e x i b i l i t y ,  which i s  no t  considered i n  any d e t a i l  i n  t h i s  study, 

i s  another f a c t o r  t h a t  appears t o  a f f e c t  the r e s u l t s  shown i n  F ig .  5. As 

mentioned i n  t h e  I n t r o d u c t i o n ,  t h l s  I s  t h e  case where the  m a t e r i a l  frame 

supports an e l a s t i c  wave which i n t e r a c t s  w l t h  t h e  acoust lc  vave i n  t h e  a i r .  

Kosten and Janssen” have shown f o r  a general porous f l e x i b l e  m a t e r i a l  t h a t  

frame f l e x i b l l l t y  i s  impor tant  a t  low frequencies. The i r  r e s u l t s  show t h a t  a t  

11 



some low frequency the  absorp t ion  c o e f f i c i e n t  f o r  the  f l e x i b l e  frame m a t e r i a l  

peaks a t  a h igher  l e v e l  than the  absorp t ion  c o e f f i c i e n t  f o r  t he  same m a t e r i a l  

w i t h  a r i g i d  frame. As t he  frequency increases, the  absorp t ion  c o e f f i c i e n t s  

f o r  t he  t w o  frames tend towards agreement. An example o f  t h i s  behavior 1s seen 

i n  F ig .  5(b). The exper imental  data ( l i n e  w i t h  c i r c l e s ) ,  which i s  assumed t o  

i nc lude  f rame f l e x i b i l i t y  e f f e c t s ,  has peak absorpt ion a t  about 850 Hz. Th is  

absorp t ion  i s  h igher  than t h a t  shown f o r  the  r i g i d  f l b e r  model represented by 

the  s o l i d  l l n e .  The two curves, then, tend towards agreement as t h e  frequency , 

increases. S i m i l a r  behavlor I s  seen I n  F lgs.  5(c)  and 5(d).  

I 

I 

I 
I 

1 

Slnce the model o f  Hersh and Walker i s  based on some emp i r i ca l  

cor re la t ions ,  an at tempt  was made t o  see i f  any improvements cou ld  be made i n  

the  model by va ry ing  the  f i t  parameters w i t h i n  the  c o r r e l a t i o n ,  s p e c i f i c a l l y  

t he  p a r a l l e l  f i b e r  v iscous l oss  term o r i g i n a l l y  g iven by Hersh and Walker as 

fp( l  - H) = 1.0 3.94(1 - H)Oa413[l t 27(1 - H)31] [ (9) 

The term f (1 - H) was used as a f i t  parameter t o  a d j u s t  t he  model impedance 

t o  best  f i t  the  data Impedance for  each dens i ty .  The r e s u l t s  o f  t h i s  f i t  a r e  

shown i n  Fig. 6. The f i t  f o r  data below 1 - H = 0.02, o r  a bu l k  dens i t y  o f  

about 29 kg/m , i s  sca t te red ,  and no f i t  equat ion comparable t o  Eq. (9) i s  

poss ib le .  

P 

3 

However, t he  f i t  data above t h i s  p o i n t  do prov ide  a good c o r r e l a t i o n  

represented by the  equat ion 

fp(l - H) = 1.8 3.94(1 - H ) O m 5 [ l  t 27(1  - H I 3 ] ]  [ 
When t h i s  f l t  i s  used i n  the  acous t lc  model, the r e s u l t s  a re  as shown i n  

F ig .  5. The l ack  o f  s i g n i f l c a n t  change between the  or ig ina ;  p a r a l l e l  f i b e r  

model ( E q .  ( 9 ) )  and the  mod l f led  model (Eq. (10) )  when compared w i t h  the  da ta  

I s  m o s t  l i k e l y  due t o  the  l ack  of  i n c l u s i o n  of frame f l e x l b i l i t y  e f f e c t s .  Th is  

i s  espec ia l l y  ev ident  a t  the  lower d e n s l t l e s  where, as shown i n  F ig .  6, t h e  
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fit of fp(l - H) 
E q .  (9) or E q .  (10). 

did not agree with the rigid fiber correlations given by 

Comparison between the normal fiber model of Hersh and Walker and the 

data is shown I n  Fig. 7 for the absorption coefficient, the specific acoustic 

resistance, and the specific acoustic reactance. The trends in the data are 

similar to the model; however, the model generally underpredicts the measured 

impedance. Also, the model shows no indications of the resonances seen in the 

three higher densities i n  Fig. 7. The correlation for the qormal fiber viscous 

loss is given by 

fn(l - H) = 0.44 16(1 - H)O”[l + 14.75(1 - HI3]] [ ( 1 1 )  

Its similarity to E q s .  (9) and (10) shows that the expected behavior of the 

normal fiber model is the same as the behavior shown for the parallel fiber 

model. The difference would be due to the different levels of viscous loss. 

It is interesting to note that for 1 - H < 0.05, which is the case for all the 

measured densities, (1 - H) << 1 with the result that Eq. (11) I s  

approximately equal to Eq.  (10). 

3 

The works of Lambert” and Smith and Parrott” have shown data on the 

impedance of Kevlar samples that have the same characteristics as shown in 

Fig. 7. Lambert’s data for a porosity of 0.94 and a sample depth of 12 cm 

showed a resonance at about 950 Hz. 

the sample is vibrating and absorbing energy. 

measurements for Kevlar with and without a Zepel fluid repellant treatment. 

Their data for 1-cm-thick Kevlar samples at a porosity of 0.94 showed a 

resonance between 700 to 800 Hz. No other resonance was seen I n  the data out 

to 3.5 kHz. 

He states that this may be evldence that 

Smith and Parrott took impedance 

They attributed the resonance to the possibility of fiber motion. 
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Fiber  Mot ion Model 
9 

Kawasima developed a model t h a t  inc luded the  e f f e c t s  o f  f i b e r  mot ion.  

He assumed that  each f i b e r  could be represented as a s t r i n g  f i x e d  a t  bo th  ends. 

To s i m p l i f y  the ana lys is ,  t he  s t r i n g  o f  l eng th  8 was modeled as a r i g i d  bar  

w i t h  the  center p a r t  o f  l eng th  q8 v i b r a t i n g  l i n e a r l y  and w i t h  the  end p a r t s  

o f  t o t a l  length q (1  - a)  f i xed .  The v i b r a t i n g  f o r c e  was t h e  o s c i l l a t i n g  

viscous f l u i d ,  and the  r e s t o r i n g  fo rce  was governed by Hooke's law. From a 

dynamical analys is  comparing the  v i b r a t i n g  s t r i n g  t o  the  v i b r a t i n g  bar, q was 

found t o  be equal t o  0.811. The f o l l o w i n g  equations were developed: 

au 1 - H auf 

1 

* a t  = - Po ax - Po q 

U (u - U f )  - (1  - q) -H L au - -  &-q-s!c 1 " Vf V f  Po at - ax 

32 - (Uf  - u) auf 2 
ax vf  Pf at + PfOfEf = - 

Equation (12) i s  t he  c o n t i n u i t y  equation. The change i n  mass i n  a 

d i f f e r e n t i a l  volume i s  governed by both the  movement o f  a i r  and the  movement o f  

f i b e r s .  The l a t t e r  i s  represented by the  second t e r m  on the  r i g h t  s ide  o f  t he  

equal s ign.  This equat ion i s  der ived i n  appendix 8.  

The momentum equat ion i s  shown i n  Eq. (13) .  I t  shows t h a t  t he  mot ion o f  

an elemental mass o f  a i r  i s  d r l v e n  by the  pressure grad ien t ,  w i t h  damping 

across both the f i b e r  p a r t s  t h a t  move and those t h a t  a re  f i xed .  

loss  c o e f f i c i e n t ,  g iven  by the  r a t i o  

both moving and f i x e d  p o r t i o n s  o f  the  f i b e r s .  

The viscous 

r / v f ,  i s  assumed t o  be t he  same f o r  

The t h i r d  equat lon governs the  f i b e r  motion. The l e f t  s ide  o f  Eq. (14) 

i s  a mass-spring equat ion f o r  t he  f i b e r  i n  the  elemental volume, w i t h  the  

r e s t o r i n g  f o r c e  governed by the resonant frequency The f o r c i n g  terms, 
mf. 



shown on the  r i g h t  s ide  of t he  equat ion,  a re  due t o  the  pressure g rad ien t  and 

the  viscous drag on the  f i b e r .  

When the  acous t ic  pressure and densl ty  a re  r e l a t e d  by the  a d i a b a t i c  speed 

2 o f  sound i n  a l r  ( p  = cop), Eqs. (12) t o  (14) can be combined t o  d e r i v e  a wave 

equat ion f o r  the  pressure.  Thus, the propagation constant  i s  determined t o  be 

where 

r / v f  r / v f  r / v f  2 

N = [y - + 1 1  [- POW + i :] - q (-) POW POW 

r / v f  1 - H  
H Po0 

r / v f  
D = [F + i + q [u - 

Pfa = P f  

The c h a r a c t e r i s t i c  impedance f o r  the ma te r ia l  i n  t h i s  case i s  de f ined by 

us ing the  f o l l o w i n g  equat ion f o r  t he  volume v e l o c i t y  per  u n i t  area: 
- 
u = HU + q(1 - H)Uf (16)  

Thls equat ion shows t h a t  the  volume v e l o c i t y  i s  a f fec ted  by those f i b e r s  t h a t  

move. The r e s u l t  i s  t h a t ,  depending on the phase r e l a t i o n s h i p  between u and 

u 

r i g i d  m a t e r i a l  having the  same p o r s i t y .  By us ing Eq. (16) ,  the  normal ized 

c h a r a c t e r i s t i c  impedance i s  found t o  be 

the  volume v e l o c i t y  i s  h igher  o r  l o w e r  than t h a t  which would be found i n  a f ’  

E - - ( 2 )  
- - - -  

i H  
U - W 

poco poco 
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Using the boundary cond l t l ons  g iven I n  Eq. ( 6 )  and the a d d i t i o n a l  f a c t  

t h a t  u = uf  0 a t  t he  r l g l d  boundary y i e l d s  the  spec i f i c  acous t ic  Impedance 

a t  the  surface: 

where I 

r / v f  1 - H  
+ ' H pow t i -  

I t  should be noted t h a t  t he  r a t i o  N ' / D '  equals the  r a t i o  between the  f i b e r  

v e l o c i t y  and t h e  a i r  v e l o c l t y  uf /u.  The absorp t ion  c o e f f i c i e n t  i s  then I 

ca l cu la ted  from the impedance by us ing  Eq. ( 8 ) .  

s l m l l a r  t o  tha t  g iven by Ingard," except t h a t  ma te r la l  franie motton was used 

This model development i s  

there  Instead o f  f i b e r  mot ion.  

I n  Kawasima's model, the  v iscous l o s s  c o e f f i c i e n t  r / v f  I s  computed f o r  

Stokes f l o w  around a long e l l i p s o i d  o f  gy ra t i on .  

l eng th  and diameter o f  t h e  f i b e r ,  and no t  a f u n c t i o n  o f  frequency. 

was made I n  t h i s  study t o  c a l c u l a t e  t h i s  term; i t  was used as a parameter t o  

f i t  the  model t o  measured data.  

The term I s  a f u n c t i o n  o f  t he  

No at tempt  

A comparlson between Kdwaslmd's model and the  data i s  shown i n  F ig.  8. 

The res is tance,  reactance, and absorp t ion  c o e f f i c i e n t  curves f o r  bo th  model 

and data f o l l o w  the same behav lo ra l  t rends. The obvious fea tu re  i s  t he  

resonance due t o  f i b e r  mot ion.  The assumption t h a t  v iscous l oss  i s  n o t  a 

f u n c t j o n  of frequency i s  shown t o  be Inaccurate,  s ince t h e  viscous loss 

c o e f f i c i e n t  must p rov ide  the  l o s s  a t  each frequency and be a damplng term a t  

t he  resonance frequency. The model prov ides i n s u f f i c i e n t  damplng a t  t he  
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resonance, and i t  i s  much less  accurate I n  p r e d i c t i n g  Impedance a t  t h e  low 

frequencies.  

Combined Model 

Two fac to rs  t h a t  c o n t r i b u t e  t o  the Inaccuracy o f  Kawasima's model a r e  t h e  

use o f  t he  non-frequency-dependent viscous l oss  c o e f f i c i e n t  r / v f  and t h e  

use o f  the  a d i a b a t i c  speed o f  sound f o r  the a i r  i n s i d e  the  f i b rous  m a t e r i a l .  

I t  i s  proposed here t o  modify Kawaslma's model by rep lac ing  these two f a c t o r s  

by the  equ iva len t  f a c t o r s  f rom the  model o f  Hersh and Walker. 

The f i r s t  f a c t o r  t o  rep lace  I s  t he  vlscous loss  c o e f f i c i e n t  r / v f .  I f  

there  i s  no f i b e r  motion, then uf = 0. Subs t i t u t i ng  t h i s  va lue i n t o  Eq. (13) 

and reducing r e s u l t s  i n  

Comparing t h i s  momentum equat ion t o  Eq. ( 2 )  shows t h a t  f o r  t h e  two equat ions t o  

be equ iva len t  

a 
H - r - - -  

Vf  1 - H  

Thus, the  constant  t / v f  

frequency and p o r o s i t y .  

The a d i a b a t i c  speed o f  sound i s  the other f a c t o r  t o  rep lace  I n  Kawasima's 

model. This i s  done by us ing  Eq. ( 3 )  t o  de f ine  the  r e l a t i o n s h i p  between 

pressure and dens i ty .  

impedance a r e  determined, the  r e s u l t  of t h i s  change I s  t o  rep lace  co by ce 

I n  Eq. ( 1 5 )  and t o  m u l t i p l y  the  r i g h t  s ide of Eq. (17) by (ce/c0)  . 
e f f e c t s  o f  heat  t r a n s f e r  between the  a i r  and the f i b e r s  have been taken i n t o  

account. 

i s  replaced by a f u n c t i o n  t h a t  I s  dependent on bo th  

When the  propagation constant and c h a r a c t e r i s t i c  

2 Thus, t he  

The f i n a l  ca l cu la t i ons ,  then, f o r  the s p e c i f i c  impedance a re  done by us ing  

Eq. (18)  w i t h  t h e  proper s u b s t i t u t i o n s :  Eq. (20) i s  used t o  rep lace  t h e  
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viscous loss coefficient, and the modified Eqs. (15) and (17) are used for the 

propagation constant and the normalized characteristic impedance, respectively. 

The results of calculations using this combined model are shown in Fig. 8. 

The only factor unknown a priori in these calculations was the fiber resonant 

frequency w All other factors were based on the original models of Hersh 

and Walker” and Kawaslma.’ A s  shown in the figure, the calculated specific 

reactance agrees quite well with the data, but the model does underpredict the 

specific resistance. 

fibers or due to flbers rubbing together and frame flexibility were not 

considered. This may have led to the inaccuracies in the model at the lower 

densities, at the lower frequencies, and at the resonant frequency. 

f’ 

Factors such as losses due to internal damping of the 

CONCLUDING REMARKS 

Experiments were conducted to study the acoustic behavior of a fibrous 

material. 

propagate in a direction normal to the fiber arrangement or parallel to the 

fiber arrangement. 

characteristics of the material. 

The fibers i n  this material were arranged such that the sound could 

This permitted an evaluation o f  the anisotropic acoustic 

The results o f  the measurements were summarized in three-dimensional plots 

of absorption coefficient versus frequency as a function of the sample density. 

When the sound was propagating normal to the fibers, the measurements indicated 

a resonant condition, which was attributed to fiber motion. This resonance was 

shown to change in frequency as the density increased. 

propagating parallel to the fibers, the measurements showed no indications of a 

fiber motion resonance. Other than the fiber motion effectq, anisotropy was 

shown to exist over the rest o f  the frequency range of the measurements. 

was shown by the level of absorption that took place. At low density, the 

parallel fiber absorption coefflcients were less than the normal fiber 

When the sound was 

This 
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absorp t ion  c o e f f i c i e n t s .  The opposi te  was t r u e  a t  the  h lgher  dens l t l es .  

There, the  normal f i b e r  absorp t ion  c o e f f i c i e n t s  were l ess  than the  p a r a l l e l  

f i b e r  absorp t ion  c o e f f i c i e n t s .  

Models were used t o  con f i rm  these resu l t s .  The p a r a l l e l  f i b e r  

measurements were compared w i t h  the  p a r a l l e l  f i b e r  model o f  Hersh and Walker. 

Though an at tempt was made t o  improve the  model by a d j u s t i n g  constants i n  the  

model, no s i g n i f i c a n t  improvement was obtained. For the  normal f l b e r  model, 

Improvements were made by combining t h e  model o f  Hersh and Walker w i th  the  

model o f  Kawasima. This  combined model accounted f o r  the  e f f e c t s  o f  f i b e r  

motion, and i t  accounted f o r  t he  frequency and p o r o s i t y  dependence o f  the  

viscous loss  term and o f  the  heat t rans fe r  parameter. Resul ts  f o r  t h i s  model 

were found t o  agree w i t h  t h e  data except a t  t h e  lower dens i t i es ,  where frame 

f l e x l b l l i t y ,  whlch was n o t  Inc luded t n  any o f  t he  models, had a l a r g e  e f f e c t .  
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APPENDIX  A - D E R I V A T I O N  OF EMPIRICAL PARAMETERS 

Viscous Loss Term u 

The one-dimensional pressure drop per u n i t  d is tance across a bundle of 

f i b e r s  numbering N i s  

I 
where the  fo l l ow ing  r e l a t i o n  was used f o r  the  r a t i o  between the  c l r c u l a r  area 

where D i s  the f l u c t u a t i n g  drag o f  each f i b e r  and A i s  the  c ross-sec t iona l  I 

area o f  t he  duct.  The minus s ign  assures t h a t  t h e  pressure decreases across 

the bundle o f  f i b e r s .  

c y l i n d r i c a l  area Af o f  a f i b e r  and the  area-averaged f l u c t u a t i n g  shear s t ress  

The f l u c t u a t i n g  drag i s  g iven by the  product  o f  t h e  

AV 

D = A f l A V  

where T i s  approximated by AV 

ufu 
TAV = d 

The func t ion  f i s  a nondimensional t e r m  t h a t  accounts f o r  t h e  average drag o f  

a c i r c u l a r  cy l i nde r  i n  a bundle o f  cy l i nde rs .  I t  i s  a f u n c t i o n  o f  p o r o s i t y .  

Using the  d e f i n i t i o n  o f  p o r o s i t y  as the  r a t i o  o f  t he  volume o f  a i r  t o  t h e  t o t a l  

volume o f  the m a t e r i a l  y i e l d s  the  f o l l o w i n g  equation: 

Nvf l - H =  
AxA 

Combining Eqs. (A2) t o  (A4) i n t o  Eq. ( A l )  y i e l d s  

a A X  = -(F)(l - H ) f u  = - au 

o f  a cy l i nde r  and i t s  volume: 

Af 4 - -  
vf - d 

The viscous l o s s  term u has been de f ined i n  Eq. ( A 5 ) .  It i s  made 

nondimensional by d i v i d i n g  by po and W. Thus, 
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10 The func t i on  f i s  de f i ned  f rom co r re la t i ons  der ived by Hersh and Walker. 

i n  Eq. (9 ) ;  and f o r  normal f i b e r s ,  f = fn i n  
f P  

For  p a r a l l e l  f i b e r s ,  f = 

Eq. (11). 

E f f e c t i v e  Propagation Ve loc i t y  c, 

For a u n i t  volume o f  m a t e r i a l  A x A ,  the r a t e  o f  increase i n  energy per  

u n i t  volume o f  a i r  minus the  n e t  r a t e  of energy out  o f  the  volume through the  

a i r  must equal the  energy f low f rom the  f lbers  t o  the  a i r  per  u n i t  volume o f  

a i r .  This statement can be w r i t t e n  as 

Combining an equat ion f o r  t he  heat  f l o w  

Q = hNAf8 

and the  d e f i n i t i o n  o f  t he  Nussel t  number 

hd 
k' NU = - 

we get  
Nu k'NAf8 

Q =  d 

To pu t  Eq. ( A l l )  on a bas is  o f  per  u n i t  volume o f  a i r ,  we d i v i d e  t h e  equat ion 

by A x A H .  Then, by us ing  Eqs. (A4) and ( A 6 ) ,  an equat ion f o r  e i s  obtained: 

e =  

Thus, w i th  t h i s  equation, we can rearrange Eq. ( A 8 )  t o  ge t  
T 

where 

- - - -  - ( Y  - l ) T o  
- RTO 

pocv c v  
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and 

Equation (A14) can be nondimensionalized as fo l l ows :  

where P r  i s  t he  Prandt l  number f o r  a i r .  The c o r r e l a t i o n  f o r  Nu g i ven  by 

Hersh and Walker lo i s  

Nu = 1.0 5.4(1 - H)O"[ l  t 3.94(1 - H ) 3 d  [ (A161 

Equation (A13) may' now be solved f o r  e by assuming harmonic mot ion 

exp( id). 

The equation o f  s t a t e  i s  g iven i n  i t s  Instantaneous form as 

(Po+ P) = ( P O +  P)R(TO + e )  (A181 

When on ly  l i n e a r  terms a re  re ta ined,  t h i s  equat ion becomes 

p = p Re + RT p 

and upon s u b s t i t u t i n g  i n  Eq. (A17), a r e l a t i o n s h i p  between p and p i s  

obtained. 

(A191 0 0 

2 Note t h a t  when K/pow >> 1 (ve ry  l o w  f requencies) ,  ce = RTo, t h e  isothermal  

speed o f  sound. 

the  adiabat ic  speed o f  sound. 

2 Also, when K/po" << 1 ( ve ry  h igh  f requencies) ,  ce = yRTo, the  
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APPENDIX B - DERIVATION OF EQUATION (12) 

Equat ion (12) i s  der ived  f r o m  two c o n t i n u i t y  equations. The f i r s t  

c o n t i n u i t y  equat ion i s  f o r  t he  a i r  i n  the ma te r ia l ,  and the  second c o n t i n u i t y  

equat ion i s  f o r  t h e  f i b e r  ma te r ia l .  

Expanding these two equat ions and r e t a i n l n g  on ly  l i n e a r  terms, we ge t  

By assuming t h a t  t h e  c o m p r e s s i b i l i t y  o f  the f i b e r  m a t e r i a l  4 s  very smal l  

compared t o  a i r  and may be neglected, then apf/i3t = 0 and Eq. (84)  becomes 

aH auf - = q(1 - H) - a t  ax 

S u b s t i t u t i n g  Eq. ( B 5 )  i n t o  Eq. (83)  and rearranging, we ge t  Eq. (12). 

au 1 - H "f 
Po ax - Po q H ax % -  

a t  
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OF POOR QUALITY 

( R )  F I R E R  DIRECTION PARALLEL TO I ) I R t C T l O N  OF SOUND PROPAGAIION. 

FIGURE 2. - M A T t R I A L  SAMPLtS PLACED IN DUCT. 
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