
N8 7- 25 893

AN EV#.LUATIONOF TURBO PROLOG

,VITHAN E!.IPHASI'!;ON ITSAPPLICATION TO THE DEVELOPMENT

OF EXPERT ,3YSTEM'3

RichardB.Loftln,Ph.D.

AssociateProfessorofPhysics

DepartmentofNaturalSciences

UniversityofHouston-Downtown
One Mat n Street

Houston, TX 77002

Turbo Prologisa recently-available,compiledversionof the programming languageProlog

(Programming in Logic),originallydevelopedatthe Universitl_of Marseillesin the period

from 1972 to 1974. Turbo Prologisdesignedtoprovidenotonlya P,-olo,]compiler.,butalsoa

program developmentenvironmentfortheIBM PersonalComputer family.

_n evaluationofTurbo Prolog'.,/asmade,comparingitsfeaturestootherversionsofF'roiogand

to the community of languagescommonly usedin artificialintelligence(At) reSer:r,::hand

development.Threeprograms were employedtodeterminetheexecutionspeedofTurbo Prolog

appliedtovariousproblems: (I) a program which computesthefactorialof a giveninteger

was usedtotesttheexecutionspeedofTurbo Prologwith a purelycomputationalproblem,(Z)

the "TowersofHanoi"_¢asusedtoevaluatethespeedofTurbo Prologinexecutingasimplebut

intense!y-recursiveproblem, and (5) the NASA benchmark planningprobiem (the"monkey

and bananas"problem)was usedtotestthespeedofTurbo Prologwitha problem usedby NASA
initsown ovaluationtestsI

The resultsofthisevaluationdemon._tratedthatTurbo Prologcan perform much betterthan

many commonly-employedAtlanguagesfornumerically- ir_tem_iveproblemsand canequalthe

speedofdevelopmentlanguagessuch .-'is0P55+ and CLIPS, runningon the IBM PC familyof

computers,withthe N_SA benchmark program. Applicatior_sfor which Turbo Prologis best

suitedincludethose"-lhich(!) lend themselvesnaturallyto backward-chainingapproaches

(_.._,.,"theorem _,r_'vinq).. ..., (2) require e.'.<tensiveu_:enf......rnathernatir.s, (5) r:mtain, re';,,"rules, (,+.,":
seekto make u_e ofthe '.,-indowing,."colorgraphicscapabilitiesof the IBM _'C.and/,:,r(S)

require]inkageto programs in otherlanguages(#.t;_.,C. Pascal.FORTRAN, or Assemble,,;,to

form acompleteexecutableimayo.

IG.D.Riley, "Timing TestsofExpert$ystem BuildingTools"and "Availability ofan E;<pert

SystemTool",NAS_ Memos FM7(86-51)and FM7(86- 117).

NASAColleague: Robert T. Savely FM72 X4751

23-2

https://ntrs.nasa.gov/search.jsp?R=19870016460 2020-03-20T10:50:34+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN EVALUATION OF TURBO PROL.OG

r-_p,,-qt e ,- ; ..: t'WITH AN E_l. Mff,_, J ON iTS APPLICATION TO THE UL V-I"LU_D[,E._..I_

OF EXPERT SYSTEMS

Richard B. Loftin, Ph.D.

Associate Professor of Physics

Department of Natural Sciences

University of Houston-Downtown
One Main Street

Houston, TX 77002

introduction

Two of the tasks of the

the Technology Development and

Directorate, Johnson Space Center,

of AI software for building expert

languages. A recently-available
offers both a new version of

environment for building expert

Artificial intelligence (AI) Section nf

Applications Branch, Mission Support

are (1) the evaluation and development.

systems and (2) the evaluation of AI
1

product (May, 1986), Turbo Prolog'

an AI language and a programming

systems. The goals of the project

described in this report were (1) the evaluation of Turbo Proiog as an A!

language and (2) the production of benchmark programs, written in Turbo

ire.lyProlog, which permit Turbo Prolog's execution speed to be (_ _

compared with that of alternativesalready evaluated by the AI Section'S.

tn order to achieve the first goal, time was devoted to a study

of Turbo Prolog in the context of other versions of Prolog and the

development of simple programs using this language. Two simple tests of

Turbo Prolog's execution speed were made using the computation of

factorials and the Towers of Hanoi. The final benchmark program was of

the standard type used by the AI Section in evaluating the speed of a

number of expert system development tools 3. The problem is one of

proceeding to a prescribed goal by means of subgoals which must be

achieved first. Initial conditions are supplied and approximately thirty

rules specify the manner in which the subgoals and the final goal may be

satisfied. This benchmark has been written and implemented in a variety

23-3

of languages on a variety of computers. By comparing the speed with

which this benchmark program executes when written in Turbo Prolog

with the same benchmark in different programming languages running on

the same computer, a measure of Turbo Prolog's efficacy as a language for

the development of expert systems can be had.

This report begins by discussing the history of Prolog and

continues by presenting the major features of Turbo Prolog, emphasizing

those which set it apart from other versions of the language. Finally, the

benchmark timing results are presented and come conclusions are drawn

regarding the use of Turbo Proiog as a tool in the development of expert

systems.

A Brief History of Prolog

The origins of Prolog (PriEQ.gramming in Lo_ig_qic)can be traced back

to the 1965 publication of the Resolution Principle by J. A. Robinson 4.

During the early 1970's a number of workers attempted to implement

languages that embodied logic 5'6'7'8'9'10. Kowalski's development of

predicate calculus in 197211 added a powerful tool to the kits of those

seeking to produce languages that were oriented toward theorem proving.
It was the collaborative efforts of R. A. Kowalski and Alain Colmerauer

during the year Kowalski spent at the University of Marseilles that led to

the development of Prolog's specifications 12 in 1972. Colmerauer and his

coworkers at Marseilles quickly began to implement these specifications

and produced the first interpreters in 197313,14 With the detailed

publication of Prolog's specifications in and of its implementation in

197515, other university groups began to use the "Marseilles" Prolog and

began to develop their own Prolog versions 1617,18,19,20 It was the

publication of Programming in Prolog by Clocksin and Mellish in 198121

that brought some order to the proliferation of dialects of Prolog. By

1984, with the appearance of the second edition of Clocksin and

Mellish 22, most users of Prolog were accustomed to a common syntax and

grammar for the language.

The announcement by Japan in 198223 that Prolog would be the

23-4

DRIGINAE PAGF5 l_

OF POOR QUALrTy

language for their "fifth-generation" project catapulted Protog, until that

time a predominantly European institution, into international prominence

Until recently most U.S. AI practitioners have eschewed the use of Prolog

in favor of Lisp, in large measure due the the availability of powerful

development environments for Lisp machines. The advent of Turbo Pro!oq

may well serve to introduce Prolog into the "mainstream" of computing in
the U.S. It provides a powerful and inexpensive (<$i00) development

environment for Prolog utilizing an extremely popular personal computer

family--the IBM PC/XT/AT).

Features of Turbo Prolog

Naturally, the feature that sets Turbo Prolog (and,

matter) all Prologs apart from other At languages

backward-chaining nature. Most commonly used expert

development tools are implemented with Forward-chaining,

some, like KEE and ART, can employ backward-chaingin atso.

for that

is it.s

system

although
At first

glance Turbo Prolog seems to have embraced the syntax and functionality

of the "standard" set by Clocksin and Meilish 22. Syntactically, this is

more "almost" correct. Important differences exist, however, which are

pitfalls for the experienced Prolog programmer. One essential difference

(from which flows many "subdifferences") is the typed nature of the

Turbo Prolog compiler. In this instance Turbo Protog resembles FORTRAN

or Pascal--each domain's type must be declared, either in the "domain"

section or in the declaration of a predicate. This single feature sets

Turbo Prolog apart from other versions of Prolog and from most other AI

languages in general. It is both a weakness and a strength. There is no

doubt that much of the speed and error checking power of the compiler is

due to domain typing. Experienced AI programmers are not accustomed to

a requirement that domains be typed. It is common to have functors, for

example, whose arguments may change from integer to real as a result of

a clause. In Turbo Prolog this means that each possible argument type

must be declared at the time the program is written. Additional "deltas"

with other Prolog versions also exist. For example, "=" is not the

unification operator of Clocksin and Mellish, rather it is more like the "is"

operator; commas do not act as operators; the programmer cannot define

his own infix operators; the result of an arithmetic operation depends on

23-5

the type(s) of the arguments; operators cannot be passed as functors; and

missing are the standard predicates arg, functor, c!ause, univ, and oD.

Turbo Prolog unfortunately lacks a virtual database support and database

predicates are not executable.

Figure t shows the structure of a Turbo Prolog program The

elements that are enclosed in brackets are optional. The program section

is used if this program is to linked to others (written in Prolog, C,

FQRTRAN, Pascal, or Assembler) to form an executable whole. The

directives section is used to issue orders to the compiler-(for example,

invoking the trace facility or declaring the amount of memory to be
allocated to the code). The domains section isused to declare the types

of all predicate arguments (it may be omitted if there are no compound

predicates and the type declaration can be included in the predicate

section). Global domains are used for those predicates tl_at will be

PROL08 PROSRArl STRUCTURE

[PROGRAM]

[DIRECTIVES]

DOMAINS

[GLOBAL DOMAINS]

[DATABASE]

PREDICATES

[GLOBAL PREDI CATES]

CLAUSES

[GOAL]

FIGURE 1: The Structure of a Turbo Prolog Program

23-6

ORIGINAL PAGE 1_

OF POOR QUALITY

accessed by other programs linked to the present one and the database

section is used to identify those predicates that will be changed by

"assert" during program execution. The predicate section contains a list

of a!1 predicates and their arguments and the global predicate section

serves the same function as the global domains section. Clauses are

listed in the clause section. Goals may be declared in the program itself.

If the goal section is missing, Turbo Prolog prompts the user for a goat in

the dialogue window.

In "giving" up some of the familiar features of other Prologs, the

user of Turbo Prolog does gain a great deal. Unlike most AI languages.

Turbo Protog contains a complete set of arithmetic and trigonometric

operators. In addition, there are about thirty "new" standard predicates

that allow the programmer to access tt_e full range of power of the iBl'i

PC family. For example, Turbo Prolog contains a complete set of graphics

commands for the PC, including windowing and the ability to mix text and

graphics in the same window. Sound and color are both supported as well

as input/output via files, devices, or ports. Turbo Prolog allows the

programmer to link a prolog program to other programs written in C,

FORTRAN, Pascal, or Assembler. The programmer (as well as the user of a

developed application) has full access to DOS, BIOS, and the built-in Turbo

editor. Perhaps the "nicest" thing provided by Turbo Prolog is a powerful

development environment, based on the PC, that is extraordinarily

inexpensive compared with those used by most AI programmers. The
development environment provides four windows (the user controls the

size and foreground/background color of each window): editor, dialogue,

trace, and message. A banner menu is provided allowing tne user to
select editor, run (compiles and runs), compile (altows the user to

compile to an object or executable file), options (selects whether the

compilation is to an object or executable file), setup (allows the user to

configure the windows, define directories, and perform other useful

"housekeeping" tasks) and quit (which returns the user to DOS). The editor
is a "full-window" editor and uses the commands of Wordstar. The

compiler, like that of Turbo Pascal, stops when an error in encountered,

returns to the programmer to the editor, and places the cursor at tt_e

location of the error. The powerful trace facility allows the user to

examine every call and return for the entire program or for selected

23-7

clauses. All-in-all, Turbo Prolog is a pleasant way to quickly develop

executable code.

Benchmarks

Three benchmarks were chosen to measure the speed of

execution of a Turbo Prolog program in performing three very different

tasks. To test Turbo Prolog's execution speed with arithmetic operations,

a simple program was used to compute the factorial of an integer

(Appendix A contains the source code for this program). The program was

run on an IBM PC and an IBM PC/ATto compute the factorial of 170 (the

result of this computation is near the capacity of the PC). The time

required for this computation is shown in Table I. The Towers of Hanoi

problem provides another benchmark program which is intensively

recursive and makes large demands on the stack (Appendix B contains the

source code for this program). The times required for the execution of

this program with different numbers of disks are also included in Table I.

The final benchmark was chosen to permit the speed of Turbo

Prolog to be directly compared to that of other expert system tools in the

execution of a rule-based expert system. The problem tackled was a

variation of the well-known "monkey and bananas" problem 24. This

particular variation was developed by the AI Section as a means of

comparing a large number of expert system development tools 2,3. The

general problem is prototypical of a number of planning problems in which

many subgoals must be identified and reached in order for the "main" goal
to be achieved.

The monkey and bananas program, as implemented in Turbo

Prolog (the source code for the program is contained in Appendix C)

consists of 34 "rules"in the form of clauses or subclauses. A total of 22

predicates were used. Table 2 contains the time required for execution of

this program on both the IBM PC and IBM PC/AT. The table also contains

the accumulated timing tests obtained by the A/ Section through the end

of July, 1986. It should be noted that there is some ambiguity in

determining the execution speed of a Turbo Prolog program. After

compilation is complete, but before execution begins, Turbo Prolog

. 23-8

TABLE 1' Execution T_rnes '_ _.... =_"_"_'_"_ "_'"-
IUI I WU L)_'llL, IIIIIgll_b Ubllly

Turbo Prolog (SeeAppendices for Source Code)

Benchmark

Factorial of 170

Towers of Hanoi

3 Disks

Execution Time,s _s'_

IBM PC

0.';L7

<0.00'5

IBM PC,/AT

O.10

10 Disks

i 2 Disks

15 Disks

16 Disks

0.27

1.';."0

. .__hJ

0.10

0.43

3.4¢I
I

6.86
i

checks the program's clauses against the given goal(s). Those clauses

which will be called in order to reach the given goal(s) are selected

through this "preprocessing". Only after thls is accomplished is the goal

actually executed. Thls means that the Internal time function can only be

accessed after the preprocesslng is complete. Since the user is normally

concerned with the _ "run" time, which includes both preprocessing

and execution, it is this run time which is reported. A footnote gives the

measured execution times for the program running on both machines
tested.

Concluslon8

Turbo Prolog may be, in the view of at least one evaluator25,

not so much another version of Prolog,as a new language in itself.Turbo

Prolog has proven to be exceptionallyeasy to begin to use and Borland has

"encased" it in an superb development environment. The syntax of the

language and itsstandard predicatesdepart significantlyfrom the Prolog

"standard";this may pose a barrierto the experienced Prolog programmer,

23-9

Tab]e 2: Timing Tests of Expert System Too]s for the NASA

"Monkey and Bananas" Benchrnark*

TOOL(VERSION) MACHINE TIME(S)

ART(V2.0) SYMBOL ICS 1.2

ART(V2.0) TI EXPLORER 2.4

ART(V2.0 BETA) LMI 3.0

ART * _ SYMBOLICS 7.6

ART(V BETA ,3) VAX 17

CLI PS(V3.0) SUN t.2

CLIPS(V3.0) VAX 2.5

CL! PSi V3.0! HP9000 4.0

CLt PS(V3.0) IBM PC/AT 7.0

CLI P$(V3.0) IBM PC 2t. I

ExperOPSS(V 1.04) MACINTOSH 55

KEE(V2.1.66) ** SYMBOLICS 17.8

KEE(V2.2.66) SYMBOLICS 16S

OPSS(VAX V2.0)

OPSS(FORGYVPS2)

OPSS+(V2.0003)

OPS5+(V2.0002)

OPSS+(V2.0002)

VAX 1.3

SYMBOLICS 1.7

IBM PC/AT 5.2

MACINTOSH 14

IBM PC !9

0PS83 VAX 0.46

0PS83 IBP1PC/AT t. 1

0PS83 IBM PC ,3.3

TURBO PROLOG IBM PC/AT 6.73 **_

TURBO PROLOG IBM PC 20.43 ***

*SOURCES (EXCEPT TURBO PROLOG): NASA MEMOS FM7(86-51) AND

FM7(86-117)

* IMPLEMENTED USING BACKWARD-CHAINING RULES

''"RUN TIME", EXECUTION TIMES are 0.2!S AND 0.65 FOR PC/,_,T/ND PC

23-10

but others (especially fans of Turbo Pascal) will appreciate the "unique"

features of Turbo Prolog. Those predicates which are missing from Turbo

Prolog are either seldom used or their function can be achieved in other

ways. The superb programming environment (convenient editor, powerful

trace facility, compiler, built-in mathematical functions, and access to

IBM PC features such as graphics, windows, color, sound, and I/O through

ports or files) coupled with its inexpensive cost makes Turbo Prolog an

attractive tool for those who have not tackled an AI language before. For

those developing expert systems, Turbo Prolog may prove to be

well-suited for fast prototyping of "small" rule bases or for those

applications that lend themselves to backward-chaining approaches (for

example, theorem proving). Surprisingly, Turbo Prolog executes the NASA

benchmark as fast as popular expert system development tools like OPS5+
or NASA's own CLIPS.

Appendices

The appendices mentioned in the body of this paper are not

included with the published report due to their length. Copies of these

appendices may be obtained directly from the author or from his

NASA/JSC colleague, Robert T. Savely (NASA/Johnson Space Center, Mail

Code FM72, Houston, TX 77058).

23-11

REFERENCES

I. Turbo Prolog is a product of Borland International,Inc.,4585 5cotts

Valley Drive, 5cotts Valley,CA 95066.

, Gary D. Riley, "Timing Tests of Expert System Building Tools," NASAl

Johnson Space Center, Memo FM7(86-51); Robert T. 5avely, "Availability

of an Expert System Tool," NASA/Johnson Space Center, Memo FM7
(86-117).

, Gary D. Riley, "Benchmarking Expert System Tools," in Proceedings of
Robex '86 (The Second Annual Workshop on Robotics and Expert

Systems), held at NASA/Johnson Space Center, 4-6 June 1986, p. 81.

4. J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution

Principle," J. ACM 12(1), 23(1965).

5. G. Sussman and D. V. McDermott, "MICRO-PLANNER Reference Manual,"

AI Memo 203, AI Laboratory, MIT, 1970.

6. R. M. Burstall, J. S. Collins, and R. J. Popplestone, Programming in

POP-2 Edinburgh: Edinburgh University Press, 1971.

, C. Hewitt, "Description and Theoretical Analysis (using schemata) of

PLANNER, a Language for Proving Theorems and Manipulating Models in a

Robot," Report No. TR-258, AI Laboratory, MIT, 1972.

8. D.J.M. Davies, "POPLER: A POP-2 Planner," Rep. No. HIP-89, School of

AI, University of Edinburgh, 1972.

9. G. Sussman and D. V. McDermott, "CONNIVER Reference Manual," Memo

259, AI Laboratory, MIT, 1972.

I0. D. Davies, et. al.. POPLER !.5 Reference Manual, Edinburgh: University

of Edinburgh, 1973.

23-12

11. R. A. Kowalski, "The Predicate Calculus as a Programming Language," in

Proceedings of the International Symposium and Summer School on

Mathematical Foundations of Computer Science, held at Jab_'onna,

Poland, 1972.

12. A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero, "Un Syst_me de

Communication Homme-Machine en Frangais", Rapport preliminaire,

Groupe d'lntelligence Artificielle, Universit_ d'Aix-Marseille, 1972.

13. G. Battani and H. Meloni, "lnterpr_teur du langage de programmation

PROLOG," Group d'lntelligence Artificielle, Universit_ d'Aix-Marseille,
1973.

14. A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero, "Un systtme de

Communication Homme-Machine en Frangais," Rapport de Rechereche

sur le contrat CRi no 72-18 de f_vrier 72 a juin 73, Groue d'inteiiigence

Artificielle, Universit_ d'Aix-Marseille, 1973.

15. P. Roussel, PROLOG. Manuel de R_f_rence et d'Utilisation. Universit_

d'Aix-Marseille: Groupe d'lntelligence Artificielle, 1975.

16. D. H. D. Warren, "Implementing Prolog--Compiling Predicate Logic

Programs," DAI Report Nos. 39 and 40, Edinburgh, 1977.

17. D. H. D. Warren, L. M. Pereira, and F. C. N. Pereira, "Prolog--the Language

and Its Implementation Compared with Lisp," presented at the ACM

Symposium on Artificial Intelligence and Programming Languages,

Rochester, New York, SIGART Newsletter No. 64, SIGPLAN Notices

12(8), 109 (1977).

18. J. Bendl, P. K6ves, and P. Szeredi, "The MPROLOG System," in T_rnlund

1980, 20 ! (1980).

19. F. G. McCabe, Micro PROLOG Programmer's Reference Manual, London:

Logic Programming Associates Ltd., 198 i.

23-13

20. F. Klu_niak and S. Szpakowicz, Prolog, Warsaw: Wydawnictwa

Naukowo-Techniczne, 1983.

21. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Berlin:

5pringer-Verlag, 1981.

22. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Second Edition,

Berlin: Springer-Verlag, 1984.

23. "Outline of Research and Development Plans for Fifth Generation

Computer Systems," Institute for New Generation Computer Technology

(ICOT), Tokyo, May, 1982.

24. L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert

Systems in 0P55, Reading, MA: Addison-Wesley Publishing Co., 1985.

25. D. Rubin, "Turbo PROLOG: A PROLOG Compiler for the PC Programmer,"

AI Expert. Premier Issue, 87 (1986).

23-14

