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ABSTRACT 
We have found analytic solutions of the time dependent Fokker-Planck equation for 

accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. 
First we find an exact solution for arbitrary pitch angle and energy distribution in a uni- 
form background plasma. Then, for an inhomogeneous plasma we find an approximate 
solution for particles with small pitch angles. We have used these solutions to calculate 
the temporal evolution of bremsstrahlung x-rays from short bursts of non-thermal electron 
beams, and compared these spectra with observed high time resolution spectra of short 
timescale solar hard x-ray bursts. We show that, as expected, the observed softening in 
time of the spectra rules out a homogeneous background and therefore the possibility of 
electrons being confined to the corona either because of converging magnetic field or high 
densities. We also apply the inhomogeneous solution to a model with constant coronal 
density and exponentially rising chromospheric density. The spectra are shown to be con- 
sistent with that produced by a collimated beam of electrons accelerated in the corona with 
the following restrictions: the electrons must be injected over a time t o  with .1 s S t o  5 .2  s; 
the coronal loop length must be longer than - 5 x 10' cm (which rules out acceleration 
near or below the transition region); the scale height below the transition region must 
be shorter than N 3 x 10' cm; the column depth above the transition must be less than 
1.7 x lo2' cm-*; and depending on the collimation of the beam the magnetic field must 
not converge rapidly. These condi)ions could violated if large pitch angle electrons are 
present. 



RAPID TEMPORAL EVOLUTION OF RADIATION FROM 

NON-THERMAL ELECTRONS IN SOLAR FLARES 

I. INTRODUCTION 

It is generally agreed that the bulk of the hard x-ray emission from the impulsive 

phase of solar flares is due to thick target bremsstrahlung emission from non-thermal 

electrons. In these models, electrons are accelerated in the corona and stream downwards 

along magnetic field lines towards the chromosphere where they lose most of there energy 

through Coulomb collisions with the background plasma particles. Until recently, the time 

resolution of observing instruments has been longer than the typical interaction timescale 

of the electrons. Short timescale variations were therefore lost in the time integration of the 

instruments. Consequently, most of the calculations of x-ray spectra have assumed steady 

state conditions (e.g. Brown 1973, Leach and Petrosian 1983). However, observations from 

the hard x-ray burst spectrometer (HXRBS) on SMM have provided high time resolution 

spectral information on hard x-ray bursts (Kiplinger et a1 1983). Figure 1 shows an example 

of a burst with a rise time of - .25 s and a decay time of N .4 s reported by Kiplinger 

et al (1984). Over the course of a burst, the spectra show gradual softening on timescales 

of a tenths of a second and shorter (Kiplinger et a1 1984, see also Kane and Anderson 

1970). Since this time is of the order of the collisional timescale for particles, steady state 

treatments of the problem are not valid. Emslie (1983) considered the time dependent 

problem but did not include the full effect of scattering on the distribution of electrons. 

We will solve the time dependent Fokker-Planck equation including both energy loss and 

pitch angle diffusion for electrons stopped in a background plasma. In section I1 we present 
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analytic solutions for the case when the background plasma is of constant density, and for 

the case when the background plasma density is spatially varying but the electrons are 

moving with small pitch angles with respect to the magnetic field. In section I11 we assume 

a model for the x-ray burst region and use the solutions developed in section I1 to calculate 

the bremsstrahlung x-ray spectra produced as a function of time. We then compare these 

time dependent x-ray spectra to the observations, and from this place constraints on the 

length of the coronal magnetic loops and on the characteristics of the initial injection 

spectrum of the electrons. Section IV provides a summary. 

11. THE TIME DEPENDENT KINETIC EQUATION 

The Fokker-Planck equation describing the evolution of a distribution f ( E ,  p! s? t )  of 

electrons injected into a cold ionized hydrogen plasma with a magnetic field of strength B 

is 

This is an extension of the steady state Fokker-Planck equation derived in Leach and 

Petrosian (1983) to which we have added the time evolution term (A,/cP)af/at. 

The length scale A. s cm)(n,/ ~ m - ~ ) - l  (lnA)-l, where ne is the background 

electron number density and 1nA x 20 is the Coulomb logarithm. Note that A0 is in 

general a function of the spatial coordinate s. The remaining variables are as defined 

in Leach and Petrosian (1983) with p being the cosine of the pitch angle with respect 

to the magnetic field, and E = y - 1 being the kinetic energy in units of mec2. It is 

convenient to define the dimensionless column depth r as d r  G ds/Ao E nds/No, where 
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No = cm-2)(lnA)-1. This is a one spatial dimensional problem as the electrons are 

assumed to be tied to the field lines so that diffusion across the field lines can be ignored. 

From a given distribution f(E,p,s,t), it is a straightforward matter to evaluate the 

bremsstrahlung spectrum I ( k ,  8, s, t )  as a function of the angle of emission 8 with respect to 

the local magnetic field, and the photon energy k at each space and time point. However, 

the high time resolution x-ray observations are spatially unresolved and thus correspond 

to the x-ray flux integrated over the entire emission region, which we assume to be a closed 

magnetic loop. The spatially integrated x-ray spectrum in a direction 0 with respect to 

some fixed axis (such as the earth-sun axis) is then 

In general, because of the complicated geometry of the flaring loop, the angles 8, 0, and 

( k ,  E << l), Q is nearly isotropic so we can take Q out of the integrals over s and p. As 

k and E increase, this approximation becomes less and less valid. However, at higher 

energies most of the emission will come from deeper regions of the chromosphere where 

the magnetic field is approximately straight. In this case 0 is independent of s so we can 

again take Q out of the integral over s. Then if we define an integrated electron flux 

equation (2) becomes 
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If we integrate equation (4) over all directions of emission we obtain the total spectrum as 

a function of time. 

Here a ( k , E )  is the integrated (over angles) bremsstrahlung cross section for emission of 

photons of energy k by electrons of energy E. For non-relativistic energies the Bethe- 

Heitler cross section is used. 

1 + (1 - k/E)'/2 
1 - (1 - IC/E)lI2 (7) 

The spectrum in a particular direction may, however, be different than the total spectrum. 

In general for energies below 100 keV we expect the difference to be small (Petrosian 1973), 

especially if we consider the effect of the photospheric albedo (Bai and Ramaty 1978, 

Langer and Petrosian 1977) which tends to isotropize the emission. More importantly 

however, the time evolution of both the mean and directional spectra will be similar so 

that I(k, t )  will give us a good representation of the temporal evolution of the emission in 

a particular direction. For the purposes of this paper we are primarily concerned with the 

temporal evolution of the x-ray spectrum. A more detailed analysis would have to take 

into account the anisotropic emission, the photospheric albedo, and the geometry of the 

loop. Furthermore, we neglect the effects of plasma wave generation by the electron beam 

which could make the spectral time variations we will consider less pronounced. 

With the approximations of equations ( 5 )  and (7) it can be shown that the logarith- 

mic part of equation (7) has negligible effect on the spectra at the level of the existing 
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observations (Petrosian 1973). In this case a power law integrated flux F ( E )  cx E-6 will 

lead to a power law x-ray spectrum I( I C )  a k-6-1 . As we shall see, for an electron injection 

spectrum which is a power law, the integrated electron flux G ( E ,  t )  will be an approximate 

power law so that the approximation I(lc,t) cc G(k , t ) /k  is valid. Consequently, we shall 

use the electron spectrum G( E,  t )  to distinguish between models. We have however tested 

the validity of this approximation by integrating equation ( 5 )  and found it to be within 

the accuracy needed for this analysis. 

In other astrophysical situations, however, and for higher spatial and spectral resolu- 

tion, knowledge of the spatial and angular dependance of the distribution function may be 

required. We therefore present first some general solutions explicitly showing the spatial 

and angular dependence of the electron distribution. 

A. Homogeneous Case 

i )  General Solution: Here we assume the plasma density and magnetic field are constant 

so that A0 is constant and dlnB/ds = 0. It is then useful to define the dimensionless time 

variable y, 

ct t 
Y Z - - -  

A0 - T' 
- 

Integrating equation (1) over r and making use of the fact that there are no particles at 

r = f o o  we obtain 

This equation also describes the situation where the same distribution of electrons is in- 

jected throughout an infinite and homogeneous plasma. 
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and 

Defining new variables q5 F F/P2 ,  dij E PdE, and dpldij  E l/p3+y2 so that 

1 

i j  = ( E2 + 2E)  ' + sin-' 

equation (9) becomes 

The distribution q5 is now separable and can be written in the form 

where Pl(p) are the Legendre polynomials, and Zl(y + i j )  are functions to be determined 

from the boundary condition of the distribution of electrons at injection. 

In what follows we shall assume that the initial injected electron flux is separable in 

pitch angle, energy, and time. 

It is convenient to find the solution for a delta function injection time profile k(y) = S(y) 

which we designate by Fb(ij, p,  y). The general solution for an arbitrary injection time 

profile k(y) is found by convolving the solution for a delta function injection with k(y) 

Evaluating equation (13) at y = 0 and using the orthogonality of the P&) we obtain 
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Inserting Zl(ij + y) back into equation (13) gives 

(17) 

for the distribution of the flux of electrons as a function of time after the electrons are 

injected at y = 0. 

Note that the factor 

decreases rapidly with increasing 1 and time y so that only a limited number of terms need 

be considered in the sum as y increases. 

As is evident, the distribution scales with time as i j  + y. In general, g ( q )  will be a 

rapidly decreasing function of fj such as a power law in energy. We can therefore identify 

y = i j as the stopping time for electrons of energy parameter i j .  For non-relativistic 

particles, i j  x P I 2 ,  so the stopping time wiii be proportionai to B3iz .  This is as expected 

since the scattering cross section decreases as E-* while the rate at which the electron 

travels through the plasma increases as E l l 2 .  

i i )  The Small Pitch Angle Solution: In the limit of small pitch angle (electrons moving 

approximately parallel to the field lines, p x l), the solution can be expressed in a more 

manageable form which involves an integral instead of an infinite series. This integral can 

be performed in closed form in certain cases. In addition, this solution can be extended to 

the inhomogeneous (T dependent) case as described in the next part. 

Let cy be the sine of the pitch angle 

cy = (1 - p 2 ) i  x pitch angle << 1 
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To first order in a equation (9) becomes 

aF d , F ,  1 1 d ,  dF. 
-= -( 2 )  + ---@-) dy dE P3y2 ada d a  

which can be solved as was equation (9) to yield 

This solution is similar to the spatially homogeneous but time independent solution of 

equation (1) (cf. Leach and Petrosian 1983). For an initial distribution which is gaussian 

in CY, 

the integrals in equation (20) can be solved to yield a pitch angle distribution which remains 

gaussian, but with a dispersion which increases in time. 

The small pitch angle approximation breaks down at non-relativistic energies for times 

y 2 E312 since electrons of energy E are scattered away from the small pitch angle regime 

in time of order y "N E312. We have compared the exact solution (17) and the approximate 

solution (22) for a gaussian pitch angle injection with ai << 1. We find them to agree 

well (- 20%), for as .2 ,  and for y s  E312 when the summation of Legendre Polynomials 

in equation (17) was truncated at I = 12. 
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The integration over p of the exact solution equation (17) (or the solution (22)) is 

trivial and replaces the series in (17) (or the last two terms in (22)) with unity. Substituting 

this into equation (15) we obtain the general integrated time dependent electron spectrum 

G(E,  t )  needed for the calculation of the bremsstrahlung spectrum. 

G(E,t) = 
@"c9 

g(fj + y - y')k(y')dyI 

This result can also be obtained directly by noting that integration of equation (12) over 

dp gives zero on the right hand side. Solving the resulting equation gives equation (24). 

B. Inhomogeneous Case 

It turns out that a method similar to that used for the homogeneous case in the small 

pitch angle regime yields a solution (albeit a a complicated one) for the spatially inho- 

mogeneous case. This solution includes the effects of spatial variation of the background 

density and magnetic field (for a distribution integrated over pitch angle). The general 

solution is discussed in detail in the Appendix. Here we assume dlnB/ds = 0. Since A0 

(or 2') is now a function of r ,  we no longer use the variable y. Making the T dependence 

explicit, the equation to be solved is 

The general solution of this equation is presented in the Appendix. For an initial particle 

flux distribution at r = 0 of F(E, (Y, r = 0, t )  = g(E)h(a)k(t) ,  this has the solution (see 

equation A26) 



where 

E2 
E+1 '  

ds' 

00 

H ( w )  j J,(WCY)h(ff)CYdff, (29) 

and p ( v )  is as defined in equation (11). For h(o)  a gaussian as in equation (21) the integral 

over w can be performed to yield 

The function R(q,r)  has the simple physical interpretation of being the the time it takes 

for an electron having energy E(q +T -T(s ' ) )  at s' to travel a distance s. This electron has 

energy E at s but started out with energy E ( ~ + T )  at s = 0. Thus, the whole distribution 

scales with energy as E(q  + 7). However, since the Fokker-Planck equation is a statistical 

equation and does not follow individual electrons, this does not describe what actually 

happens to a single electron but rather what happens to the distribution. For extremely 

relativistic particles, ,f3 x 1, this integral reduces to 

Thus the solution has a time dependence k ( t  - s/c) which means that the distribution 

propogates along the field lines with velocity c. This is just what is expected for small pitch 

angle relativistic particles. We caution here that for extremely relativistic particles the 

equation used by Leach (1984) and here for the small pitch angle regime needs corrections 

(McTiernan and Petrosian 1987). 
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The function Q ( ~ , T )  can also be expressed in closed form for the case of constant 

background density T=constant. The time dependence will then be of the form 

where i j (q) is the function i j  defined in equation (10) written as a function of 7 defined 

in equation (27). This assertion can be readily proven by inserting equation (35) into 

equation (25). Note that just as for the homogeneous case the flux integrated over pitch 

angle can be carried out trivially. As shown in the Appendix, this is also possible for the 

case with non-uniform magnetic field as long as the pitch angle remains small. The spatial 

integration, however, cannot be done analytically. 

III. NUMERICAL RESULTS AND COMPARISON WITH OBSERVATIONS 

Here we present the variation in time of the x-ray spectrum assuming that the injected 

electron flux is a separable function of time, pitch angle, and energy as in equation (14). 

Furthermore, as described at the end of section I, for the purposes of this paper we need 

only to consider the spatially and angularly integrated electron spectrum G(E, t ) .  

Figure 2 shows G(E,t) for the constant density case (equation 24), for a gaussian 

injection time profile k ( t )  = exp(-t2/ti), and an initial energy spectrum which is a power 

law g(E) o< E-6. The important thing to note about this figure is that the spectrum 

hardens in time. As was pointed out by previous authors (Kane and Anderson 1970, 

Petrosian 1973), spectral hardening is expected in a constant density background because 

the stopping time for non-relativistic electrons is proportional to E3I2. Again, this assumes 

the injected electron energy spectrum does not change in time. Since the function G(E, t )  
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becomes flatter in time, we can immediately conclude that the electrons are not collisionally 

stopped in the constant density corona. If there is no appreciable magnetic mirroring 

which traps the electrons in the corona so that the majority of electrons only traverse 

down the loop once, then an upper limit can be placed on the integrated column density 

of the loop in the corona from the acceleration region to the transition region, Ntr. The 

absence of hardening in the spectrum shown in figure 3 shows that most of the electrons 

with E2.06 (i.e. 2 3 0  KeV) go through the corona and enter the chromosphere. Thus 

Ttr < q(E = .OS) = 3.4 x 

Ntr / nds < 1.7 x 1020cm-2 
corona 

(33) 

For a coronal density n = 1010cm-3, this constrains the coronal loop length to be less 

than 1.7 x lOl0cm (not a very stringent limit). 

This observation also places a limit on the convergence of the magnetic field, d1nBld.r. 

This is because a converging field will trap electrons in the uniform density corona and 

produce x-ray spectra which harden in time. Just how small dlnB/dT must be depends 

on the pitch angle distribution since the smaller the pitch angles, the greater must be 

the magnetic convergence to trap the particles. Our analytic solution assumes constant 

B field so that for a quantitative limit on dlnB/ds, one needs numerical solutions of the 

Fokker-Planck equation. However, neglecting collisions in the low density coronal portion 

of the loop, we can estimate that the ratio of the field at the transition region to that at 

the injection region (BtrlBinj) < cyo . -2 

Another argument against the electrons being stopped in the corona is that the decay 

time of the burst is too long for reasonable values of density. In order to produce a burst 
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decay time of order a few tenths of a second in a uniform background, the background 

density must exceed 10l2 ~ m - ~ .  This would be an extremely high coronal density.' In any 

case, this would also produce a spectrum which hardens markedly over the course of the 

burst, contrary to the observations. 

It is possible to produce a spectrum which softens in time with a background density 

which increases with distance from the injection point. This is because the higher energy 

electrons penetrate to the denser plasma faster and can thus decay faster than the lower 

energy electrons (cf Petrosian 1973). This condition requires the solution of the inhomo- 

geneous equation. We can analyze this situation if the injected electrons have small pitch 

angles. The x-ray spectral evolution was calculated using equation (30) for a model where 

the input spectrum integrated over pitch angles was 

F(E,~ = o,t> = E - ~  exp(-t 2 2  / t o )  (34) 

The density n was 
no o < s < s t  

no exp(+o) s > S t  

n = {  (35) 

with st the half length of the loop above the transition region and so the scale height 

below the transition region. Figure 3 shows the spectral evolution of G(L,t) /L for no = 

lolo ~ m - ~ ,  SO = lo7 cm, st = 1.4 x lo9 cm, 6 = 4.2, and to = .13 sec. For comparison, 

measured spectra from the HXFU3S (from Kiplinger et a1 1984) are also plotted on the 

same graphs. The calculated spectra are time integrated over 128 ms intervals in order to 

match the time resolution of the HXRBS. 

The value of no does not have much effect on the spectra because st and no are chosen 

so that few electrons are stopped in the corona, 7 ( s t )  << 7. We also find that the degree 
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of spectral softening is not very sensitive to the injected spectral index S for 3 < 6 < 5. 

Values of the scale height $0 greater than - 3 x lo8 cm did not lead to rapid enough 

spectral softening to be consistent with the observations. Once so is reduced much be- 

low this value the degree of spectral softening remains essentially unchanged because the 

electrons are stopped rapidly compared to the 128 ms integration time. 

In general, the larger st is, the higher the degree of spectral softening. This is because 

the faster electrons can become more spread out from the slower electrons before they 

reach the exponentially increasing density region. Values of st smaller than - 5 x lo8 cm 

did not lead to sufficiently rapid spectral softening. Thus the coronal loop length must be 

longer than this, which excludes the possibility of acceleration occurring close to or below 

the transition region. We therefore have for the density profile parameters the following 

constraints: SO < 3 x lo8 cm and st > 5 x lo8 cm. 

The value of the injection width t o  has a large effect on the spectral evolution. The 

larger the value of t o ,  the smaller the amount of spectral softening because new particles 

are still being injected as the earlier particles reach the higher density regions. Small 

values of t o  ( 5.1 s) lead to very rapid spectral softening and rapid decay of the burst. 

With the assumption of small pitch angles, injection widths t o  5.1 s are incompatible with 

observations. If the injection width is less than N .Is then large pitch angle electrons 

(sin-' a ~ 3 O 0 )  are needed to spread the pulse out before it reaches the high density region 

(s > s t ) .  On the other hand, t o  2.1 s leads to a burst decay which is too slow. Thus, this 

model requires .I s 5 t o  5 .2  s. 

Figure 4 compares the calculated spectra with the data a t  point D for values of these 

14 



parameters ( t o ,  so, and s t )  outside of the acceptable ranges. The other parameters were 

adjusted so that the calculated spectra fit the data at times A and B. As is evident, the 

calculated spectra at point D no longer fit the data. 

IV. SUMMARY AND DISCUSSION 

We have solved the kinetic equation for accelerated particles undergoing Coulomb 

collisions in a background magnetized plasma. For a homogeneous plasma we have found an 

exact analytic solution describing the evolution of the distribution of particles in energy and 

pitch angles (with respect to the magnetic field). For an inhomogenous plasma, analytic 

solutions are possible only for particles with small pitch angles (namely, beams collimated 

along the field lines). We then compared the bremsstrahlung x-ray spectrum from a short 

burst of accelerated electrons with the high temporal resolution hard x-ray solar flare 

spectra observed by HXRBS on SMM. 

The observed softening with time of the x-ray spectra rules out the homogeneous 

solution, which means that electrons do not lose most of their energy in the uniform 

density coronal portion of the flaring loop. Most of the x-ray emission then occurs at the 

base of the loop below the transition region. Consequently, the decay time and the degree 

of spectral softening are primarily determined by the spread in arrival time of the electron 

beam at the base of the loop. The more the particles are spaced out when they reach the 

transition region, the longer the burst decay time; and the greater the spread in arrival 

times between high and low energy particles, the higher the degree of spectral softening. 

The particles are spread out by a combination of the time of fight difference from the 

acceleration region to the chromosphere, and the initial injection time width. The pitch 
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angle, the energy, and the distance from the acceleration region to the transition region 

determine the time of flight to the transition region. Since the effect of collisions in the 

corona is small, the time of fight over the distance st is st /cPp .  The difference in time of 

flight between electrons of different energies is therefore proportional to s t .  Thus, smaller 

st leads to less spectral softening . Therefore, injection of the accelerated particles near or 

below the transition region is ruled out for such bursts. 

Furthermore, the larger the range of pitch angles, the smaller the injection time t o  

has to be in order to reproduce the observations. The small pitch angle assumption basi- 

cally amounts to ignoring the difference in path length between particles of different pitch 

angles. Thus the time of flight difference from the acceleration region to the thick target 

is determined solely by the difference in particle energies. This is why our assumption of 

small pitch angle requires that t o  be greater than .1 s. Otherwise, the decay of the burst 

would be too short. Kiplinger et a1 (1984) used the non-thermal beam model of Emslie 

(1983) to model the same burst. They assumed uniform pitch angle distribution over some 

range of pitch angles and a delta function in time input. Their model contains a range of 

large pitch angle electrons so it can accomodate a delta function in time input. 

We have found that under the assumption that the pitch angles are small and that 

the injection distribution is seperable in time and energy, the flare parameters must satisfy 

the following constraints: 
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Flare Parameter Constraint 
injection time t o  . Is  < t o  < .2s 

electron spectral index S 4.1 < S < 4.5 

distance to transition region st st > 5 x IO8 cm 

column depth to transition region Nt, Ntr < 1.7 x lo2' cm-2 

scale height below transition region so so < 3 x IO8 cm 

B field convergence Btr/Binj < ai2 

Finally, we can make some order of magnitude arguments to show that injection times 

of this length are reasonable. Let the total burst energy in x-rays be E,. If the burst energy 

is supplied by magnetic reconnection, then E, = (B2/87r)VY~. Here B is the magnitude 

of the magnetic field, and V is the volume of the accelerating region. The efficiency with 

which magnetic energy is converted into that of accelerated particles is E and the efficiency 

with which the particle energy is converted into x-rays is Y .  Typically Y is of the order 

The acceleration timescale will be of order t o  - &IDA where 

L - V113 is the characteristic length of the acceleration region and OA = B / ( 4 ~ p ) ' / ~  is 

(Petrosian 1973). 

the Alfven velocity. For typical flare parameters, we find for the energy in x-rays 

E, - lo2'( 100 Gauss 1' (%I3 (109 cm-3 )-3/Zeergs (36) 

The observed energy in x-rays of the flare shown in figure 1 is of order 10'' ergs, in 

agreement with this order of magnitude estimate. 

For a more exact analysis of the high time resolution observations, general solutions 

including spatial inhomogeneities and large pitch angles are needed. This will require 
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numerical solutions of the full equation. However, as shown by Leach and Petrosian (1983) 

and here for the homogeneous case, the small pitch angle solution is a good representation of 

the general solution and gives acceptable results to much larger pitch angle then expected. 

Acknowledgements: We would like to thank Russell Hamilton and James McTiernan 

for helpful discussions. This work was supported by NASA grant 7092 and NSF grant 

ATM 8320439. 
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APPENDIX: SOLUTION OF THE INHOMOGENEOUS SMALL 

PITCH ANGLE EQUATION 

W e  will solve equation (1) for the case where the electron pitch angle is small p m 1. 

First we will consider the case where dlnB/ds = 0. From this solution, the solution with 

non-zero dln B/ds  follows immediately. 

i )  Uniform Magnetic Field With a similar change of variables which led to equations (10) 

to (12), equation (25), valid for small pitch angles, can be written as 

Solutions to this equation take the form 

where the function @(w, t ,  i j ,  T) satisfies the equation 

and 4 is now defined to be f/P. The variable q is defined such that 

E2 
E + 1  

q = JP’dE = - 

Defining new variables x and z 

1 
x 3 s ( T  - q ) ,  

z = S(T + q), 1 
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and using the chain rule 

l a  l a  + -- a -- a) --5z 2 d z '  

equation (A3) becomes 

T a Q  -- +--0 .  p at ax 

Solutions to this equation take the general form 

where the functions A, B, and c are determined by the initial conditions. Thew dependence 

of \k is suppressed here. We assume a separable initial distribution of electron flux injected 

at r = 0 of the form 

%, a, 7- = 0 7 9  = g ( 7 7 ) W W  (A131 

Noting that at r = 0, x and z are equal to -+? and $q respectively, from equations (A2), 

( A l l ) ,  and (A12) we find 

F(7- = 0) = p 2  4- e w ' p ( 9 ) A w  ( t  - fi(rl, 7- = O))Bw(?)Jo(wo)dw (A141 

Next we multiply both sides by Jo(w'a)cuda and integrate over a using the relation 

1 xJ~(wx)Jo(w'x)dx = -S(w - w').  bm . W 
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Defining 

we then find 

H ( w )  = jrn Jo(wa)h(a)ada, 

The function Sl(r],r = 0) must be equal to zero for the solution to be a product of a 

function o f t  and a function of r ] .  For this integral to be zero for arbitrary functions T(r) ,  

the limits of integration must be equal. Thus we can identify 

We can rewrite Sl(q, r )  in a simpler form using the substitution 

I I 
7 = z + x ,  

d r l  = ds'/XO ( S I ) ,  

Reintroducing the r dependence, the flux distribution function becomes 



Integrating this over dp = ctda gives 

where we have made use of equation (A16) with w' = 0. 

i i )  Non-unifom Magnetic Field: The integrated over pitch angle solution with varying 

magnetic field follows directly from this. Integrating equation (1) over all p gives 

For small pitch angle we make the approximation 

which is correct to second order in a. We then find that W/,BB then satisfies the sa.me 

differential equation as 9 (equation A3). 

We can then immediately write 

22 
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Figure Captions 

F igure  1: An example of a short timescale hard x-ray burst (27-496 keV) reported by Kiplinger 
et a1 (1984). The spectra at  points 1 through 4 are given by the circles in figure 3. 

Figure 2: Log[G(IC, t ) / k ]  representing the expected bremsstrahlung spectrum vs photon energy 
k (equation 24) at different times for a homogeneous background. The injection spectrum is 
k ( t )  = exp(-t2/ti) and g(E)  oc E - 6 .  The injection width is t o  = .05s, the injected spectral index 
6 = 4.2, and the background density is 10l1 ~ m - ~ .  The curves from A to G represent the spectrum 
fro consecutive 128 ms time intervals. Note the spectral hardening with time. 

Figure 3: Log[G(IC,t)/IC] vs IC equation (A27) integrated over 7 at different times. The injection 
profile is given in equation (34) with 6 = 4.2, and to  = .13s. The density profile is given in 
equation (35) with no = lo1' ~ m - ~ ,  so = lo' cm, and st = 1.4 x lo9 cm. Curves A through D are 
seperated in time by 128 ms and correspond to the points 1 through 4 on figure 1. The circles are 
the measured spectra from the HXRBS with fl Q uncertainties (from Kiplinger et al 1984). 

Figure 4 The same as figure 3 except we show Graph D for values of to ,  s t ,  and so outside of 

the ranges specified in section IV showing how the graphs no longer match the observations. The 
remaining parameters (which tarn out to be very close to those in figure 3) were chosen so that 
graphs A and B matched the observations. 

i) t o  = .08s; ii) t o  = .22s; iii) st = 3.5 x lo8 cm; iv) SO = 5 x 10' cm 



, . * *  

ORIGINAI: PAGE IQ 
OF ,POOR QUALITY 

1767:45 

. i  . . .. 

I 

. .  

. .  . .  

. .. 
..I 

. .  

1'57:W 1167:41 1767:48 1?61:4# 

UNIVERSAL TIME 

. .  

. :  

I 



1.1 

1.0 

. .  

, 

ORIGINAE PAGE IS 
OF POOR QUALITY 



4 . S  

4 . 0  

3.S 

! 
3 . 0  

1 . S  

I .o  

.s 

-- 

--I/ 

10 ' - 
10 

energy tkev) 

energy ( k e V )  

ORIGIN& PKGE IS 
OF PO'iR QUALITY 

4 . 5  

4.0 

3.3 

3 . 0  

2.3 

2.0 

1.9 

.I 10 .... 10 ' 

4.5 

i . 0  

3.5 

3 .0  

2.3 

2.0 

1.5 

1.0 

energy ( k e V )  

t I 

energy (kev)  

D 



4 . 5  

4 . 0  

3.s 

3 . 0  

2 . 5  

2 . 0  

t . S  

1 . 0  

. 5  

4 . s  

4 . 0  

3.s 

3 . 0  

2 .5  

2 . 0  

1 .5  

1 . 0  

.s 

pgm Y 

4.5 

4.0 

3.3 

3.0  

2.5 

2.0 

1.5 

1.0 

.5 
1 4  

4.5 

4.0 

3.5 

3 . 0  

2.5 

2.0 

1.5 

1.0 

.I 

I (  

I 

e n e r g y  (keV) 

C V .  

10 ' 
e n e r g y  (keV) 


