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SIMPLE NUMERICAL METHOD FOR
PREDICTING STEADY COMPRESSIBLE FLOWS

E. von Lavante*
01d Dominion University
Norfolk, VA
and
N. Duane Me]son**

NASA Langley Research Center
Hampton, VA

Abstract

A numerical method for solving the isenthalpic form of the governing
equations for compressible viscous and inviscid flows was developed. The
method was based on the concept of flux vector sp]ittfng in its implicit form.
The method was tested on several demanding inviscid and viscous configura-
tions. Two different forms of the implicit operator were investigated. The
time marching to steady state was accelerated by the implementation of the
multigrid procedure. Its various forms very effectively increased the rate of
convergence of the present scheme. High quality steady state results were
obtained in most of the test cases; these required only short computational

times due to the relative efficiency of the basic method.

*Associate Professor, Member AIAA

**Research Engineer, Senior Member AIAA



I. Introduction

In recent years, considerable research has been performed towards the
goal of computing three-dimensional inviscid and viscous transonic flows about
realistic configurations. The complexity of these flowfields makes their
numerical prediction very demanding in terms of the capabilities of the
numerical method and the computer used for the calculation. Numerical methods
for such problems musvt achieve high rates of convergence while 'providing
results of good quality on reasonably sized computational grids. Computer
hardware must have sufficient memory to perform the calculations and be fast

enough to provide reasonable turnaround.

Many methods for predicting the inviscid compressible flows about
realistic three-dimensional bodies have been developed. Perhaps the oldest is
the expiicit MacCormack [1] scheme dating back to 1972, Next came the
implicit (three-factor ADI) method [2,3] using central difference for the
spatial flux derivatives. The explicit, multistage Runge-Kutta method with
central differences for the spatial derivatives [4] and multigrid acceleration

[5] followed and is the method used widely around the world today.

The newest methods are the implicit schemes with flux-vector-splitting
[6-10]. References [6-8] used a full formulation of the Euler equations.
References [9] and [10] used an isenthalpic formulation which reduces the
three-dimensional problem to a set of four partial differential equations.

The energy equation was replaced by an algebraic expression.

The present effort continues the work by von Lavante and uses the
isenthalpic assumption in two-dimensions. With the governing equations
reduced to three r-rtial differential equations, it is necessary to only solve

3x3 matrices in f:e block tridiagonal system of equations. This requires



about half as much work as solving the 4x4 block tridiagonal systems if the

jsenthalpic assumption was not made (9 versus 16 elements).

Jameson has pointed out the importance of conserving total enthalpy when
solving the Euler equations (Ref. [11]). 1In his work, care must be taken to
ensure 1its conservation. In the present method, with the isenthalpic

assumption, the conservation of total enthalpy is assured, a priori.

The isenthalpic assumption is not without its drawbacks. First of all,
it is limited to steady state calculations since the substantial derivatives
of the total enthalpy and pressure are related. However, if the pressure is
'slowly' varying, the isenthalpic equations may be used. Second, for viscous
calculations, the maximum freestream Mach number is limited to transonic and
moderate supersonic values due to the requirement of no heat sources or
sinks. Finally, viscous results can be only considered approximate, since in
real flows the total enthalpy <changes within the boundary layer.
Notwithstanding these limitations, the present scheme worked well and produced

good quality results in cases where the flow is steady or slowly varying.

II. The Equation of Motion

As noted previously, there is a large class of problems where only steady
state solutions are of interest. For inviscid flows, the assumptions of
steady state flow reduces the energy equation to the simple statement that in
the absence of heat sources and sinks the total enthalpy will remain constant.
The energy equation is therefore replaced by a simple algebraic equation,
reducing the number of PDE's to be solved by one. In the case of viscous
flows, the above statement is not true. Herver, it is well known that for
the Prandtl Number Pr=1 and adiabatic walls, the total enthalpy will still be

constant., Many investigators have applied ‘e enthalpy damping acceleration



technique introduced by Jameson [5] and have effectively driven the total
enthalpy to zero at the resulting (hopefully) steady state. Several
investigators used this techique to predict very complex two- and three-
dimensional configurations and reported results that were in good agreement
with experimental data. Because of this experience, the present viscous
formulation assumes that the total enthalpy is constant even in the presence
of natural dissipatfoh. Due to the obvious limitations of the present
formulation, only the thin shear layer form of the viscous terms was
implemented. Here the viscous terms in the normal direction are assumed to be
much larger than those in the streamwise direction, which is consequently
neglected. The two-dimensional Navier-Stokes equations for compressible flows
in vector form for general, body fitted coordinates written in nondimensional

strong conservation law form using the thin shear layer assumption are

30 , OF , 3(G+Gv)
ol =0 (1)
5t ' 3 T on
where
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Using the definition of the speed of sound at stagnation conditions,
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resulting in the following form of the equation of state
=P -yl .2 2
p Y {1 - (u® + v%)} (3)

A1l variables are nondimensionalized by the stagnation values (for details,
see Reference [10]): the primes denoting non-dimensional quantities are
dropped for convenience. The viscous terms are shown after the application of
the Stokes hypothesi.s for bulk viscosity. In the above equations, p is
density, u and v are the cartesian velocity components and p 1is static
pressure. The viscous terms included in G, will be discussed later. The

metric coefficients of the transformation of coordinates are defined as

le=ng, g.Y:‘Jle’
(4)
nxg-JY§l§x=Jy‘n
where J is the Jacobian of the transformation
J = 1/(x};yn - xnya) : (5)
and UE_. and Un are the contravariant velocities
- + - +
Uz»; u§x vay Un unx ‘”‘y

The equivalent inviscid Euler equations are obtained from Eq. (1) by

setting G, = 0. The development of the solution algorithms for the Euler

equations follows below.

III. Development of Inviscid Algorithm

An implicit Euler single step temporal scheme was selected for advancing

the solution of Eq. (1) in time. After linearization in time using the Taylor



series expansions of the flux vectors F and G, and approximate factorization
of the implicit operator (details are given in Reference [3]), the basic

algorithm has the form

[I +Ata. A"] [I + At 2 B"] aQ" = -at (aEF" + anG") = R" (7)

g

Qn+1 - Qn + AQn

where A and B are the Jacobian matrices

_ ?F _ 9G
A=ap B=ag (8)

The Jacobian matrices A and B are given in detail in Reference [10]. The
special discretization of Eq. (7) can be carried out in many different ways.
In the present method, the flux vector splitting approach applied to cell
centered finite volume forJu1ation was selected. The main reason was its
superior ability to capture relatively strong shocks within at most two zones.
It can be also shown that its truncation error provides the minimum necessary
damping to 1limit spurious oscillations in the weak solutions to the Euler
equations. Based on our previous experience reported in Ref. [10] as well as
results presented to Ref. [8], it was decided to use the flux vector splitting
introduced by van Leer [13] coupled with the so-called MUSCL type
differencing. The van Leer splitting was selected because the split flux
vectors are smooth and have smooth first derivatives with respect to the Mach

number, so that their eigenvalues are also smooth.

The inviscid flux vectors F and G each have a complete set of three real
eigenvectors and can be therefore split into two vectors, one with non-
negative eigenvectors and one with non-positive eigenvéctors. Following

Reference [13], these are



F=F"+F, Ga=¢6"+6" (9)
where, for example, F¥ = (FI, F;. F;)T. In more detailed, they are in

cartesian coordinates (denoted here by *)

Fl=pc, G+ 1% Fl=oc, G -1
7o B e B o
Fy = v F Fy=vF

where ci’x = 7%% [% - % v2] », B =1y1 and M*,x = u/c*’x. Similarly,
G} = (G, + 1) 6= - by G, - 1Y
6y = u G 6, =ufy . (11)
Gy = Cay Y—:l éI ég =-Cuy l:—l- éI

with cf’y = % [%- - ’i’ u?1, My ) = v/c*’y.

A~ A

The above split fluxes F* and G¥ have, by definition, one zero

A

eigenvalue and two positive eigenvalues; similarly, the fluxes F  and G

have one zero and two negative eigenvalues; these are in the case of F:

7\1"2 1 c, (M +1) {27+1 V(ZY+1) - (M, +1) [Y+1 2%.(I-M,,,)]}




2
1277 % 1) (B t\/(?};l) + -1 R+ g ()]} (2)

A, =0

where ¢, and My are either Cx x and M*,x or c*,y and M*’y.

These split fluxes are, unfortunately, formulated in cartesian
coordinates only. They have to be trénsformed into general coordinates E
and n, which is accomplished by simply rotating the local coordinates at a
given point in the flowfield to a direction parallel with one of the covariant
vectors ¢ and ;. This procedure is described in some detail in Reference

[8]; the resulting transformation is

A

+ _ 1 =t
F = T& F
- Ap -
where F=F (Q) ) - (13)
i
X2 + Z 0 0
n” Y2
-1
and Tg = 0 yn xn
0 -X y
bt n n—l

The new dependent variable vector Q 1is obtained from Q by replacing the
cartesian velocity components u and v by the physical velocity components u

and v in the covariant direction E. These are, respectively

- ST
= - +
u (_yn u an)/ Xy Yy
-
= + '2+2
v (xn" Y, v)/ Xn * Y5

l



Knowing the eigenvalues of the split fluxes, it is now obvious that in
the special differences in Eq. (7) F* and G* have to be backward differenced
and F~ and G~ have to be forward differenced. This is accomplished by the
application of the MUSCL type differencing, described in more detail in
References [10, 8]. Here, instead of using the traditional backward or
forward finite differences operating on Ft, 6*, F~ and G~, the dependent
variables Q, which .afe better differentiable than the flux vectors, are
extrapolated to the cell faces in positive or negative direction, depending on

the sign of the eigenvalues. The RHS of Eq. (7) becomes

+ +

- - +
i+172,5 = Fi-172,5 t Fisrz2,5 - Fi-1/2,5

n—--
R" = - At (F i,+1/2

G

+ -

= Gy 5-172 ¥ 8y 54172 T

G (14)

i,-1/2
\

where, for example,

+

tiqt . g7 = E0"
Firrs2,5 = F Qiarz2, 50 3 Fiersz,5 = F Qa1s2, 5

+ R - - -
65 54172 = 6 (@4 se172) 3 G 5172 = O (Q 5 5412
and

- - - 1 -

Q172,35 = Ya1,5 ~ Ks 7 Quz,5 = Qup, 5

+ - 1 -
Qarsz,5 = Y5+ ks 2 Q4,5 = Qg 5

etc., with similar expressions in the j-direction.

The parameter kg switches between first order formulation (kg = 0) and

second order formulation (kg = 1).

The present formulation, when applied to transonic and low supersonic
i

1



flows, did not require the use of flux limiters fqr essentially oscillation
free shocks. This was noticed by Anderson, Thomas and van Leer [8] and von
Lavante and Haertl [10] and was explained in more detail by van Leer [14].
The favorable behavour of the present formulation is due to the fact that at
transonic speeds, the backward running characteristic variable that is being
extrapolated from downstream of the shock iS much smaller than the forward
running characteristi'c'yariable. Despite the above linear extrapolation, no

or very small overshoots were encountered.

The implicit left hand side of Eq. (7) underwent similar modifications as
the right hand side. The Jacobian matrices A and B were replaced by the
corresponding Jacobians of the split flux vectors, yielding following form of

the left hand side of Eq. (7).

b
4

b

[I +2 n

+ f,-. + L n_non
A+a§_A][I+aB+anB]AQ R (15)

+ + -
+ _ dF - _®F o+ _dF - _0F b f .
where A = T A T B 3T B N and , ag and 65 _are first

order backward and forward differences, respectively. The exact form of these
Jacobian matrices will be given in the full paper. A standard block
tridiagonal solver was used to solve the system of algebraic equations given

by Eq. (15).

An acceleration of the convergence to steady state conditions was
achieved by the use of local time steps. In this procedure, the time step
used in each of the cells was determined from the maximum Tocal eigenvalue
after each iteration. The two-factor, block tridiagonal form of the resulting

algorithm, given by Eqs. (15) and (14) is relatively easy to vectorize.

The Eq. (7) 1is not the only possible Euler implicit form. The

factorization of the left hand side can be carried out in many different ways.
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One alternative factorization that seemed to yield more efficient method for

execution on scalar computers is a four-factor form

[1 + ag AY] I+ ag ATICI + a’; B¥ 1 [1 + a: 8”1 aQ" = R" (16)

This form of fhe implicit operator results in block-bidiagonal L-U
systems of equations that can be solved very efficiently, each of them in one
sweep. The imp]icit‘oberator based on Eq. (16) was therefore also tested in
the present investigation. The directions of sweep were permutated in order
to preserve the symmetry of the algorithm. However, the L-U scheme was only
marginally better than the block-tridiagonal scheme, since its maximum stable
CFL number was lower, probabily due to its larger splitting error. Attention
was therefore focused on the scheme based on Egq. (15), since, in addition to
being slightly more efficient, it also makes the inclusion of central

difference viscous terms much easjer than the L-U scheme.

IV. Development of Viscous Algorithm

The simplicity of the present viscous scheme is‘striking. This is mainly
due to the assumption of constant total enthalpy and application of the thin
shear layer form of the Navier-Stokes equations. Equation (10) already
indicated that only two lines have to be added to the flux vector G, in

addition to the necessary changes in the implicit operator.

After some simple manipulations, G, can be rewritten as

| 0 |
= 42 _ 2 1

G = nd (3-yE XE) “g * xF= yg vn (17)

4 2

1 i 2
TXg YUy T g xgtyg vy

) -
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It should be noted that in this case this is exactly the same form as
obtained by Swanson and Turkel [12] after evaluating the first order
derivatives 1in the viscous terms using Green's theorem and then using

following center difference discretization at the cell face at j+l/2:

L T PO 5 B I AL P L3 S I

Xg = X4, ~ Xi-1,5 Ye = Yi,5 " Yi-1,j (18)
1 2

b= (e o+ By cuq) Jd =
Z ', i,j+1 1”1‘,3‘»«1 1735

In the case of the implicit part, the full viscous flux Jacobian matrix
is relatively complicated and time consuming to evaluate. However, the basic
underlying assumption of the validity of the present method was that only
steady state results were required. From the delta form of the governing
equations, given in Eqs. (17), (15) and (16), it is obvious that if the method
converges to steady state, the steady state results will not be effected by
the implicit operator. The dissipative part of the implicit operator can be
therefore simplified, as long as the stability limits of the scheme are not

reduced.

It has been shown previously (References [15, 16] that the implicit part
of the Navier-Stokes solver (15) with (17) can be significantly simplified by
substituting the correct Jacobian matrix of the viscous flux by a diagonal
matrix Iv, where I is the unity matrix and v is the maximum diagonal
component of the matrix M that is obtained from the thin shear layer Navier-

Stokes f}uations in the following delta form
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n _ n
[1 + aEA] [1 + arp + aJW an] AQ" =R (19)
14 2 2
vEsg u/(xn+yn)

The final form of the present viscous scheme is given by

b ,+ f - b gt , af g~ n_on
[1I + aa AT+ ag ALl + an B" + an B~ + an Iv an] AQ R (20)
L+ o+ L. ,
where, for example, Gi,j+1/2 > Gi,j+1/2 + Gv;i,j+1/2 in order to account for

the viscous effects in the explicit part R". The viscous terms are centrally

differenced in both the explicit and implicit parts of Eq. (20).

V. Multigrid

The Full Approximation Storage (FAS) multigrid scheme (Ref. [1]) must be
used since the set of equations are nonlinear, A development of the FAS

scheme is given below. Consider the problem

Lh yh = ¢h (21)
where LM is a nonlinear operator on a grid, Gh. with spacing h. The forcing

function, f is known and ul is the solution to the problem on the grid with

spacing h. If we take ul as an approximation to UM with an error of

vh = uh - yh,
Eq. (21) can be written as

Lh (uh + vh) = ¢h (22)
Lh uh §s subtracted from both sides of (18) give:
Lh (uh + vy = Lh () = £0 - 1P (Wl (23)

If the terms are smooth, the, can be represented on a coarser grid, GZh,

with spacing 2h. The grid G2h ‘3 formed by deleting every other point in
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Gh. Therefore, g2h Gh. Points are eliminated from géh to form 6* and so

forth to form G8h, G16h, etc. Written on the coarse grid GZh, Eq. (23)

becomes
R S N ¢t U I LU TR AT (24)
or
(2 (u2h) - g2h (25)
where
§2h - 12: (£M - LM uly & 2N (Iﬁh «M
and Iﬁh is the restriction operator.

Since Eq. (25) is on a coarser grid than Eq. (22), the numerical solution
for ulh is much cheaper to obtain because fewer points are involved. Note that
the operator used on the coarse grid has the same form as the fine grid
operator, the grid spacing (h and 2h) being the only difference. Once the
values of u2h are obtained, the fine grid iterative solution is updated using

the following equation:

hy _ ,.h h .2h _-2h , h
(U ey = U g1q * Iop [u I (W) 4® (26)

where Igh is the prolongation operator.

The restriction operator has two forms. One form is used to restrict the

dependent variables, (uh),

i.e. the flow quantities p, pu, and ov.
For these, the volume welghted average of the values of the function at
midcells of the four fine grid cells contained in a course grid cell are used

to set the value of the coarse grid (See Fig. 1l). The other form of the

restriction operator is for the restriction of residuals, 12 [Lh (uh)]. A

h .
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simple summation of the residuals over the four fine grid‘ce11s composing the

coarse grid cell is performed.

The restriction operations are performed for all interior points of the
flow field. At the outer boundaries, only the values of the functions are
restricted, with no residual restriction. These values are frozen to the fine
grid values and are not updated on the coarse grids since a l1ift-correction
scheme is used to set the outer-boundary values on the fine grid. fhe lift-
correction scheme was found to be less accurate on the coarse grids and tended
to slow the convergence. At the airfoil surface, the values are not frozen
and the same boundary condition was used for all the grids. At the wake cut,
flow values at ghost points were set equal to the flow values from the proper

points across the wake on all the grids.

The prolongation operation used in the current work is a bilinear
interpolation in the computation space of the corrections at the four coarse
grid cells adjacent to the fine grid midcell (see Figure 2). Volume weighting

is not used.

As a first cut, a fixed V-cycle with four grids was used; a fine grid
with 209x33 cells and three coarse grids with 105x17, 53x9 and 27x5 cells,
respectively. The program was constructed to allow the number of iterations
on each grid between restrictions and prolongation to be controlled by input.
Either first-order (ks=0) or second-order (ks=1) approximations can be used,
in any combination, on each of the grids. Local time stepping was employed on

each grid with a single reference»CFL number controlling all grids.

Before discussing multigrid results, it is necessary to define work
units. Conceptually, a work unit is the amount of work required to perform

one fine grid (GN) jteration. It follows that the work required to perform an
i
|

da
i
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jteration on the grid a2h s 1/4 for two-dimensional problems. For grid c4h
the work per iteration is 1/16 and for grid 68" the work is 1/64. To be
honest, the work required to restrict from one grid to the next must be
included since a residual calculation is necessary on both the fine and course
grids. On the conservative side, this can be estimated as the sum of the work
to perform a fine grid iteration and a coarse grid iteraction, 1.25 for the
restriction from GN to a2h, (The inclusion of the work required for -the grid
transfer is less important if the residual calculation is a small part of the
update calculation, such as for highly implicit schemes. It is more important
for explicit schemes.) The work writes for the present multigrid
computations, expressed as multiples of the single (fine) grid iteration, are

therefore obtained from

1 1

_ 1 1 1
"‘“'"h+1'25+"2h 7r+0.3125+n4h T5+(T6'+F4')+n8h Y7

where np...ng, are the number of jterations on each grid. The work unit count
was increased in the case of additional iterations during the prolongation
process. A more precise accounting for the grid ’transfers would involve
timing the transfer and then calculating the work required based on the time
required. In the present study, the conservative method of adding the work
required to perform fine and a coarse grid iteration is used. This produces

work which is high by about 15%.

VI. Results

The present method was first tested in the single grid version on several
transonic flow configurations that included internal as well as external

cases. Only the more interesting test cases will be shown here.

Inviscid results - The performance of the inviscid (Euler) scheme can be




16

demonstrated on the several standard transonic airfoil test cases.

In the present work, the NACA 0012 airfoil at various Mach numbers and
angles of attack was selected. The flow was predicted using a 201x31 C-grid
that was generated using elliptic grid generation. There were 141 points on
the airfoil. Following three flow conditions are frequently encountered in

Titerature and will be therefore discussed here:

a) M_=0.8, « (angle of attack) = 0 - this supercritical case is
particularly well suited to test the ability of a numerical method to perserve
the symmetry of the flow. The 1ift coefficient C; should be zero, while the
drag coefficient Cq will be nonzero due to the shock. The present method
predicted the Cl to be 1.41x10'8, a value that is certainly acceptably close
to zero. The drag correspond to Cq = 0.0087, which is in very good resulting
Mach number and pressure contours are showp in Fig. 3. The shocks were
captured within at most two zones and are very crisp; the Mach contours are
very smooth indicating the absence of spurious oscillations. The convergence
history is shown in Fig. 4 for the optimum CFL number of 27.5. At this CFL

number, the spectral radius of the convergence was approximately 0.969,

p

sp
which is low for a single grid calculation. The residuals shown in Fig. 4 are
the L-2 norm of the density residual (marked with crosses) and the maximum
residual of the density. The correct number of supersonic points was reached

after only 100 jterations (Fig 4).

b) M_= 0.8, a = 1,25 - another supercritical case; it is well suited
for testing the performance of the boundary conditions, since the lift is very
sensitive to their influence. The results obtained from the present method
were C; = 0.3617 and C4 = 0.0233. These results are in good agreement with

data published in Reference [17]. The range of best results was given as C; =
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0.3632 - 0.3661 and Cq = 0.0229 - 0.0230, achieved on grids that extended up
to 96 cords from the airfoil!! The comparison with results published by
Anderson et al. was also favorable; they reported C; = 0.363 and Cd = 0,0234.
The corresponding Mach numbe and pressure contours are shown in Fig. 5. The
shock on the upper surface was again very well captured. The convergence
history for this case is presented in Fig. 6. Although not as good as in the
a =0 case, the spebtral radius was still a reasonable Psp = 0,975 at the
optimum CFL number of 21, The correct number of supersonic points was

obtained after 189 jterations.

c) M_=0.63, a =2% - this case 1is subcritical. Here, the main
difficulty lies, besides the correct 1ift prediction, in the drag calculation.
In the absence of shocks, the C4 should be zero. The present scheme computed
C; = 0.3302 and C4 = 0.0006. Both values are in reasonable agreement with
results reported by Anderson, Thomas and van Leer [8], given as C; = 0.332 and
Cq = 0.0006. The Mach number and pressure contours can be seen in Fig. 7.
The residual history in Fig. 8 is somewhat surprising. Although the Mach
number is lower than in the previous cases, the rate of convergence is by far
the best. This 1is reflected in the value of the spectral radius

p.. = 0.964, obtained at an optimum CFL number of 18, The flow is

Sp
subcritical with no supersonic points.

Viscous results - The present simplified viscous algorithm was tested on

several configurations. The consistancy of the method was first investigated
by grid refinement study done on compressible subsonic and supersonic boundary
layer flow on a flat plate. The freestream Mach number was 0.5 and the
reference Reynolds number was Re, = 5,000. The computations were carried out
on three grids: 51x51, 51x76 and 51x101 that were exponentially stretched in

the direction normal to the plate. The grid was refined in the direction
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normal to the plate. The results will be presented in the full version of the
paper; they can be summarized by stating that the skin friction coefficients
as well as the velocity profiles consistantly improved as the grid was refined

and agreed closely with the Blasius solution.

The viscous method was subsegently tested on a supersonic diffusor
configuration with inflow Mach number M=2.0 and upper wall compression corner
that generated on oblique shock. The shock was reflected off the fower wall
at a Reynolds number Re, = 3 10° based on the length along the lower wall, and
was strong enough to cause separation of the boundary layer. The configura-
tion is similar to tht used by Thomas and Walters [20]. Computations using
the present method were done on two grids: 51x51 (coarse) and 51x10 (finer).
The resulting ratio of static pressure to total pressure as well as skin
friction coefficient C¢ at the lower are shown in Fig. 9 as compared with
experimental data given by Hakkinen et al. [19]. It can be seen that the
coarse grid had insufficient resolution to correctly predict the extend of the
separated zone and the formation of the pressure plateau typical for lambda
shock structure. Refining the grid resulted in much better prediction of the
pressure and Cg; except for the reattachment region, the agreement with
experimental results is quite good. This tendency is consistant with results
given in Ref. [20); minor differences in the pressure profile can be explained
by the presence of the upper wall in present confiquration. The rate of
convergence, given in Fig. 10, was rather high., At an maximum local CFL
number of 1450 (global time steps were used in this case) the maximum residual

was reduced eight orders of magnitude within 500 iterations.

More recently, results were obtained for laminar flows over transonic
airfoil NACA 0012, showir separated flow near the trailing edge. These will

be included in the full v;}sion of this paper.
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Multigrid - A1l the multigrid computations were carried out on a 32 bit
computer, as compared to the single grid cases shows above, which were
executed on a 60 bit machine. To show the acceleration of the multigrid
scheme, results for the test case of a NACAOO12 at M_= . 80, «a=1.25 are
presented. In Figure 11, is the convergence history of a baseline, no
mul tigrid calculation at optimum CFL number. This calculation was performed
on a 201x31 cell grid; somewhat coarser than the 209x33 cell grid used for the
mul tigrid calculations. One hundred and sixty-five iterations were required
to converge the 1ift coefficient to within 1% of the converged solution and
over 250 iterations were required to reduce the maximum residual three orders
of magnitude. (see case 1, Table 2). Figure 3 shows the logarithm of the
maximum residual divided by the initial residual, the 1ift coefficient, and

the number of supersonic points are plotted versus number of iterations.

The baseline calculation was then accelerated using multigrid with four
grids in a V-cycle. As a first cut, two jterations were performed on each of
the grids for 40 cycles. The convergence history of this case (case 2 of
Table 10 is shown in Figure 12, The 1ift converged (within 1%) in 107 work
units. In case 3, more iterations were performed on the coarser grids and the

1ift was obtained in 88 work units. The residual also converged more quickly

(Figure 13).

Other researchers have successfully used multigrid without performing
iteractions between the prolongation operations (Ref. 5, 8). This was tried
in case 4 (Figure 14) and was found to reduce the time needed to achieve the
lift coefficient (83} work units) but produced a slower reduction of the

maximum residual.

Since the computer program used in the presen work allows a choice
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between first and second-order differencing, a scheme with second-order
differencing on the fine grid and first-order differencing on the coarse grids
was tried. It was hoped the first-order differencing would provide better
smoothing on the coarse grids. This was not the case. (See Figure 15)., The
1ift required 105 work units to achieve a level within 1% of the converged

answer,

It should be noted that same investigation (Ref. 17) define work units
simply as cycles. Using this definition of convergence and acceleration, the
present method converged in 9-30 cycles, starting from uniform flow. This

corresponds to an acceleration ratio of 10-12.

To date, the optimum V-cycle FAS multigrid strategy found with this
method of solving the 2-D isenthalpic Euler equations is to use second-order
differencing or all the grids and to perform more iterations on the coarser
grids than on the fine grid. To most quickly obtain the 1ift, no iterations
should be performed between prolongations. It was found that the optimum CFL

number with the multigrid acceleration was close to the optimum for the single

grid calculation.

The present scheme was also used to predict flows about other AGARD
airfoil configurations at following condition: M_=0.85, «a-= 19;
M, =1.2, a= 0% and M, =12, z = 19,  The full version of this paper will
also include a study of inviscid ceparation on a backward facing step, carried

out with the present scheme.

The present algorithm is cmrrently being extended to three dimensions.

Some three-dimensional results w5 be also included in this paper.
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Future Work

The acceleration obtained by increasing the number of iterations on the
coarse grids suggested that a W-cycle may yield benefits over the V-cycle
currently used. This will be investigated. To date, a simple reference CFL

number from grid to grid should be explored.
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Fig. 7 - Mach mumber and pressuwre contours for NACA 0012 airfoil
at M = 0.63, angle of attack = 2.0°.
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