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NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS

Wilbur L. Hankey

Wright State University

Abstract V • V = 0 (2.1)

Most unsteady viscous flows may be grouped

into two categories, i.e., forced and self-

sustained oscillations. Examples of forced

oscillations occur in turbomachinery and in

internal combustion engines while self-sustained

oscillations prevail in vortex shedding, inlet

buzz and wing flutter. Numerical simulation of

these phenomena have been achieved due to the

advancement of the vector processor computer.

Recent progress in the simulation of unsteady

viscous flows is addressed in this paper.

1.0 Introduction

Unsteady flows have always been an important

subject of fluid mechanics. Rotating turbo -_

machinery, turbulence, flutter, buzz, buffet,

aircraft spin, autorotation, noise and vortex

shedding are co,m_on exmnples. Although these

topics were subjected to intensive analysis in

the past, the fluid mechanics eon_unity had to

rely on experiment to produce the necessary

design information. Fortunately, CFD now offers

the potential for providing future design details

based upon first principle computations.

Early CFD efforts concentrated on producing

steady solutions, even though time-dependent

methods were used, but only as an iteration tech-

nique. The introduction of the vector processor

computer with higher computational speed has now

made unsteady calculations possible. This paper

will present a survey of some of the recent

progress made in the field of unsteady viscous

flows. Most unsteady flows may be divided into

two categories, i.e., forced oscillations and

self-sustained oscillations. In a forced oscil-

lation an external force adds work to the fluid.

Computationally this means an unsteady boundary

condition must be prescribed. In a self-sustained

oscillation no external forcing function is

imposed, therefore, the boundary conditions are

steady. According to Den Hartog (1947) the

distinguishing difference between these two

categories is that the force will still exist in

a forced oscillation if one stops the motion,

while in a self-sustained oscillation stopping

the motion will also remove the force.

Before embarking on a numerical investiga

tion, it is well to perform a linear analysis of

an unsteady flow in order to gain insight into

the fundamental physics (Hankey, 1980).

2.0 Linearized Analysis of Unsteady Fluid Flows

Consider a two-dimensional parallel flow of

an incompressible, invlscid (but rotational)

fluid. The governing equations are as follows:

DV

p _ _ - Vp (2.2)

The mean flow is assumed to be parallel and

rotational with small perturbations of the

following form assumed:

u = u(y) + u' (x,y,t)

v = v' (x,y,t)

p = p_ + p' (x,y,t)

(2.3)

Inserting these relationships into the governing

equations and retaining only first order terms

produces a linear system of equations.

u_ + v_ : 0 (2.4)

_[ + u(_ = Uyy v' (2.5)

where

6' = v_ -u_ = vortieity

Disturbances of the following form are

assumed

(2.6)

v' = ¢(y) e i_(x-et) (2.7)

where e = c + i c. (2.8)
r 1

c r = propagation velocity

c i = amplification factor

= wave number

Substitution of this relationship into the

governing equation produces the Rayleigh equation

(Rayleigh, 1880) which is a degenerate

Orr Socmerfeld equation appropriate for large

Reynolds numbers)

¢" _ (e2 + i_"_) ¢ = 0

u-c

with boundary conditions requiring that

disturbances vanish at the wall and at the

undisturbed outer edge.

(2.9)

¢(0) = 0 and _(_) = 0

For prescribed values of u this is an

elgenvalue problem in which c(a) can be obtained

subject to the boundary condlLion constraint.

The resulting solution takes on the following

form:

v' = Ce aclt e ia(x-crt) (2.10)
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Forpositivevaluesof ci aninstability
occurswhichis equivalentto a negativedamping
case. Rayleigh(1880)first investigatedthis
typeof flowandprovedthat velocityprofiles
with inflectionpointsareunstable. In orderto
furtherexplorethis fact, a classof separated
flowswasanalyzed.Thestability of Stewart-
son'sLowerBranchsolutionsof theFalkner-Skan
equationwasinvestigated.TheRayleighequation
wassolvedfor severaldifferent valuesof the
pressuregradientparameter,_, for theentire
rangeof separatedflowsfromincipientto a free
shearlayer(Verma,et al. 1979).Figure2.
representsthevaluesof theamplificationfactor
for theunstablefrequencyrange. (Notef =
_rc /2_o). For reference purposes, these

amplification factors are nearly two orders of

magnitude greater than the more familiar

Tollmien-Schlichting waves. The propagation

speed (c)rfOr the disturbances was generally

between 0.4 and 0.9 of h e. Therefore, one can

deduce from these results that flow instabilities

do exist (positive c i) but over a very limited

frequency range for similar separated laminar

boundary layers. By analogy, the frequency for

which maximum c i occurs can be viewed as the

natural frequency of the shear layer. This

corresponds to the most probable Strouhal number

likely to occur for periodic disturbances and is

always numerically less than unity. In Reference

5, compressibility effects of a free shear layer

were investigated and the instability was found

to diminish as Mach number increased (Figure

2.2). Although only one class of flows with

inflection points has been examined, one is

tempted to generalize these findings for all

separated flows. One can speculate that (Den

Hartog, 1947) separated flows become more

unstable in progressing from incipient to fully

separated; (Hankey, 1980) separated flows possess

a relatively low natural frequency for which they

are most likely to be self-excited and are stable

on either side of that frequency; (Rayleigh,

1880) the instability diminishes as Mach number

increases. Based upon these hypotheses, one can

embark upon an analysis of unsteady flow problems.

3.0 Linear Oscillator Model

Separated flows were shown to possess a

natural fre ueg_qe_n_q_ for which small disturbances

are highly amplified over a limited frequency

range. However, for a self sustained oscillation

to persist a continuous string of disturbances is

required to excite the shear layer. In this

section the mechanism necessary to attain this

result will be discussed.

It is informative at this point to compare a

fluid dynamic oscillator with an electronic

oscillator (Glassford, 1965). To create an elec-

tronic oscillator the circuit must contain an

amplifier with a positive feedback loop (Figure

3.1). A self--excited fluid dynamic oscillator

therefore must also contain these two components.

In the previous secLion the shear layer was shown

to play the role of the amplifier. The feedback

loop is postulated Lo be a subsonic path in which

pressure waves (acoustical signals) are returned

to the shear layer origin and selectively

uemuplified.

The condition for oscillator resonance can

be ascertained by examining the transfer

functions for the two components.

If A in Figure 3.1 is the transfer function

(a complex number) of the amplifier and B is the

transfer function of the feedback loop, then the

overall gain is as follows:

Gain = A
][l-_- (3.1)

The existence of a frequency for which the return

ratio, AB, equals unity is a sufficient condition

for infinite gain and is hence the criterion for

a sustained oscillation.

To sui_m_arize, three ingredients are

necessary to produce an oscillator, i.e., (Den

Hartog, 194Z) amplifier with, (Hankey, 1980)

positive feedback at (Rayleigh, 1880) a return

ratio of unity.

Examination of the linear equations for a

self-excited oscillation identifies the essential

components and predicts the resonant frequency.

However, it provides no capability to predict the

amplitude of the disturbance or produce detailed

flow field features for large disturbances. To

proceed further it becomes necessary to examine

the nonlinear characteristics, i.e., Navier

Stokes equations. Thls will be accomplished in

the next section.

4.0 PROCEDURE FOR NUMERICALLY SOLVING THE

NAVIER-STOKES EQUATIONS

4.1 Governing Equations

The two_dimensional or axisyn_etric

Navier Stokes equations for a compressible

perfect gas are listed below (7,8). This system

of equations will be used to analyze several

cases involving self excited oscillations

discussed later in this paper.

UL _ Ex + y-.k (ykF)y = k y-k H

where

(4.1)

U =

F =

and

p pu

pu ; E = pu2-olz

pv pUVT

pe pue uoz1-vT-kT x

pv 0

pUV-T ; H = 0 (4.2)

pV2-O22 --0(I _

pve vo22-u_-kTy 0

T=p(Uy+V x) o_= -p-2/3_V.V+2pu x

U2+V 2

e=CvT+ _ o22= -p-2/3pV.V+2pvy

p=pRT o_= -p-2/3pV.V+2p_

V-V=Ux+y-k(ykv)y

k = 0 for 2 dimensional flow

k = 1 for axisyn_etric flow
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This system of equations contains four dependent

variables (u,v,T,p) where _, k, C v and R are

prescribed for the gas. The three independenL

variables (x,y,t) are expressed in a Cartesian

framework. A Cartesian system is unsatisfactory

for most problems and therefore a general coordi-

nate transformation must be employed. The

physical space (x,y) is mapped into computational

domain (_,n) where numerical calculations are

performed.

4.2 Boundary Conditions

Four types of boundary conditions are

required.for the cases to be computed, i.e., (a)

wall, (b) inflow, (c) outflow, and (d) symmetry

surfaces. These shall now be addressed.

(a) Wall (q=O)

On an impermeable wall a no-slip condition

for the velocity is required.

u(.=O)=0

v(.=O)=0

The wall temperature is also specified.

T(n=O)=Tw

The pressure on the wall does not require a

boundary condition but must be determined from

the flow field equations. The finite difference

algorithm does require specification of a

pressure relation at the wall and therefore a

"compatibility condition" is used which is

obtained from a degenerate normal momentum

equation, i.e.,

ap
_-6 (n'O) = 0 _ 0 to order Re -I

(b) Inflow <_=0)

At the inflow surface all flow

variables are prescribed using

characteristic variables.

U = constant for self-sustained

oscillations

U = U(t) = temporally specified for

forced oscillations

U = p/pY
v

u+p/p_aco

u-p/p_ao_

Note: One notable exception is that for

subsonic flows the gradient of the last

characteristic variable is set to zero.

(c) Outflow ((=L)

At a downstream boundary in which

outflow occurs a simple wave equation is

used to minimize reflections.

U t + c r U s = 0

where s is aligned with the main streamline.

U = p/p_
v

u+p/p_a_

u-p/p®a_

c r = propagation velocity of

disturbances.

c r = t_

u_

u_ + a_

u_ - a_

(d) Symmetry (y-O)

For axlsymmetric flows the axis

requires a symmetry condition as follows:

v(y=0) = 0

Uy(y=O) = 0

Ty(y=O) = 0

py(y=O) = 0

This concludes the description of the principle

boundary conditions for the problems to be

investigated. These four types are not implied

to be a complete set to be used to investigate

all flows but are representative of the type used

in many present day calculations. Research is in

progress in this area to improve the description

of boundary conditions; especially for subsonic

flows.

5.0 NUMERICAL RESULTS OF SELF-SUSTAINED

OSCILLATIONS

In the previous section the numerical

procedure was described for solving the time-

dependent Navier-Stokes equations. In this

section the results of several large scale

computations will be explored. The configura

tions investigated include a cylinder, spike

tipped body, inlet, cone, and dump combustor

configuration.

5.1 CYLINDER

The periodic shedding of large scale eddies

from a cylinder hmnersed in a flowing stream is

probably the most co_uonly recognized self-

sustained oscillation in fluid mechanics. A

stability analyses of a series of potential

vortices representing this flow was accomplished

by Von Karman (1911). This wake analysis of the

"Karman Vortex Street" unfortunately contains

little information about the true physics of the

phenomenon and hence further investigation is

required. Von Karman was limited at that time

since the only tool available was linear

potential theory. Today, however, the computer

provides us with the ability to numerically

integrate the Navier-Stokes equations and

investigate problems of this type.

In Reference i0, the flow behind a cylinder

at a Mach number of 0.6 and a Reynolds number of

1.7xlO 5 was computed and compared with an experi-

ment for similar conditions (Owen, 1981). By use

of the techniques described in Section 4, the

time dependent flow over a cylinder was deter-

mined by numerically integrating the Navier-

Stokes equations. No turbulence model was used
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for this casesincethecylinderwasin the
subcritical (laminar) regime at this Reynolds

number. Therefore, all large scale "turbulent"

eddies in the wake were computed based upon first

principles.

The flow was impulsively started. All

points in the field were initially at the free

stream state and suddenly the nonslip boundary

condition on the cylinder walls applied.

Initially, symmetric vortices developed behind

the cylinder which became asymmetric after one

cycle period and developed into periodic asym-

metric vortex shedding after about three periods.

The wall pressure history for the 90 ° and 270 °

polar angle location covering over twenty cycles

of oscillation is shown in Figure 5.1.

The computed Strouhal number, fd/u, was

0.21; in general agreement with experiment.

Numerically computed Reynolds stresses for the

wake are presented in Figure 5.2 The comparison

is favorable considering only large scale, low

frequency eddies were simulated. This investiga

tion shows that it is possible to numerically

generate the production of large scale turbulent

eddies and generally duplicate the experiment

without accurately simulating the dissipation of

the fine scale structure.

The mean-velocity wake profile possesses two

inflection points. A linear stability analysis

of this profile (Betchov, 1967) shows two

unstable modes to exist due to these two

inflection points. The first mode produces an

asymmetric oscillation while the second mode

(with a lower amplification factor) produces a

symmetric one. Since the asyn_etric mode has the

greater amplification, this accounts for the

observed asyn_etric serpentine wake pattern

behind the cylinder. The Strouhal number, f d/u,

for which the amplification factor is maximum is

0.2. The synmletric mode still exists, however,

although lower in amplitude and higher in

frequency. This tends to explain the modulation

by a higher frequency of the wave form (Figure

5.1).

5.2 Buzz of Spikes

The numerical solutions of the time

dependent Navier Stokes equations for the

cylinder confirmed the linear oscillation model

for a self-oscillation, i.e., (a) the shear layer

with an inflection point is the fluid dynamic

amplifier; (b) feedback is achieved by acoustic

waves returning to the origin; (c) resonance

occurs at discrete integer values of the funda

mental frequency when the return signal is "in

phase" with the original disturbance. The

existence of all three features is required to

produce a self-excited oscillation. The removal

of any one feature should eliminate the oscilla

tion. (In most practical flight problems, the

oscillation is undesirable and must be avoided.)

The elimination characteristics of the

oscillation shall now be discussed.

A configuration to demonstrate this

phenomenon is a blunt body with a spike tip

operating a supersonic speed. Spike tipped

bodies are noted for producing violent buzz under

a restricted range of spike lengths (Harney,

1919). Figure 5.3 shows the experimental

pressure intensity for different spike lengths at

a Mach number of three. Buzz exists, but only

for spike lengths above 20 mm for this

configuration. Oscillations are not encountered

at shorter lengths. Separated flow will always

occur in the concave region between the spike and

face of the blunt-nose body, and hence%amplifica-

tion is always present. However, resonance will

not occur if the spike length is less than one

wavelength of the unstable wave (_ critical).

Two numerical calculations were conducted (Shank

et al., 1980) for spike lengths of 13 n_ _nd

39 nun. The shorter spike length had an _ of

1.5 and resulted in a stable flow. However,=

the longer spike length (39 mm) had an _ = 9 and

produced a self excited oscillation comparable° to

the experiment. The spike pressure history

comparison is shown in Figure 5.4. The spectral

analysis for both computation and experiment is

depicted in Figure 5.5. Outstanding agreement is

observed between the computation and experiment

for frequency, amplitude and wave form, showing

the ability of the numerics to simulate self-

excited oscillations.

5.3 Inlet Buzz

A supersonic inlet operating at subcritical

flow conditions possesses the necessary features

for buzz, i.e., a large region of intermittent

separated flow and a downstream interface to

reflect acoustical signals. When an inlet with a

supersonic diffuser is throttled back to sub-

critical flow conditions, the normal shock is

expelled from the diffuser causing separation on

the centerbody. This separated shear layer is

unstable and the principal cause of the oscilla

tion. Standing waves occur in the duct. The

upstream end of the inlet behaves as an open end

(pressure node) while the downstream end behaves

as a closed end (pressure antinode). Antisym-

metric modes occur with all harmonics being odd.

Two very significant results can be obtained from

this standing wave analysis. First, the frequen

cies should be commensurable in which harmonics

occur at exact integer values of the fundamental

frequency. Secondly, antisynunetric mode shapes

occur in the duct. One can also anticipate

frequency modes to jump discretely to the next

integer eigenvalue as flow conditions are changed

by different throttle settings. This indeed is

the experimental finding (Hankey, 1980).

One calculation (Newsome, 1983) using the

complete Navier Stokes equations for inlet buzz

has been accomplished and compared with experi

mental data (Nagashim, 1972). An external

compression axisyn_etric inlet and diffuser

configuration was modeled for flow conditions

corresponding to a Mach two free stream with a

Reynolds number based upon 6 cm diameter of

Re D = 2.36xI06. Because the turbulence model

was found to artificially damp the occurrence of

instabilities it was deleted from the program.

The justification for the omission is that the

numerical code is capable of resolving a finite

number of low frequency components up to the

shortest wave length (2_x). Current turbulence

models over-predi:t the appropriate eddy

viscosity. _len the turbulence model is omitted,
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theturbulenttransportprocessis resolvable

while the turbulent dissipative processes is

not. This approach was used to compute through

three buzz cycles. The instability developed

immediately as a consequence of the

non-equilibrium state of the initial conditions.

A sequence of Mach contours covering the third

buzz cycle is shown in Figure 5.6. During buzz

the bow shock was forced to the tip of the

centerbody as a result of the interaction with a

reflected compression wave. In the expulsion

phase a region of reverse flow extended between

the base of the bow shock and the cowl lip. As

the shock reached the centerbody tip, the shear

layer ruptured and flow was spilled. The bow

shock remained in this position for a time

corresponding to the propagation and reflection

of an expansion wave from the downstream choked

throat. The inlet then ingested mass and the

shock retreated to the cowl lip with the flow

reattaching to the centerbody.

5.4 Boundary Layer Transition

As alluded to in previous sections, a

portion of the turbulence spectrum can be

resolved in computing self excited oscillations.

One then wonders if boundary layer transition can

be simulated numerically as a self excited

oscillation on todays' computers. To explore

this area, the onset of transition was computed

for a hypersonic boundary layer (Hankey, 1982).

For highly compressible flow, the generalized

inflection point, (pu')'=0, replaces the low

speed Rayleigh condition of u"=O. At hypersonic

speed, linear theory shows that the second mode

instability dominates (which is fortunately two

dimensional). Examination of this case by use of

the linear stability theory results of Mack

(1965) showed the numerical computation to be

feasible. Numerical solution of the time

dependent Navier Stokes equations was

accomplished (with steady boundary conditions)

using step sizes sufficiently small to resolve

the unstable waves predicted from linear theory.

The configuration was a 7 ° cone at a Mach number

of 8 and a Reynolds number of 106 based on a one

meter length. Temperature fluctuations with a

regular periodic behavior were obtained in the

numerical computation. The amplitude of these

self-excited waves varied across the boundary

layer with a maximum occurring near the edge.

Good agreement was obtained with experiment for

both the temperature and velocity fluctuations

(Figure 5.7).

A comparison of the computed spectral

analysis (Figure 5.8) with experiment shows

agreement in the frequency at peak _nplitude,

however, the experiment has a broader band.

Further, research is required to resolve the

disparity, however, the results are encouraging

for the first phase in the prediction of

turbulence.

5.5 _Combustor

The flow in an efficient combustor must be

inherently unsteady in order to enhance mixing

and expell the burned products before they quench

the flame. A computation of cold flow in a dump

combustor was accomplished in order to ascertain

if the vortex shedding phenomenon could be

simulated (Guelda, 1987). Figure 5.9 is a tlme

sequence of vortex patterns computed for a dump

combustor configuration with choked flow at the

nozzle exit. The sequence shows periodic

shedding and downstream propagation of the

vortices. Also, shown in Figure 5.10 is a

comparison of the computed pressure histograms

with the experimental (Davis, 1981) for three

different locations. These results show

encouragement in the ability to numerically

simulate unsteady viscous flows.

6.0 Forced Oscillations

Forced oscillations in unsteady viscous

flows occur in examples, such as the piston

motion of an internal combustion engine, movement

of an aircraft control surface, rotation of a

turbine blade in a jet engine, flapping of a

bird's wing, and pumping of blood through the

heart. In all cases, an external force adds work

to the fluid to produce a desired result. To

simulate these forced oscillations, the time-

dependent Navier Stokes equations must be used.

Time dependent boundary conditions and 3-D

adaptive grid systems are required. This field

is certainly a challenge for the CFD con_unity of

the future. In the interim more modest, yet

still challenging efforts, are in progress.

6.] Turbomachine Rotor Stator StaKe

Rai (1985) simulated the motion of a 2-D

rotor stator stage of a turbomachine and produced

an impressive movie of the flow field. Scott

(1985) also simulated a similar case by imposing

a stator time varying wake profile onto a

multiple-blade rotor and obtained the temporal

flow features. The case computed depicted the

combination of 54 stator and 72 rotor blades of a

compressor stage. Figure 6.1 displays the flow

field for four rotor blades at one instant in

time.

6.2 Acoustically Excited Jet

Another form of forced oscillation is the

acuustie excitation of a sl)eag layer. Since a

shear layer possesses a "natural frequency," a

resonance type phenomenon occurs when tbe shear

layer is exited near this frequency. Acoustic

excitation regularizes the quasi periodic vortex

shedding of the self-sustained oscillations in a

shear layer. This modest excitation results in

higher amplitudes and enhanced mixing of the

jet. Figure 6.2 is a comparison between the

experimental (Scott, 1985) and computed vortex

patterns (Scott, 1986) of a jet for an excitation

Strouhal number of 0.45.

6.3 plnamic Lift

Still another type of forced oscillation is

the rapid rotation of a wing (such as a helicop-

ter blade) to produce dynamic lift. The sudden

change in angle of attack creates a starting

vortex which migrates through the flow field.

During this transient phase, the dynamic lift

coefficient exceeds the static lift value but

later falls below before recovering to the static

value. This phenomenon is also of interest for
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thedynamicmaneuveringof anaircraft in the
post-stall regime.

Figure6.3 is anexampleof a numerical
calculation(Tassa,1981)of thedynamiclift
coefficientfor anairfoil underhighrotational
pitch rate.

7.0 Sunmaar_

Self excited and forced oscillations in

fluid flows have been analyzed. The concept of a

fluid amplifier within a separated shear layer

was presented. Signals entering the shear layer

are selectively amplified over a limited

frequency range and returned through a feedback

loop as acoustic pressure waves. Resonance

occurs when the return signal is "in phase" with

the original disturbance wave. Under these

circumstances no external forcing function is

required and a self-excited oscillation can

occur. If a forced excitation signal is imposed

on a shear l'ayer at its "natural frequency,"

resonance occurs. Linear theory is useful in

predicting the frequency of the instability and

providing a qualitative description of the

phenomenon. Quantitative description of unsteady

viscous flows are possible through the numerical

solution of the time dependent Navier-Stokes

equations.
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