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FOREWORD

This is a progress report on the research project "Numerical Solutions
of Three-dimensional Navier-Stokes Equations for Closed-Bluff Bodies." The
period of performance on this research was from January 1 through August
31, 1986. The project is supported by the NASA/Langley Research Center,
Hampton, Virginia, and monitored by Dr. Robert E. Smith, Jr., of the
Analysis and Computations Division (Computer Applications Branch),

NASA/Langley Research Center.
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GRID ADAPTION FOR BLUFF BODIES

Jamshid S. Abolhassanil

Surendra N. Tiwari2

ABSTRACT

Methods of grid adaption are reviewed and a method is developed with the
capability of adaption to several flow variables. This method is based on a
variational approach and is an algebraic method which does not require the
solution of partial differential equations. Also the method has been
formulated in a such way that there is no need for any matrix inversion. The
method is used in conjunction with the calculation of hypersonic flow over a
blunt nose. The equations of motion are the compressible Navier-Stokes
equations where all viscous terms are retained. They are solved by the
MacCormack time-splitting method and a movie has been produced which shows
simul taneously the transient behavior of the solution and the grid adaption.

The results are compared with the experimental and other numerical results.

lGraduate Research Assistant, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, VA 23508, AIAA Student
Member.

2Eminent Professor, Department of Mechanical Engineering and Mechanics, 01d
Dominion University, Norfolk, VA 23508, AIAA Associate Fellow.
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INTRODUCTION

In hypersonic flows about Dbluff bodies, the temperature, pressure and
density increase almost explosively across the shock wave and the curved shock
wave is closer to the body. Numerical simulations of this phenomena is a
great challenge to the computational fluid dynamics researchers. Presently,
there is a great deal of interest in improving the quality of numerical

simulation techniques and adaptive gridding is one way to achieve this goal.

Grid generation is the very first step‘ in the numerical solutions of
partial differential equations for complex geometries. Basically, grid
generation is the numerical generation of boundary-fitted curvilinear
coordinates. The second step is the construction of difference equations for
partial differential equations. It is apparent that the accuracy of the
finite difference solution depends on the fineness of the mesh. Therefore,
the finer the grid, the more accurate the numerical solution will be. Also,
the accuracy of the solution depends on the resolution of the solution
gradient. Presence of large gradients causes the error to be large in the
difference approximation of the derivatives. In the presence of shockwave,
more artificial diffusion must be added to retain adequate smoothness of the
solution. Therefore, there is a need for schemes that can resolve these large
gradients without adding any additional grid points. An adaptive scheme moves
the grid points to regions of high gradients when locations of these gradients
are not known as a priori. Also, an adaptive method reduces the total number
of grid points required to achieve a given accuracy, but it takes more
computer time. In some instances, the computer time requirement makes this
method undesirable. The ideas used in the construction of adaptive grid
techniques are limited by one's imaginations; any scheme that works in the

sense of providing a better solution is a good one. The ultimate answer to




numerical solutions of partial differential equations may well be dynamically
adaptive grids rather than more elaborate difference representations and

solution methods [1].

Adaptive methods have been used in the solutions of ordinary differential
equations., Variable-step initial-value problems are solved by adjusting the
step size as the integration advances in order to control the local truncation
error [2]. Adaptive methods have been implemented also for solving the
equations of motion in conjunction with the method of lines [3]. In this
case, the time step was adjusted automatically to control the local error.
Similarly, adaptive methods have been to solve boundary value problems [4-
9]. An optimal grid for a two-point boundary-value problem can be determined
either implicitly or explicitly. In the implicit approach, the weight
function depends upon the solution. As a result, the original boundary-value
problem is converted into an augmented system in which the dependent variables
and the mesh are computed simultaneously. In the explicit approach, the
weight function does not depend on the solution. Instead, it depends upon a
previously calculated solution. Even for a linear boundary-value problems,
the implicit approach requires that one solves a nonlinear two-point boundary-
value problem. The implicit techniques do not preserve the linear-nonlinear
character of the original problem. Moreover, even for the nonlinear problem,
the augmented system 1is usually more difficult to solve than the original
problem. On the other hand, the explicit technique preserves the linear-

nonlinear character of the original two-point boundary-value problem.

Adaptive schemes are divided into two basic categories: differential and
algebraic. The differential method is based on the variational approach.
Brackbill and Saltzman [10-13] have developed a technique for constructing

adaptive grids using a variational approach. In their scheme, a function



which contains a measure of grid smoothness, orthogonality and volume
variation is minimized by using the variational principal. The smoothest grid
can be generated by solutions of Laplace equations which are better known as
elliptic systems [14, 15]. This approach ignores the effects of orthogonality
and requires too much CPU time. The method has been modified for better
efficiency by dropping the second derivative terms in one coordinate direction
[16]. This makes the equations parabolic and, therefore, they can be solved
by marching techniques. A method which considers the orthogonality and volume
variation is developed by Steger and Sorenson [17]. This method is widely
known as the hyperbolic method; it can be solved by any non-iterative marching
techniques. The variational approach provides a solid mathematical basis for
the adaptive method, but the Euler-lLagrange equations must be solved in
addition to the original governing differential equations. On the other hand,
the algebraic method requires much less computational effort, but the grid may

not be smooth.

Rai and Anderson [18-23] have developed an algebraic technique where the
grid movement 1is governed by estimates of the local error in the numerical
solution. This is achieved by requiring the points in the large error regions
to attract other points and points in the low error region to repel other
points. Nakahashi and Deiwert [24] have formulated an algebraic method which
is based on the variational principal. A spring analogy is used to redistri-
bute the grid points in an optimal sense to reduce the over all solution
error. In this case, operator splitting and one sided controls for the
orthogonality and smoothness are used to make the method practical, robust and
efficient. Dwyer [25-28] has used an adaptive method in which the points are
moved along one set of the original coordinate lines 1in response to the

evolving gradients in the physical solution. The analysis showed that the




percentage change in a dependent variable can be determined as a priori. An
order of magnitude improvement in speed was obtained, but some problems with

excessive skewness were encountered.

Generally, dynamic adaption can be performed in two ways, one is to keep
the computational space fixed and include the grid speed in the flow field
equations. This is an ideal method to use for unsteady flows. The second way
is to set the grid speed equal to zero and interpolate the solution onto the
new grid after each adaption. This is equivalent to solving a sequence of
boundary-value problems, which is an economical way to treat steady flows
whose solutions are approached asymptotically. It is generally sufficient to
adapt just a few times during the course of the computation. In this
approach, the grid distribution at time N+l is determined from time N. Dwyer
adapted the grids after each integration step or after a selected number of
steps [25]. However, the grid speed can be obtained by postulating a law
which 1is based on some solution properties. Then, these equations can be
integrated with the governing partial differential equations to yield a new
grid distribution [29]. The advantage of this technique is that the grid

location and grid speed are time accurate.

The 1literature survey indicates most techniques adapt to just one
variable. This means that the weight function is based on the solution of one
variable only. However, the solution of equations of motion produce several
dependent variables. Viscous-hypersonic flow over a blunt-body have large
gradient in pressure, velocity, etc in different part of the flow field.
There is a large gradient in pressure near the shock region; at the same time,
there is a large gradient in velocity near the solid body. Therefore, there
is a need for the development of efficient grid adaption method which utilizes

several variables simuntanously.




METHODS OF GRID ADAPTION

One reason to use grid adaption is to minimize the error over some domain
by rearranging the grid. Calculus of variation can be used to perform this
minimization. In general, a weighted integral which is a measure of some grid

or solution property over some domain can be expressed as
I=] Wdy¥, (1)

where W is the weight function and it is minimized. The selection of W may
vary from problem to problem. There is a collection of definitions for W in
Ref. 30. The weight function can be based on grid properties such as cell
volume, the average of the square of diagonal lengths, the cell area/volume
ratio and/or cell skewness. There exists a differential equation which
minimizes the integral I 1in Eq. (1). This differential equation is called
EuTer-Lagrange differential equation [31] and it constitutes the grid

generation system. The Euler-Lagrange equations can be found in Refs. 10-13.

Multidimensional Adaption

Brackbill and Saltzman [10-13] have developed a technique based on a
variational approach. In their scheme, a function which contains measures of
grid smoothness, orthogonality, and volume variation is minimized. To
maximize the smoothness of the grid, the following integral must be minimized

3 : .
;=) 1 v g . vel ay, (2)
¥ i=1
This is simply the sum of the squares of cell-edge lengths. Similarly, the
orthogonality can be acquired by minimizing the integral I, given by

=) 2 we vl v (1,5, oyelic  (3)
¥



This integral vanishes for an orthogonal grid. The inclusion of the Jacobin
of the transformation in the weight function is somewhat arbitrary and causes
orthogonality to be better in the regions with the larger cell. The concen-
tration or cell volume variation can be obtained by minimizing the integral

I, =/ Waay, (4)

¥

where W is a specified weight function. This causes the cells to be small
where the weight function is large. The grid generation system which provides
smoothness, orthogonality and concentration is obtained by minimizing the

total integral I which is a linear combinations of Iy ,I45and I,
I =1 + A\ Io + A I, (5)

The competing features such as smoothness, orthogonality, and cell volume
variation can be stressed by proper choice of the coefficients ko and xw.
For example, a large ko will result in a nearly orthogonal grid at the cost
of the smoothness and concentration. The Euler-lLagrange equations for the
sums of those individual integral form the system of partial differential
equations from which the coordinate system is generated. These equations are
quasi-linear, second-order partial differential equations with the coeffi-
cients which are quadratic functions of the first derivatives [12]. This
variational formulation is equivalent to Winslow's method [14] where xo and
kw are set equal to zeros. The Euler equations are those given by Winslow,
and their solution maximizes the smoothness. This is also used by Thompson et
al. [15]. The additional terms alter other characteristics of the mapping in
a similar way. The cell-size variation and skewness can be controlled by

proper selection of I, I, and I,. The use of a variational approach provides

a solid mathematical basis for the adaptive gridding. But, the Euler-Lagrange




equations must be solved in addition to the governing equations of fluid

motion.

One Dimensional Adaption

The Euler-Lagrange equation for Eq. (5) is a general and is capable of
adapting grids in multidimensions simultaneously. When the solution varies
predominately in a single direction, one-dimensional adaption can be applied
with the grid points constrained to move along one family of fixed curvilinear
coordinate lines. The fixed family of lines is established by generating a
full multidimensional grid using the grid generating techniques. The points
generated for these initial grids, together with some interpolation procedure,
e.g., cubic or linear interpolation, serve to define the fixed lines along
which the points will move during the adaption. This is done explicitly;

therefore there is no need to solve any differential equations.

A technique called equidistribution is developed to improve the solutions
of boundary value problems [4-9]. This has proven to be effective and
efficient. This technique is used to minimize the error by redistributing the
grid such that a weight function is constant over each interval. The Euler-

Lagrange equation is

XE W = constant. (6)

This minimizes the following integral
I, = fo W(E) Xy dE . (7)

This equation represents the energy of a system of springs with the spring
constant W(E), spanning each grid interval. The weight function is

associated with the grid points themselves, not with their locations. An




alternative viewpoint results by integrating over x instead of &, 1i.e.
summing over the grid intervals rather than over the grid points. This can be
expressed as
2
I, = fo T 9% - (8)

The Euler-Lagrange equation for this is given by Eq. (6). The quantity &y is
considered to represent the point density. This variational problem
represents a minimization over the density of the grid points subjected to a
weight function. This can produce smooth point distribution. Here the weight
function ka) is associated with the location of points. If the weight
function is associated with the points themselves rather than their locations,
then W = W(E&). The integral for which Eq. (6) 1is the Euler-Lagrange

equation for the following integral

1, = [ [WTZT] dx. (9)

Ex is a measure of the smoothness of the point distribution, with the
emphasis placed on the smoothness in the certain regions. This is inversely
proportional to the weight function W(E). Equation (6) 1is the Euler-
Lagrange equation for the integrals in Egs. (7-9) which can be written as
X
g(x) = [ W(g) dx. (10)
0
Equation (10) can be written in terms of the arc length as
s
E(s) = [ W(E) dx. (11)
0
The weight function is used to reduce the point spacing where W is large. The
weight function should be set to some measure of the error. White [5] has

suggested the following form of the weight function




W= [a+ IU(n),Z]l/Zn , (12)
where a 1is constant. With n=1 and a=0, this becomes
W= ful. (13)
A combination of Egs. (6) and (13) yields

U5 = Constant. (14)

This choice replaces the points so that the same change in the solution occurs
at each grid interval. This is simply the solution gradient. Taking n=1 and

a=1l yields

W= "1+ |Ux|2 . (15a)

A combination of Eqs. (6) (15a) results in

X2 + U2 = S = Constant. (15b)
g g £
This produces a uniform distribution of arc lengths on the solution curve.
White's results [5] indicated that the arc length form was favored. The
disadvantages of this method is that the weight function near the solution
extreme, i.e. U,=0 locally, are treated as a flat region. Concentration near

the solution extreme can be achieved by incorporating some effect of the

second derivative (U,,) into the weight function as [25]

W=1+a« f(UX) B g(Uxx), (16a)

where a and B are positive parameters. Therefore, Eq. (10) can be written as;
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X

[ W(x) dx

g (x) = 94— . (16b)

[ W(x) dx

0
With the second derivative terms included, the value of «a, B must be
continually updated to keep the same relational emphasis or concentration
according to this form. Therefore, a system of 2x2 should be solved for each
fixed grid line [27-28]. It will be shown later that through the reformula-

tion of Eq. (16b), the matrix inversion can be entirely avoided.

One-Dimensional Adaption With Several Variables

The solution of the flow equations consists of several variables.
Therefore, the weight function should be a function of more than one
variable. It is desirable to devise a scheme in which grids can adapt to
several variables with control on the magnitude of adaption for each
variable. In the case of high speed flow, velocity has large gradients in

some regions whereas pressure is constant or vice versa. In general the

weight function can be expressed as

W=1+ T bi f. (17)

where N js the number of variables, b:; is constant, fi is some variable or its

.i
derivative, and 1 is for uniformity. A substitution of Eq. (17) into Eq. (11)

results in
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where
S

Fy (S) =] f.(t) dt .
i
0
It should be noted that Eq. (18) is for adapting along a fixed grid line. The
quantities b; and f; should be positive to ensure the monotoncity of &(s).
In order to keep the same relative emphasis on the concentration along each
grid line, bj should be computed based on some percentage of the grid being

allocated to each variable. The percentage of grid points assigned to a

particular function f; can be expressed as

R, = 3 "3nax! i (19)

N
S + I by F, (S _ ) j=1,2,...,N,

A rearrangement of Eq. (19) results in

[Aji] {bj} = {cj} R (20)
where
Aa’i”a’;ifgm)r 1#3
J T max
= Rj -1 i=3],
Cj = - Rj smax/Fj (Smax) .

Therefore, along each fixed grid line a matrix of NxN (N is number of
variables) should be inverted. This can be avoided by the reformulation of
Eq. (18). The crucial steps are outlined here. Equation (18) can be

rewritten as




S N biF° (S)
g (S) = N + I N . (21)
i=1
Smax * ifl b; Fi (Smax) smax * jfle Fj (Smax)
Similarly, Eq. (19) can be rewritten as
Rj [ N ] :
b, = S + = b, F, (S )] . (22)
Jj Fjlsmax) max -~ .2; 11 Tmax
A substitution of Eq. (22) into (21) results in
N N Ri
3 [Smax Zl bl Fj (Smax)] ifl Fi zsmax’ F1(S)
E(S) = N N (23)
S [S + £ b,F,( )] = R
ma X max .2y 171 Umax je1 9
A summation of Eq. (19) over all j yields
N
N 'fl bj Fj (Smax)
I Ry = Nk (24)
J=1
Smax * .f b1 Fi (Smax)
i=1
Rearrangement of Eq. (24) results in
N
N SmxiflRi
ifl bi Fi (Smax) | e (25)
l1- 2 Ri _
i=1
A substitution of Eq. (25) into Eq. (23) yields
S [ N ] N Fi (S)
E(S) = T 1 - % R,|+ ¢ R.F__Tg___T . (26)
max j=1 ! i=1 ' 7§ “max
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This reformulation avoids the need for continuous updating the bi's to keep
the same relative emphasis on concentration. Applying this equation, grids
can be adapted with more than one variable without any need for matrix

inversions.

GOVERNING EQUATIONS OF MOTION

The governing equations for a thermal fluid system are the conservation
of mass, momentum, and energy. These equations are developed for an arbitrary
region assuming the system is in continuum. Equations of motion for a viscous,

compressible, unsteady, heat conducting fluid can be written as [32]

dp

Continuity: =tV (pu =0,
y : dpu - = =

omentum: 3?-+V c(puu-=-1=0, (27)
E . ot e P =3y o

nergy: 5tV (Eu+gq-u=<)=0.

where E is the total energy per unit volume given by (E=e+u-u/2) and e is
the internal energy per unit volume. The fluid is assumed to be Newtonian and
the bulk viscosity is neglected. The viscosity is computed from the
Sutherland law of viscosity. For simplicity, equations of motion can be

written into a compact vector form as

R w0, (28)
where
P pv pw
pv pvv - Tyy + P pvVw = sz
U= pw ’ G = pvw-ryZ . H = pww-'czz+P .
3 Ev = &y -4, + Py Ew + q, - o, + Pw
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For the sake of generality, governing equations are transformed from a

physical domain into a computational domain. Resulting equations are:

3 n 3G oH ¢ H
6% + Y (Bﬁ :‘Bﬁ) + Cy C%% n‘%z) = 0. (29)
Z

The transformation coefficient can be computed from a functional relation

between the computational coordinates and the physical coordinates.

METHOD OF SOLUTION

A time marching method is used to compute the solution. This allows us
to capture the possible transient features. The method employs an explicit
second-order accurate time-split predictor-corrector algorithm [33]. In a

compact form, it can be expressed as

n+l

Uj,k = [Ln (Atn)] [LC (Atc)] [Ln (Atn)] . (30)

where

The method has a time-step stability limit, but there is no rigorous nonlinear
stability analysis available for it. However, there is a conservative time-
step which 1is based on a 1linearized form of the equations. It can be

expressed as

1/2
(31)

At < Min [%+M+c[1 +

; 1]
AG Ane T2
where ¢ is the local speed of sound.

In the hypersonic region, there exits a large gradient which requires a
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very fine mesh to resolve it. Most center difference methods admit a solution
which has sawtooth or plus-minus waves with the shortest wave length that the
mesh can support. In the of case nonlinear problems, these short waves
interact, vanish, and reappear again as distorted long wave or oscillation.
These oscillation eventually blow up the solution, if they are not resolved.
The oscillations of "low frequency" can be suppressed by adding a fourth order
damping. A common damping used is the pressure dampening. This can be

expressed in computational coordinates as

| +C 62 P

U
] (32)
P 6252 3T,

v
30 (Vg
- @y Aty &) =5 |

where Vl is contravariant velocity.

RESULTS AND DISCUSSIONS

The main objective of this study is to investigate finite difference
methods in which the mesh network adapts to the solution dynamically to obtain
an accurate solution for hypersonic flow. A computer program has been written
to utilize Eq. (26) for grid adaption. Presently, this code is being run on
the Network Operating System (NOS) and the Vector Processing System (VPS) at
NASA Langley Research Center. Hypersonic flow over a blunt nose is a typical
test case in computational fluid dynamics. This problem inherits a detached
shock which should be accurately resolved. The location and the magnitude of
the shock are not known as a priori; therefore the grid should be adapted as
the solution progresses. This problem is used to analyze and verify the
adaptive method. Equations of motion are solved by the MacCormack method [33]
for a hypersonic flow over a small-radius blunt-body with an inclined-plate
after the body (Fig. 1). The blunt leading edge is a part of the panel holder

which was tested at Langley Research Center [34]. Results are obtained at
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following conditions: M_=6.8, Re =220,000, P_=9.26 1b/ft2, u,=6510

ft/sec, v=1.38, R=1771 ft?/sec?/°R and wall temperature of 540°,

Two tests have been performed: static adaption and dynamic adaption. For
static adaption, the solution has been obtained by fixed grids shown in Fig.
2. The grids are adapted to two variables, the first and the second
derivatives of pressure, and the results are shown in Fig. 3. In this case,
twenty percent of the grids are allocated to first and second derivatives of
pressure (R1=R2=20%). For the same case, Fig. 4 shows adaption with
R1=R2=50%. It is noted that in Fig. 4 entire grids are allocated to the first
and the second derivatives of the pressure. This is explains the large voids
in the constant pressure regions. Figures 3 and 4 lack grid resolution in the
vicinity of the solid boundaries. This is due to the constant pressure near
the solid boundaries. But Eq. (26) can adapt to several variables. Figure 5
shows the grids which are adapted to two variables, pressure and velocity.
The weight function consists of the first derivatives of opressure and
velocity and the second derivative of pressure. Twenty percent of grids are
allocated to each function and forty percent of grids are for the uniformity.
This avoids the creation of any void. It is noted that grids are clustered
near the shock and the solid body. Therefore, it is possible to resolve the
pressure as well as the velocity gradients in the boundary layer region. In
chemically reacting_f]ows, some of the grids can be allocated for resolving

the gradients of the chemical species.

The procedure has been applied dynamically to the same problem. Figure

6a shows the initial grid distribution for this problem. Figures 6 and 7 show

sequences of grid distributions at different times. In this case, grids are

adapted to six variables; these are the first and second derivatives of

pressure, temperature and velocity. Ten percent of grids are allocated to
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first derivatives equally and five percent to their second derivatives.
Fifty-five percent of grids are also allocated to the uniformity. A movie has
been produced of this work which shows the dynamic adaption; a few frames are
shown in Figs. 7a-7b. It demonstrates how grids are attracted toward high
gradient region and repel from low gradient regions. The full paper will
cover formulations, boundary conditions, grid generation and the vectorizing
of the proposed scheme in more details. Also, the timing of the scheme will
be reported. Currently, this work is being extended to the blunt nose with the

after body.
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