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A COMPUTER SOLUTION FOR THE DYNAMIC LOAD,
LUBRICANT FILM THICKNESS AND SURFACE

TEMPERATURES IN SPIRAL BEVEL GEARS

SUMMARY

A complete analysis of spiral bevel gear sets is presented.
The gear profile is described by the movements of the cutting tools.
The contact patterns of the rigid body gears are investigated. The
tooth dynamic force is studied by combining the effects of variable
teeth meshing stiffness, speed, damping and bearing stiffness. The
lubrication performance is also accomplished by including the effects
of the lubricant viscosity, ambient temperature and gear speed. A

set of numerical results is also presented.
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CHAPTER 1

INTRODUCTION

Spiral bevel gears, found in many machine tools, automobile
differential gears,and aircraft gears, are important elements for power
transmissions. However, the basic mechanisms which govern the major
failure modes of spiral bevel gears are not fully understood. Unlike
spur or helical gears, the complicated geometry of spiral bevel gears
makes the problem considerably more difficult. In military applications
such as gear transmissions used in recent V/STOL aircraft, gears
are often designed under conditions very close to the failure limits
to gain a maximum power density. A thorough understanding of spiral
bevel gears under critical operation is urgently needed to prevent-
premature failure.

Basically, there are two classifications of gear
failure, one of which is structural failure, which includes flexure
fatigue, tooth breakage and case crushing, and the other .is the
lubrication related failure which includes wear, surface pitting and

scuffing.

Structural failures are usually related to the material properties

and improper geometrical design or unexpected overloading. While the relia-

bility of spiral bevel gears can be improved by better material
selection and better geometrical design, it can also be enhanced by

4 more accurate understanding of the dynamic loading between a pair of




teeth as it travels through the contact.

Since the basic lubrication process in bevel gears is not clearly
understood, the lubrication related failures,particularly in surface
pitting and scuffing,are much more difficult to predict. Current methods
used in industries to predict lubrication related failures are not
satisfactory because they are mainly empirical. It has been shown in
failure tests of gears and rollers that the surface pitting and
scuffing are affected critically by lubricant film thickness and surface
temperature. A tool that can predict film thickness and surface tempera-
ture in the gear teeth contact is welcome in design against pitting and
scuffing.

This paper presents an analysis to predict the dynamic loads
between gear teeth contact which has a contact ratio greater than unity
and a variable stiffness along the path of contact. In additiom, an
analysis is presented to predict the minimum film thickness and
the surface temperature under given dynamic loads. It is based on the
most recent theories on film thickness and traction in elastohydrodynamic

contacts.



CHAPTER II

TOOTH PROFILE AND CONTACT PATTERN

OF SPIRAL BEVEL GEARS

2.1 Introduction

Recent developments in the finite element method (FEM) and
elastohydrodynamic lubrication (EHD) have stimulated a growing interest
in the basic research of the dynamics and lubrication process in spur
and helical gears (1-6). This interest is now gradually being extended
to spiral bevel gears for which there seems to be little known about
the tooth load sharing and lubrication characteristics, especially at
high speeds and heavy loads.

Unlike involute spur and helical gears whose surface geometry
is relatively simple and readily derivable, the surface geometry of
spiral bevel gears is extremely complex owing to its three dimensional
characteristics. For studying the performance and failure of spiral
bevel gears, it is essential first to find an efficient method to
describe the surface geometry of a pair of mating gears in terms of the
tooth form and the tooth contact patterns. Although this method is
currently available at Gleason Gear Works (7-11), it is not fully suffi-
cient for studying the dynamic load and lubrication analysis. It is the
intent of this research to extend the existing surface geometry analysis,
known as the Tooth Contact Analysis (ICA), to generate additional

quantities needed for the lubrication and dynamic analysis.




The formulae for obtaining the coordinates of tooth surfaces
based on the Gleason generating system are derived in Section 2.2, The
position of each point on the surface is described in cylindrical
coordinates in terms of its position along the rotational axis of the
pinion or gear, its radial distance from the axis, and its angular posi-
tion about the axis from an arbitrarily chosen reference plane. The
equations are solved by an iterative method.

The contact points of a pair of mating gears and pinioms for a
running position are determined in Section 2.3. The sliding velocity
and the direction of the unit normal vector at each contact point can
be obtained. In addition, the principal radii of the mating surfaces which
characterize the geometry at the contact point can be computed.

Some numerical results of a typical case are shown in Section
2.4. The effect of different running positions on contact patterns
are studied. TFinite element grids of a typical spiral bevel tooth

profile are presented.




2.2 Determination of Tooth Surfaces for
Generated Spiral Bevel Gears

In Tooth Contact Analysis (TCA) the gear and pinion tooth
surfaces are mathematically described by the machine settings and the
cutter specifications used in making the gears. Before proceeding to
describe TCA, it is first desirable to review some basic concepts of
bevel gearing. The principal reference planes of a spiral bevel gearing
system are shown in Fig. 2-1. The axial plane of a single gear is the
plane containing the gear axis and a given point on the tooth surface.
The pitch plane is the plane perpendicular to the axial plane and tan-
gent to the pitch circle. The transverse plane is perpendicular to the
axial plane and the pitch plane. Figure 2-2 and Figure 2-3 show,
respectively, the sectional views in the axial and transverse plane of
a bevel and pinion System, and illustrate the most common terms used in
bevel gears.

In order to understand the formulae derived in this chapter, a
brief explanation of the cutting process is in order. Figure 2-4
illustrates the Gleason cutting process -- 1) the wheel cutter used in
cutting spiral gears, 2) the cradle which positions the cutter in
reference to the work and carries it through its generating motion, and
3) the blank into which the teeth are cut. The dresser, which is used
to restore the cutting action of the wheel by fracturing and tearing
away the dull grains to expose fresh cutting edges or clear away the
imbedded material, is shown in Figure 2-5. Before the teeth are cut,
the wheel cutter is predressed to shape the cutter. The relation

between rotation of the cradle and rotation of the work is controlled




by the rotation of a cam which rotates about a fixed center.

The formulae derived here are based on the kinematics of two
contacting bodies. There is no relative velocity in the normal direction
at the cutting point and the teeth are assumed to be rigid. The
formulae are written in vector notation. Most of these vectors are
self-explanatory except for the following two terms:

‘K(E,B)R, a rotation of vector A through an angle © about the

unit vector'g.

(-,t,n) , a 3 x 3 matrix to transform a vector into a new
coordinate system having the base vectors indicated
in the parentheses. Since the right hand cartesian
coordinate is used, it is only necessary to indicate

two base vectors.

2.2.1 Basic Formulae

To describe the manufacturing process, one needs to know the
relationship among the rotating elements, and the relative movement

between the work and these elements.

2.2.2 Data Defining the Gear Tooth Surface

The gear tooth surfaces are controlled by the machine settings.
The symbols of data required are listed in Table I. Sample data are
given in Appendix A. These values are usually tabulated on a Gleason
Gear Engineering Stamdard form.

A spiral bevel gear and pinion are always of opposite hand. The

formulae considered here apply to a set conmsisting of a left-hand pinion showr



TABLE I

SYMBOLS OF DATA FOR MACHINE SETTING

Gear Pinion
Concave Convex
Number of teeth N n
Face width F
Shaft angle z
Outer cone distance AO
Addendum a a
g 1%
Dedendum b b
g P
Pitch angle T T
-Face angle I‘o T
Root angle r T
r r
Spiral éngle wM
Nominal wheel diameter Dm
Machine center to back X X X
g P p
idi X
Sliding base ng bp xbp
Blank offset E E E
mg mp mp
Cam setting T T T
g P P
Eccentric angl
c ngle Bg Bp Bp
Cradl 1
radle angle Qg Qp Qp
Cam guide angle o o a
& & g p p
{ T
Standard cam setting TgO TpO 20
Cam pitch radius nu nu nu
P g p P
Index interval n, n, n,
ig ip ip



TABLE I (continued)

Dresser block angle
Outside pressure angle
Side dresser radial
Outside dresser arm length
Outside diamond setting
Inside dresser arm length
Inside diamond setting
Side dresser axial

Side dresser offset

Gear Pinion
Concave Convex
2¢d
¢dg ¢dp ¢dp
Tdg ap Tap
Ldog Ldop Ldop
Xdog XdOp Xdop
Laig Laip Laip
Xdig Xdip Xdip
ng zdp de
E E E

dg dp dp




in Figure 2-6 and right-hand gear shown in Figure 2-7. The drive side
is assumed to be. the concave side of the pinion running with the convex
side of the gear. The opposite combination is the coast side. Since
the gear tooth data define the side under consideration, these general

formulae apply to either the drive side or the coast side.

2.2.3 Mechanism of Cam

The relative rotation of the work and cradle is controlled by
the index head and cam. The index head is used to transfer accurately
the rotation ratio between the cam and workpiece. By describing the
motion of the cam with a specific index head setting, one can obtain
the rotations of the work and cradle, and their angular speed ratio.

The follower of the heart-shaped cam is fixed in the cradle, and
the cam rotation center is fixed. Figure 2-8 shows the position for
a standard cam setting. As the cam rotates about its own rotation
center, the fixed follower forces the cradle to rotate about its center.
The required rotation of the work is obtained by using the proper
indexing. The relative motion can be readily changed by using a
different cam geometry, cam setting, cam guide angle and index interval.

The symbols used in the motion formulae are:

€ cam rotation

A work rotation

] cradle rotation

a cam guide angle

Anu change in cam setting
n cam pitch radius
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T cam setting

TO standard cam setting

For a standard heart-shaped cam, the mechanism of motion of the
cam and cradle at center of roll can be thought of as a pair of internal
gears which has a pitch radius n, for the pinion and DC + n for the
gear (see Figure 2-9). If the cam rotates an angle €52 the cradle will

rotate an angle nu/(nu + DC) times €,

The change in cam setting Anu is defined as the actual cam
setting T minus the standard cam setting TO (see Figure 2-10) . The
dashed lines are for the standard cam setting for a rotation eo. For a

change in Anu, the following relatiomns are derived.

- u
Yo =DCF+n. e o© (2.1)
u o
Anu
sin ¥ = sin wo +-?i; 31n(eo - wo) (2.2)
€= € + ¢ - wo (2.3)

where § and g are the actual rotations for the current setting.

A center line of the follower is parallel to and is in the middle
of the follower surfaces. The cam guide angle is defined as the angle
between this center line and the line from the cradle center to the
cam rotation center before the cam rotates (see Figure 2-1la). Because

the follower is fixed in the cradle, the distance from the cradle center
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to the center line of the follower is constant and is always equal

sin a.

to DC

Figure 2-11b shows the relative positions with a cam guide angle.

Using €, as the standard cam rotation angle, one obtains

n
u

Vg =70 ¢
0 DC +nu 0

sin wz = sin‘tpO + sin a

v=v, - a

If both the cam setting and the cam guide angle are changed
can find the following relations based on the geometry shown in Fig
for a standard cam rotation €,¢

n

- u
Yo = bcw n o0

An
sin wz = gin wo + sin a-+ qi? sin(e0 - wo)
‘P=4’2"°‘
25 f T ¥, -,
eE=¢,-a

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

, one

. 2=12

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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n

- i
A= e (2.14)

The ratio between the cradle and the work rotation becomes

N
%ﬂlﬁ"n (2.15)
1™
where
NM = nu cos wo + Anu cos(eO - wo) (2.16)
DM = NM + DC cos wz (2.17)

These ratios of the rotational velocity and the rotation of the work and the
cradle are necessary for computing the velocity and the normal direction
at the contact point. Their derivations are shown in Appendix B.

2.2.4 Basic Machine Set-up and Vector
Coordinate System

The cradle settings in the spiral bevel gear cutting machines
of the Gleason Works are shown in Fig. 2-13. The settings are fixed during the

cutting process. From this figure, the following relations are obtained.

B
s, = 16 sin —ZB (2.18)
8
a0 = 7 = Q ¥ 360° (2.19)
B
s, = 16 sin —23 (2.20)

140 = % ~ -+ (2.21)
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Vectors in these formulae have been taken with respect to a
set of right-hand rectangular cartesian coordinates, x, y, z fixed in
the machine plane viewed from the front of the cutter toward the gear
as shown in Fig. 2-14.

In order to be consistent with the vector formulae, the follow-

ing matrix for unit vectors, d, e, and ¢ is used.

d= (1, 0, 0)
e = (0, 1, 0) (2.22)
c= (0, 0, 1)

2.2.5 Point on the Gear

In cutting the gear, the moving parts include the rotating work,
cradle, wheel cutter, cam, and dresser. The work rotatiom, cradle
rotation and cam rotation are related to each other. It is desirable
to choose cam rotation as the independent variable. Thus, there are
only three independent rotations which define a specific point on the
gear tooth surface, i.e. the cam, dresser, and wheel cutter.

The procedure to determine a point on the gear tooth surface is
to choose arbitrary values for the cam rotation and wheel cutter
rotation, then find a value of dresser rotation such that the kinematic
requirement of contact is satisfied, i.e., the relative velocity at the
cutting point is perpendicular to the normal of the point being cut in
the gear tooth.

Symbols shown in Fig. 2-14 for all position vectors are
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defined as:

A vector from the machine center to the point on the surface

S : vector from the machine center to the intersection of plane
containing the cutter tips and the wheel cutter axis.

R : vector from the crossing point to the point on the surface.

B : vector from wheel center to the point on the surface.

T vector from the intersection of plane containing the cutter tips
and the wheel cutter axis to cutter tips.

o unit normal vector to the cutter blade.

t unit vector along the direction of dressing diamond movement.

E : unit vector along the gear axis.

P : unit vector along the pinion axis.

The initial position of these vectors when qg = 0, eg = 0 are

g = (-cos r., 0, -sin r.)
Ygo = Yag ©
's.'go = S, d
Ego = (0, cos 4)8, sin ¢g)
zgo = (0, sin ¢g’ ~-cos 4)8)

Because the convex side of the gear tooth is formed by an inside

blade of the cutter, by using the sign convention given below, the same
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formulae (used in computer programs) can be used for both sides:

Drive Side Coast Side

= 2 - = -
q’g ¢dg ¢dg ¢g ¢dg
ng = Xdig ng - Xdog
Lag = Laig Lig = Log

Reasonable initial values of cam rotation EOg (standard cam
setting) and wheel rotation eg are
eOg = 0 (2.23)

(2.24)

where wM is the spiral angle, using EOg from cam formulae to obtain

wg,Ag and ratio of cradle rotation to work rotation. The new position

vectors become

g = 9g0 T Vg

Sg = Sgoles 1) ‘
R qg-eg)R
tg = thG, qg-eg)R
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1g ™ "go(®r 950"
Eﬁg = dg(e, qg'eg)R
(2.25)
—B-gO = ?g - (0.2 - ay) <+ xdgﬁlg - (2.0 - Eg) Elg
B0 = S5+ By
igo=Xg_g--Emg;—ng—c-+Kgo
where lﬁgo : vector from wheel center to dresser center.
KgO : vector from machine center to dresser center.
.igO : vector from crossing point to dresser center.

After setting certain values for the two independent variables
EOg and Gg, one can determine the dresser angle edg that satisfies the
kinematic requirement of contact between tooth surface and cutter.
To find this dresser angle edg’ an initial value (edg = Q) is first

assumed. From Fig. 2-14, the new position vectors are

- 5 - R
= 8
d2g dlg(nlzz’ dg)
€6 = 1.(P1g° ag’
Ag B AgO * Ldgng (2.26)
= .z

=R .+ L, d
g g0 dg 2g
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B =B .+L.4
Bg g0 dg 2g

The normal of the cutter blade at this instant (given QJg’ eeg values) is

n ={cxB) x

. . t2g }unit (2.27)

The velocity of the cutt er relative to the work at the point being cut
is

= _ _d_‘b_ [— — — —_—
Vg = [CA} cx Ag + g x Rg (2.28)
b4

The product Hé + V is checked to see whether or not it is zero; if not,

the secant method is used to iterate edg until ;é . Vé = 0 is satisfied

for the prescribed values of ¢ and eg.

Og

The tooth surface can be described completely with the formulae

derived so far by varying the values of eOg and eg independently.

2.2.6 Point on the Pinion

The procedure to find the pinion tooth surface is exactly the same as

that forthe gear tooth surface, except for some initial vectors which
are different. From Fig. 2-15, the mathematical forms are described

briefly as follows:

Drive Side Coast Side
% = % b T fap T By
Xap = Xaop Xip = = %aip

Ldp = Ldop Ldp N Ldip
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The initial position vectors are:

»

= (-cos v.» 0, -sin yr)
§p0 =S, Fl
;pO "o : (2.29)
Eﬁo = (0, —cos ¢p’ -sin ¢p)
E?O = (0, -sin ¢p’ cos ¢p)

Assume € =0, 6 - ¢ ; one can calculate X _,} and ratio of
Op M PP

p  %po

cradle rotation to work rotation by cam formulae described earlier.

1, = 90 " ¥,

§p ) EPO(E’ -qp)R

;é = ;50(5, ep —qp)R

fp " Epo(z’ % ’qp)R (2.30)
Hlp = EPO(E, 5, -qp)R

—lp = dCe, % -qp)R

Epo = 'r'P - (0.2 - zdp) c - X4 Elp - (2.0 - Edp) El

w|
]
"
.
+
=
'

p0  p mp “bp
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Assume a value of dresser angle 9

dp
EZP B Elp (Hlp’ edP)R
o = E1p(rpe Ogp)"
Kp ) XpO * Ldp EZP
Ep = ﬁpO * Ly, E?_p (2.31)
73-p ) —pO Ldp —219
E; = {Eép x (c xB )}unit
6; = [g%qp _.x K% +‘5 X §£

(]
o

change edp until V . E?

The tooth surface of pinion 1is thus determined by changing the

values of EOp and Op independently.
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2.3 Tooth Contact Behavior and Motion Graph

The only tooth curvature of involute gears with an infinite
lengthwise radius of curvature is the tooth profile curvature, so the
instantaneous tooth contact pattern will be a straight line extending
from one end of the tooth to the other. If elastic deformation is
included, the contact pattern will be an elongated rectangle, from one
end of the tooth to the other. If the teeth are crowned, lengthwise
curvature is introduced. This results in a point contact for rigid
teeth, or an elliptical contact for elastically deformed teeth.

Theoretical conjugate bevel gear teeth can be manufactured, but
they are sensitive to shaft misalignment and housing deformation. Due to
this, bevel gears are produced with a lengthwise and a profilewise mis-
match. Therefore, the instantaneous tooth céntact pattern will be a
theoretical point for rigid teeth or an ellipse when elastic deformation
is included.

By choosing the proper amount of mismatch in both directions for
a particular case, edge contact and excessive contact pressure can be
avoided in the presence of misalignment due to shaft and housing
deformations.

The purpose of the motion graph is to describe the nature of the
motion transmitted and the effects of contact between adjacent pairs of
teeth on the tooth contact pattern.

The gear contact problem is essentially a Hertzian contact prob-
lem, with the pressure distribution in the Hertzian ellipse a main concern

in EHD. The shape of the Hertzian ellipse can be readily determined
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from the principal radii which can be computed analytically from the

gear teeth geometry.

2.3.1 Matching a Contact Point

A method to find the contact point by machine setting and running
position is derived in this section.

In addition to the rectangular cartesian coordinate used in
Chapter II, a point on the tooth surface with respect to the tooth axis

and the crossing point can be specified in the axial plane by:

L : the distance along the tooth axis from the crossing point.

R : the radius from the tooth axis.

The primary effect of misalignment is to shift the tooth contact
to the boundaries of the tooth surface, resulting in edge contact and
extreme loading conditions. Figure 2-16 shows a pair of
spiral bevel gears; the following errors in relative running position of

the pinion with respect to gear are discussed:

Z ¢! running shaft angle.

X : pinion apex withdraw-which is the linear displacement in

the H-direction (along the pinion axis).

X ¢ gear apex withdraw-which is the linear displacement in the

Z-direction (along the gear axis).

]

offset-which is the linear displacement in the V-direction.
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Consider a point on the gear tooth surface obtained by assumed

values of eOg and Gg as described in Section 2.2, in order to match

the gear axis from its manufacturing position to a proper running
position relative to the pinion axis. Suppose one lets the manufacturing
axis of the pinion coincide with the pinion axis at running position.
Then the gear axis at running position is as shown in Figure 2-17, and

the new position vectors relative to the new gear axis are:

=
]

A_+n +1
g g

(2.32)
AX

I +T +1
T r r

@ wt @, ot (2.33)

where ug is the desired rotation angle of the gear from a specified
reference. In the computer program, ng is set at zero to find the first
contact point, and then is increased to obtain the successive contact

points.

Assuming that a point P on the gear surface obtained by a pair
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of values EOg and eg is a contact point under running conditions, the
position vector for this point expressed in the pinion axis can be

obtained by placing the gear in running position relative to the pinion

as shown in Figure 2-18

= +Ee-X g 4R
Rpl Xprp Ere Xgrgl Rgl (2.34)

One can define this contact point P in the pinion without con-

sidering its angular position by

Lpl - —Rpl " P
(2.35)
= R x
Ry = (R xpl

In the manufacturing procedure, there is a set of particular
values of aOp and ep to produce a point in the pinion with the same

values of . and R as those of L and R _.
P P pl pl

The mathematical way to find these particular values of eOp and

ep is described as follows.

Assuming arbitrarily €. and ep and using the method described

Op
in section 2.2, one can get §5 which is the vector from crossing point
to the contact point Q between cutter blade and work. The vector R

can be specified by

(2.36)
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Iterate ¢. and 6 simultaneously until L =1L . and R =R _, that is,
Op P P pl P 1

the same distance around the pinion axis from crossing point is obtained
for point Q and point P.
Then rotate the pinion axis to make point Q coincide with the

contact point P; the rotation angle required, Anp, is shown in Figure

3 (2.37)

Point P is obtained under the assumption that arbitrary values

of eOg and eg were made. Under a given tooth profile and running posi-

tion, not every point in the tooth could be a common contact point. A
common contact point must have the same normal direction for both pinion
and gear.

Assuming that a point P is the common contact point, the normal
direction at this point on the gear for eOg and eg istﬁél, on the

pinion it is

- 3 @,n) (2.38)

wherelﬁp is obtained at point Q. ngl and npl are compared to see if

they agree to within a specified error. If not, the secant method is

used to to change eog and Gg simultaneously to find another contact point

until the two normal directions agree. This procedure yields a point of

contact between gear and pinion.
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In fully matched gears, the constant velocity ratio is main-
tained. 1In single mismatch case (lengthwise mismatch) the theoretical
contact point is a point of the original surface, so the uniform velocity
will be maintained. There is only one theoretical contact point in
combined mismatch, the point of the original surface; therefore, the
velocity ratio will not remain constant, and there is a theoretical
instantaneous velocity change at each changeover.
The motion graph shows the error in angular displacement of the driven
member against rotation of the driver. It is assumed throughout that

the pinion is the driving member and that it is rotating at a constant

velocity.

2.3.2 Condition of Contact

The surface topography of spiral bevel gears cannot be readily
expressed mathematically by an analytical function. However, one can
use second-order surface approximations to describe the surface around a
point of contact. By this approximation the principal radii and relative
surface velocity at the contact point can be analytically determined.

Approximating a surface to the second order gives

z=0.5a x2 +bxy+0.5¢c y2 (2.39)

The numeric coefficients were chosen so that

a=—= curvature in x-direction
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2
3 z . e
b 3%3y twisting (2.40)
822
c=— curvature in y-direction
dy

(
express this surface equation in compact form (s) = ti 2} .

Except for the tooth breakage, the tooth failure modes are
mainly due to local contact pressure which causes surface pitting or
scoring at high sliding velocities. Therefore, to develop reliable
formulae for gear design it is necessary to have knowledge of contact

pressure and surface velocity on the gear tooth.

2.3.2.1 Surface Coefficients

Figure 1-20 shows the surface at the point of contact for the gear.
The tangent plane coordinate system is chosen in such a way that the
plane containing the normal direction vector of contact point (;g) and
the vector ¢ of wheel axis is the yz plane of the tangent plane coordinate
system as shown. Letzg coincide with y axis and;g with z axis, so

the vector Eé x'ﬁé is in the direction of the x-axis.

In this chosen tangent plane coordinate system, there is no
twisting for the surface of the generator which is the wheel surface
around the point of contact (bswg = 0) and the curvature in the x-axis
direction of this generator surface (aswg) can be derived based on the

geometry shown in Figure 2-20.

sin wwg = ng s c (2.41)




2-21.

but

hence

ng

swg

t

1

= —

T
ng
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lﬁé x c| sec wwg

=n tan - ¢ sec

g g lp‘*’g wm

ini =n, - (t. x )
st 8 lg 2¢ © g
sin amg = t2g . (tg X ng)
x =1L sin o 6 + —==

dg w

= 6 + ——
y Ldg cos awg
A= 0.5 Ld (sin 1 )62 - O.SXZ';;—

g g ng
L2
= 0.5 92[-1. sin i - —98 5452 4
dg g r
ng
A=0.5y2 Lo
0
wg
sin i

L 1 g . tan® o
e Ld 2a r w

wg g cos wg ng

wg

The curvature in the y-axis direction (cS

]

(2.42)

(2.43)

) is shown in Fig.
wg

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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_ 1
sus 7 5 (2.49)

where pmg is the radius of curvature in y-axis directionm.

In the actual running position, the z-axis of the tangent plane

I3 - - is I3
is ngl and the y-ax is

- - — R R
tor = tg(g,u) (e, AL) (2.50)

For the pinion, the surface of the generator around the point

of contact is shown in Fig. 2-22, and surface coefficients a b
swp ? swp
and cswp can then be obtained:
sin wwp = -np cc (2.51)
t =n_ tan wmp + ¢ sec wwp (2.52)
sini =mn,_ - (t,_xn 2.53
ni =mn (2p p) ( )
sina =1¢t, * (t_xn 2.54
o = F2p * (Ep Y (2.54)
rnp = |B_x cl sec wwp (2.55)
sin i
1 _ 1 1 % (2.56)
r WP
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_ 1
aswp T r
np
=0
bswp (2.57)
_ 1
c = =
i swp pwp

In the real running position, the tangent plane coordinate

in the z-axis direction is

le = Hgl (2.58)

and in the y-axis direction is

- - R
t. =t (p, A 2.5
pt p(p np) (2.59)

One uses the vectorial velocity and acceleration of a known
point on the wheel and angular velocity vector of the wheel about that
point to describe the movement of the generator. This point is chosen as

a point of contact at a given instant. The motion parameters are:

\Y : linear velocity vector.
a : linear acceleration vector.
w : angular velocity vector.
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The above are relative motion vectors denoting the motion of a moving
generator relative to a generatee.
The values of these motion parameters can be computed for the

gear as follows (see Fig. 2-23 for direction of vectors):

“eg ~ [%}g » g T {Z_ilg‘]g (2.60)
w = g cte (2.61)
By =Ryt A (2.62)
VomgxE +u o xh (2.63)
;g=-g—x(ng)+(mcg§x'E+a 'E)XKg (2.64)

+ -‘;g X (Z;g X Xg) (2.64)

- — =T

= -, t,n
tg mg( g’ g)
- = - =T

= V - t 2-65
Veg = Vgr T2 7g) (2.65)
- — =T
a. + aG(—, tg, ng)




Similarly, for the pinion, one obtains

“ep T [%]p » % T ’:_ilg]p (2.66)
Up = c+p (2.67)
Ep = Ep - Kp (2.68)
Vp =Ex§p +?Jp pr (2.69)
Zp =;x (;xfp) + (mcp5x2+acp <) pr
+ Gp X (Ep X Xp) (2.70)
Transforming to the tangent plane coordinate system,
bep = 8 (=, € EP)T
V =V (-, T,n)! (2.71)
tp P I
th N ;p(-’ Ep’ Hp)T

The problem is, then, to determine the three components of the
difference surface matrix (da, Ab, A¢) in terms of the given surface

components and the motion parameters. From 2.12, the following relations are

obtained for the gear (subscripts x,y,z denote the component of a vector):
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v
“egy T Bsug tgx
v

tana_, = = — (2.72)
tgx swg tgy
3os T Viox Ytey Veay %t
v AR BY LEX (2.73)
tgx swg tgy
“eov ~ Ssug Vegy

he, = v +V -V tan ao (2.74)

g tgy tgx sg
Ab = - Ac_ tan a 2.75
g g sg ¢ )
Aag = - Abg tan asg (2.76)

The coefficients of the surface of the gear around the contact point are:

a = a + Aa
sg swg
b = Ab 2.77
sg g ( )
c =c + Ac
sg swg

for the pinion:

+ \'4
tpy swp_ tpx (2.78)
w c v
tpx Smp tpy

1

tan o
S
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+ Vv -
- _ at}z tpx wtpy thy u’tpx
Vp T W, - ¢V (2.79)
tpx  “sup tpy

w -c v
Ae = tpx Swp tpy
P v +V -V tan a
P tpy tpx sp
Abp = —Acp tan asp (2.80)
Aa = -Ab tan a
P P )

The coefficients of the surface of the pinion in the pinion tangent plane

coordinate system are

asp = asmp + Aap
= Ab .
bSp P (2.81)
c = ¢ + Ac
sp swp P

It is necessary to rotate the pinion tangent plane coordinate system to
coincide with the gear tangent plane coordinate system in order to express
the coefficients of both surfaces in the same coordinate system. The angle

required for rotation is A which can be found from

sin A = t e ° (t

> x Eél) (2.82)

gt

and then to transform the coefficients of the pinion surface into this

coordinate system,
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_ 2 . 2
aSpg aSp cos” A+ 2 bSp cos A sin A + cSP sin” A

_ . 2 . 2
bSpg (cSp asp) cos A sin A + bsp(cos A - sin” A) (2.83)

_ 2 ., 2
cSpg = cSP cos” A -2 bSp cos A sin A + asp sin” A

2.3.2.2 Geometric Contact Ellipse

Using a value of 0,00025" for the separation at the extremities
of the contact and the surface curvatures of each member at the point of

contact, the size and direction of the contact ellipse are determined

as (Fig. 2-24).

Aa = a - a

spg sg
Ab = bspg - bsg (2.84)
Ao = copg ™ Csg

tan 2g = ZZQ%EKE

The two values of g are the principal directions. Assuming that 89 is in

first or fourth quadrant, the curvatures in the 81 and 89 directions are:
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2 . . 2
Aa cos g + 2 Ab cos g, sin g; + Ac sin 8,

tangent plane are:

! o.ooos-plT

1

P1
\/o.ooos L
Pa

a1

P2

(2.85)

2 2
= Aa cos g, + 2 Ab cos 8 sin g, + Ac sin gy

Py and p, are the principal radii of the difference surface of gear and

pinion surface, the lengths of the semi-axes of the contact ellipse in the

(2.86)

2.3.2.3 Velocity of Contact Point

Consider that the gear surface is stationary. During a small unit

time, the contact point on pinion moves from P to P' with velocity VS

due to rotation of the pinion.

During this same time interval, the

point of contact moves on the pinion surface to P" with a velocity v

(Fig. 2-25), the velocity of contact point is the sum of these two

parts.

(2.87)
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The pinion point velocity relative to the gear for unit pinion

rotational velocity is

= R 2) + (R >
v mi( ol X g) (Rpl X p) (2.88)

Transforming this vector into the common tangent plane

¥ = _ = T
VS = Vsl( s tgt’ ngl) (2.89)

The angular velocity of the pinion body relative to the gear is
w, = -p - m g (2.90)
w=w (=t ) (2.91)

The surface coefficients of gear and pinion in this tangent plane are

aSB ng
S =
(g) . .
sg sg
(2.92)
a b
Spg Spg
(s ) =
P b c
SPg spg

Since p" is to be a point of contact, the rate of change of

the normals of the gear surface and the pinion must be the same:
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ity :(Sg) for the gear

- ;(sp) +wuxn for the pinion

where w x n is due to the rotation of the pinion surface, and —\-r(sp) is due

to curvature of pinion surface. Hence,

-G(sg) =-(u - Vs-) (sp) +wuxn

E[(sg) - (sp)] =wxn+ Vs(sp)
(2.93)

E(As)=UxH+V(s)
S p

i xR+ T, Gt
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2.4 Results and Discussion

One typical set of spiral gears currently being tested at NASA
Lewis Research Center was used to illustrate the numerical calculations.
The machine settings, which are provided by Gleason Works, are shown in
Appendix A. The points on the tooth surface were obtained by procedures
described in Section 2.2. The contact condition was determined by
the method shown in Section 2.3. A series of solutions were obtained
to simulate the spiral bevel gears subjected to a range of operating
conditions, and results are presented here. In order to obtain a

unified view, all the curves are plotted in the axial plane.

2.4.1 Tooth Profile

The methods in Section 2.2, which use actual cutting motions
of the gear cutting tools, result in an exact description of the tooth-
forms as functions of spiral angle, blade-edge radius, etc.

A typical tooth profile for the gear shown in Fig. 2-26 was
plotted in Fig. 2-27. For the purpose of applying FEM in gear design,
a typical finite element model for a single gear tooth was shown in

Fig. 2-28.

2.4.2 Contact Pattern

The spiral bevel gears are relieved both profilewise and length-
wise, so that there is only a single contact point in the center of the tooth.
This combined mismatch permits the gear pair to tolerate displacements
under load and assembly errors. Theoretical point contact is, of course,

only an imaginary concept. Under even light loads, tooth surfaces
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compress and deflect to cause surface contact. This surface contact
area is roughly elliptical. The sum of those elliptical contact areas
along the path of contact is called "Tooth Bearing." Correctly made
teeth will show a tooth bearing centrally located on the tooth surface,
when the gears are in their standard relative running positions, The
amount of lengthwise mismatch is readily observed by the length of the
tooth bearing. Profile mismatch is not observed as readily owing to
the fact that the tooth.height is relatively small; nevertheless, the
existence of profile mismatch is evidenced by the lack of any heavy
concentration of bearing at the tips of the teeth.

The results illustrated here were obtained by analyzing the
effects of running position errors on the path of contact. The errors
discussed here include pinion apex withdraw (Xpr), gear apex withdraw
(xgr)’ running shaft angle (Zr) and running offset (Er). Their effects
are calculated by changing the value of a single term while keeping the
others unchanged, and these results are shown from Fig. 2-29 to Fig.

2-33. The path of contact moves to the toe as the pinion apex withdraw
increases and moves to the heel as it decreases. The shape of the path of
contact remains the same, but is inclined more as it approaches both

sides. The gear apex withdraw will produce the same effect, but in the
opposite direction. As Xgr 1ncreasgs, the path of contact moves to the

heel, and the opposite occurs as Xgr decreases, Both of these

have as their chief effect a pressure angle error; the tooth contact

will move toward the tooth tips on the gear tooth and toward the tooth
flanks on the pinion. When the shaft angle becomes larger, the contact on
both the gear and the pinion shifts to the toe. At the same time, the contact

moves toward the tooth tips. The contact goes the opposite way when the
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shaft angle decreases. This effect is expected. The principal effect
of the offset is to tilt the tooth in its mating slot, so that the con-
tact shifts to the toe on one side and to the heel on the other side.

Usually, the running position errors are introduced simul-

taneously; the results on the drive side are investigated for the sliding

velocity and radii of the difference surface at the contact point with
three separate sets of errors which result in the center contact, heel
contact, and toe contact. The tooth bearing for these three contact
cases is plotted respectively on the same graph. Assuming the combined
Hertzian deformation to be 0.00025",which corresponds approximately to
to the case of a pair of lightly loaded gears, and,using the curvatures
of the contacting surfaces, the size and direction of the contact
ellipse are determined. The larger the radius, the bigger the ellipse.
The sliding velocity has also been plotted at selected points. See

Fig. 2-34 and Fig. 2-35.

2.4.3 Motion Graphs

The rotation errors of the driven member against the driving
member for the entire duration of contact for several adjacent meshing
pairs were plotted. The corresponding velocity errors were shown in
the same graph. Fig. 2-36 shows the curves on the drive side with a
running position which results in a center contact. Fig. 2-37 shows
the results on the coast side with the same running position. Figs.
2-38 and 2-39 illustrate the contact patgerns for the motion curves

shown in Figs. 2-36 and 2-37.




41

The velocity curves in those figures do not intersect; at the
transfer points there is a sudden jump in the velocity with which the
driving tooth strikes its mate. This value is, therefore, a measure
of the impact occurring at each tooth mesh. As mismatch is increased,
the impact increases in magnitude, resulting in noise and stress. It
is therefore essential that mismatch be kept to the smallest value
compatible with the adjustability to the running position errors. This
concept of motion errors is only applied to the case under a very light

load. The elastic deformation due to moderate load will smooth out these

errors.
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Fig. 2-26. Typical Tooth Profile
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CHAPTER III

DYNAMICS OF SPIRAL BEVEL GEARS

3.1 Introduction

One of the main uncertainties in gear failure analysis is the
load imposed on the gear teeth at high speeds where the inertia forces
of the gear wheel and shaft become significant. The dynamic response of
the operating system plays an important role in gear design because the
movement of the gear body will shift the contact bearing to an undesirable
position as a result of the misalignment of shaft. The dynamic load in
gearing has received continuous attention in the past, and many studies
have been reported (1-9). As far as the dynamic response of bevel gears
is concerned, most of the studies have been conducted experimentally in the
laboratory. One of the recent measurements is by Terauchi and Fujii (10)
in which the dynamic load of gear teeth of straight bevel gears is
obtained by using a power circulating gear testing machine. There is
a lack of analytical study of the vibration of spiral bevel gears. For
instance, some industrial practice still depends upon Buckingham's formulae
or upon empirical factors for designing spiral bevel gears,

Analytical studies of spiral bevel gears are extremely complex
because: 1. the tooth profile of spiral bevel gears is generated by the cutting
machine, and it is difficult to describe the tooth surface,which is much
more complicated than that of spur and helical gears; 2. the tooth contact

patterns of spiral bevel gears vary with the assembly errors caused by
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the apex error, shaft alignment, etc.; 3. being different from spur

gears, the spiral bevel gears have also lateral vibration in addition
to rotational vibration. In this report, efforts are made to explore
the effects of all these factors on the dynamic behavior of the spiral

bevel gears.
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3.2 Formulation

The main objective in this section is to formulate a dynamic
model and equations of motion to simulate, in the steady state, the periodic
motion of both the pinion and the gear as well as the tooth load during
a typical cycle, in which a pair of teeth traverses through the zone of
action from point A to point C as shown in Fig. 3-1.

In developing the equations of motion, the pinion and the gear were
assumed to be rigid bodies each having six degrees of freedom. The
supporting bearing was assumed flexible with known spring stiffness. At
the contact of each pair of teeth in the zone of action, the teeth were
assumed to be connected by a linear spring which is oriented normal to
the contact point and has a stiffness to be determined separately by a
finite element model.

The equations of motion of a rigid body in three dimension are

(see Fig. 3-2):

IF = ma

(3.1)
z Mb =H

|

where external force vector
m : mass

: acceleration vector of the mass center

|
o]

vector of external moment about the gravity center

o

: vector of rate of change of angular momentum about

the mass center
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The following derivation is described separately for pinion and gear.

3.2.1 Pinion

Let the moving coordinate axes x;, y;, z; be the principal axes

of the inertia of the body so that the axis of the rotation of the body
will direct along one of these axes, which is named the dominant axis.
The pinion shaft is not fixed in the moving coordinate, but rotates

about the dominant axis y; at an average velocity w_ which is the

operational rotation velocity of the shaft. XYZ axes are fixed co-
ordinates in space (see Fig. 3-1). In the case of the pinion, the
dominant axis is along the Y axis, hence the angular momentum of the

pinion about the mass center is

H. =1 ,68 , ,1i'+ 1 ) +w)j'+1,0 k' 3.2
Gp x'px'pp y'p( y'p p)Jp z'pz'pp 3.2)

and the rate of change of HG in the moving coordinate

i =L 8 T'+7I1,6 3'+1 6 . & 3.3
Gp x'px'pp YPy'plp z'pz'pp 3-3)

+0 x (1,0 ,1'+1 (é +uw )i'+1I o . k'
p Xp x'pp y'p y'p p’p z'pz'pp

Q =( ,1i'+6 ,3"' +6_, k" (3.4)
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L

+|I 0 + (I -1I é é !
[y,p o T T = T8 z,p] Las)

+I,06 , +1I 6., + - -
[Z'p 2'p T lyrptplxtp T Tyrp IX’p)BX'PeY'P] k

ey,p is the rotation velocity variation from w . The true

rotation velocity along the dominant axis is ey'p + wp. Assuming ey,p

. .

is much less than w_ and the magnitude of 6 , , 8 , and 6 , is of the
P Xp YP z'p

same order, and neglecting the higher order terms, one obtains

a linearized equation

H =lT,06, -I.wb -]i 1
Gp [X'P x'p y'ppz'PJ P

+1 .o T (3.6)
y'p y'p] Ip

+I1,8, +I, w6, k'
z'pz'p Ty'pp x'p P

so the governing equations become

o+ ) F L =m G I+ I+ E K (3.7)

=[1, 0 -1 ) -
I:X'P x'p y'p'p Z'p] :'> (3.8)
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.~

+1, 0 3!

[ v'p y'p] Ip
(3.8)

[ . . —

+lI1 ,06 , +I, w6, k'

z'pz'p Ty'ppx'p P

where M is number of bearing reaction force, N is number of contact

force, and ¥' , §' , and Z' are the components of the absolute
cp cp cp

acceleration of the pinion mass center in the x', y' and z' direction.

3.2.2 Gear
These results are similar to the equations for the pinion, except
that the dominant axis in the case of the gear is X axis and the operational

rotation velocity is wg’ the equations of motion for the gear are:

M N . . .
F .= "iv 4y G 42 K .
‘Z Frgi + .Z chl mg(xcglg Yegg zcgkg) (3.9)
i=1 i=1
RTINS LW
Yy .xPF + Yy .xPF + Output Torque
4=1 rgi rgi 4=1 c8i cgi
“ 1 _
=[1 , 8, J i
X'g X8
HI ,8 , +1 8 3 (3.10)
[y'g y'g  x'g's Z'g] g
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Some preliminary work must be completed before the twelve
equations in the system can be solved. These are: 1) expressing the
force terms E;i and F;i in terms of the displacement unknowns in the
fixed coordinate; 2) expressing the displacement unknowns in the
fixed coordinate by the displacement unknowns in x'y'z' system in which

the equations are solved.

Because the contact force is assumed to always be in the normal

direction of the contact point on the tooth surface, the scalar quantity of the

contact force can be used effectively in the derivation if the direction
vector of the contact point is known. For simplification, the matrix

notation is used, and some basic column matrices are introduced:

T
' = v ' '
{D }g (xg, Yg, zg, ex,g, ey,g ez,g) (3.11)
T
' - v v '
{D }P (xp9 yp’ ZP, ex'p’ ey'p’ ezlp) (3.12)

which are the displacement unknowns in the moving coordinate system,

while

T
D = 32 .
{D} (xg,yg z ,6 ) (3.13)

]
g’ xg’ eyg’ zg

{D} T

(x Y 2

,6 8,8 ) (3.14)
P PP P Xp, YP zp

are the displacement components in the fixed coordinate.

From the configuration of the gear system, the displacement

components at the contact point i in the normal direction (Gn) can be
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expressed in terms of the rigid body displacements as:

{Gni}g = [DGi]g {D}g (3.15)
{Gni}P = [DGi]p {D}p (3.16)

and the bearing reaction force at bearing j can also be expressed

in terms of rigid body displacements by:

F .} =- .
{ rJ}g [DK.j]g {D}g (3.17)

{Frj}p = - [DKj]p {D}p (3.18)

where i and j are from one to the number of contact forcesand number of
bearings, respectively. The displacements at contact point i due to

elastic deformation along the direction of contact normal are:

{s [pc, .1 {F .} (3.19)

1
nci' g ij’g cj g

{s_ .}

nci'p [Dcij] {F .} (3.20)

P cJpP

where i, j are from one to the total number of contact points. The
unit outward normal vector at contact point i, is denoted nci. The

positive value of Fc is taken so that contact force is acting along

1
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the same direction as the outward pointing normal vector. Since only the
scalar quantity of the contact force is considered in the equation, the

relation {Fci}g = {Fci} is always true at each contact point.

P
The total displacements in the normal direction, which include
both the rigid body and the elastic deformations, will be the same for

the two contacting bodies. This relation gives:

Neig - (1831, + 6} ) == - (8} + {63 (3.21)

Unealg * (Cagly = = 16,43 - o .} (3.22)

[chi]g {Fci}g + {c;ni}g = - [chi]p[Fci}p - {c;ni}p

{Fci}g = - ([chi]g + [ch],L]p)'l({Gni}g + {Gni}p) (3.23)
and

(Fd, = - (e, ]+ [chi]pfl([nci]g{n}g +[p6 1 (D)) (3.24)

which is the equation relating the contact force and the rigid body
displacement unknowns. The displacements in different coordinate
systems can be transferred from one to another by means of the following

relations (10),
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x x
y'p = [0°1Jy" (3.25)
z' z"

x" X

"= 51y (3.26)
z" z

x' X

yr e = 168°1 0651y} (3.27)
z' z

where [e“] is the transformation matrix for rotation in x'y'z' coordinate,

[ek] is the transformation matrix for rotation in xyz coordinate.
Incorporating all the above force and displacement relations

into the equations of motion for the pinion and gear and then rearranging

the matrices, one can obtain the final form of the twelve equations.

(D'} {D'} {p'}
g g g
[m] _ + [e] + [k] = {R} (3.28)

{p"} {D"} {D"}
P p P

The details of matrix [m], [c] and [k] are derived in Appendix C.
After examining the equations of motion, it was found that the

fourth equation governing the rotational motion along the dominant axis
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of the gear, and the eleventh equation governing the rotational motion
along the dominant axis of the pinion can be reduced to a single equation.
The reduced equation is similar to that describing the vibratory system of
two masses connected by a spring. In this equation, it is convenient to convert
the rotational motion into a motion along an artificial line of action.
Like the line of action in spur gears, the artificial line of action in
spiral bevel gears is defined as the effective component of Y x n to
produce the torque along the dominant axis, where ;-is a position vector
from the mass center to the contact point, and n is a unit normal
vector at the contact point.

The 4th and 11lth equations of motion are rewritten here as

=Y .xF )

+ .
Ix'gex'g cgi cai’x'g (Output Torque)x,g (3.29)

1,6 Ty . xF )
y'2°y'p ~ & Yepi X Fepidyry

+ (Input Torque)y,p (3.30)
The following new variables are introduced:
8 = RBG *« 0 _, (3.31)
® =RBP - 6, (3.32)

Letting FMA denote the magnitude of the contact force and 'I'c be the static

force, the equations become
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o ?;gi x chi)x,g = FMA * RBG (3.33)
b Y:pi x 'fcpi)y,p = - FMA - RBP (3.34)
(Output Torque)x.g = - Tc * RBG (3.35)
(Input ']Torque)y,p = TC + RBP (3.36)

RBG and RBP are treated as the radii of the effective base circle of spiral

bevel gears. Eqs. (3.29) and (3.30) become

Iy .
X8 = . - .
REG eg RBG FMA Tc RBG (3.37)
I, .
F— Y + * .
i%ﬁg'ep RBP FMA Tc RBP (3.38)
Defining
Ia'g
J = (3.39)
X8 RBG?
and
_I_Y_'P_
= .40
Iyp RBPZ (3.40)
one obtains
6 = - )
ng g FMA Tc (3.41)
J_ 6 = - FMA+ T, (3.42)

yP P
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Introducing an equivalent mass J and a relative displacement 6

P8
JX e J
J = J +J (3.43)
Xg yp
6 =08_-29 .
pg p g (3.44)
the reduced equation, including damping terms, becomes
J6 +C6 + rFMA = T, (3.45)

Pg pPg

After the relationship between the 11 displacement unknowns and the
magnitude of the contact force is rewritten, the system c&n be reduced to
11 second order differential equations with state dependent coefficients.
These equations were solved numerically by the Runge-Kutta method. The
unknown initial conditions (11 displacements and 11 velocities) can be
iterated by taking the previous calculated values at the end of each
iteration. The criterion of the iteration is to force the equation ito
satisfy the periodic contact condition. The static displacements and
zero velocities are taken as first guessed values,

To implement the above equations, the following state coeffi-
cients are needed:

(1) The tooth contact position as a function of the relative
rigid body displacements of the two shafts,

(2) The direction of the normal vector at the contact point,

(3) The combined stiffness of the teeth at the contact point.
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The teeth contact position and the direction of the normal vector at the
contact point can be obtained from Chapter II. Because of the geometric
complexity of spiral bevel gears, there is no satisfactory

formula available to calculate the deformation of the tooth surface.

A finite element program, to be described in Section 3.3, was used in
this study to calculate the deformation due to a unit load applied at a

given contact point of spiral bevel gears.
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3.3 Tooth Deflection

For most gear applications, the contact ratio is greater than
one, that is, there will be more than one pair of teeth in contact
during some portion of the whole engagement. When the load is shared
by two contacts, it cannot be assumed that the load is distributed
equally among the pairs of teeth in contact because this is a statically
indeterminate case. Therefore, one must consider the tooth deflection
under the load for each pair in order to determine the load sharing
characteristics among the pairs.

Because of the complexity of the spiral bevel gear geometry,
there are no existing simplified methods for calculating the suitable
tooth deflection. 1In order to investigate the system response, the gear
shaft must also be included in the calculation of tooth deflection.

Some of the recent applications of finite elements in determining
tooth deflection can be found in Refs. 9 and 12, .where it was shown that
more accurate results can be obtained by using the finite element method.
Most of this work dealt with two dimensional problems and did not
include the whole gear body. Fig. 3-4 shows a typical 8-node solid
element grid pattern for a gear and a pinion with three adjacent teeth
attached to the gear wheel and shaft. Fig. 3-5 shows the central
tooth and its attached ring element of the gear. Fig. 3-6 shows parts
of the gear shaft and the gear wheel. Fig. 3-7 shows the entire ring
element with three adjacent teeth of the pinion., Fig. 3-8 shows the
elements of the pinion shaft. The central tooth was subject to load to

calculate the deflection. There are 941 nodes, 562 elements for the
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gear model, and 1029 nodes, 584 elements for the pinion model. Using
this grid as the input, one can readily compute the deflection 8§ under
a load P applied at any grid point in the tooth surface. For this
analysis, the MARC-CDC program was used, the boundaries were considered
to be fixed for all the points connected to thrust bearing to eliminate
rigid body displacement, and the boundaries nodes connected to the
radial bearing was allowed to move in the direction of dominant axis.

The stiffness at grid point 1 1is defined as

_ P

kS, 5 (3.46)

RS = —— (3.47)
pi 5pi

The stiffness (ng, KSP) of the point other than the grid point in the
tooth surface can be calculated by the interpolation method. The
details are shown in Appendix D. The combined stiffness at contact
point is expressed as

KS_« KS
g

-8 P
KS = XS ¥ KS (3.48)
g P
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3.4 Results and Discussion

A series of solutions were obtained to simulate the dynamic
response of a set of spiral bevel gears currently being tested at NASA-
Lewis. The data for this gear set and the lubricant data are listed
in Table 3.1. Effects studied include running speed, shaft misalignment,
and system damping. These results are presented in this section. The
dynamic response is expressed by a dynamic load factor defined as the
ratio of the maximum dynamic load along the contact path to the average
static load. This factor is plotted as a function of speed with differ-

ent damping ratios and contact ratios.

3.4.1 Dynamic Load Variation

For a constant input torque, the load on the contact point of
the two meshing teeth along the path of contact is not constant. This
load variation is mainly caused by the following factors:

1. The variation of stiffness along the contact path.

2. The transition from a single pair of contacts to a double

and from double to single.

3. The effective radius is not constant along the contact path.
Fig. 3-9 shows the variation of effective radius of pinion. Fig. 3-10
shows the variation and jump of stiffness for the transition of
contacts.

The main excitation to the gear system comes from the periodical
change in teeth stiffness due to the alternating engagement of single
and double pairs of teeth. The frequency of this excitation force,

expressed as a meshing frequency, depends on the operating speed.
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Therefore, it dominates the resulting mode of vibration. Fig. 3-11 to
Fig. 3-14 show dynamic load variation at four different speeds in the
case of central contact, that is, when the contact path is located
centrally between the toe and the heel of the tooth.

Since there are eleven degrees of freedom in the system, eleven
resonating frequencies of the system should exist. In the low speed
region where the excitation frequency from the change of stiffness is
much lower than all resonating frequencies, the dynamic load response
along the path of contact is somewhat like static load superimposed by
an oscillatory load due to the resonating frequency of the system.

When the speed is mnear the resonance region (Fig. 3.11), the
dynamic load response becomes very severe (Fig. 3-12 and Fig. 3-13).
The maximum dynamic load is much higher than the static load, which is
the case when overloading occurs. Sometimes the oscillation of dynamic
joad will make meshing teeth separate when the load becomes negative,
and thus generates noise and surface fatigue.

As the speed increases beyond the zone of resonating frequencies,
the dynamic load becomes smoother along the contact course, and the
value is less than the static load (if the contact ratio is above one).
The variation of dynamic load in this region is out of phase with the

change of the teeth stiffness (Fig 3-14).

3.4.2 The Effect of Shaft Misalignment

When the assembly errors are introduced in the system, the

contact bearing shifted to either end of the tooth surface (11).
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Fig. 3-15 shows the typical paths of central contact, toe contact, and
heel contact. Usually the central contact is desired because it can
tolerate more possible running position errors and avoid edge contact.
The dynamic load response of toe and heel contactsare shown in Fig.
3-16 and Fig. 3-17. The change of the contact bearing from the center
to either edge will also change the contact ratio of the system because
the tooth surface is not a perfect involute along the profilewise
direction and is mismatched along the lengthwise direction. In the
current example, the contact ratio for the toe contact is 1.26,

central contact 1.16, and heel contact 1.0. In this case, if the con-
tact bearing is moved farther toward the heel region, there would be no
tooth contact between the time when the previous tooth finishes the
contact and current tooth goes into the contact zone (discontinuity

in tooth mesh). This situation would cause a very large impact force
which would generate noise and severe damage to the tooth surface.

The effect of the tooth contact ratio on dynamic response is shown later.

3.4.3 Contact Path Variation Due to Dynamic Response

In addition to showing the contact paths due to assembly errors
in the system in Fig., 3-15, the real contact path, including the effects
of both assembly errors and running position errors induced by the
dynamic responses, is plotted in the same figure. When
this real contact path is compared with that caused by the assembly
errors and running position errors induced by the average static elastic
deformations, the deviation is found to be surprisingly small. One
explanation of this small difference might be that the displacements

change due to the dynamic oscillation are small, and they do not produce




94

a large change in contact path compared to those caused by the static
displacement only. The closeness between these two contact paths sguggests
that one can use the average static elastic deformation to calculate the
contact path, which can then be used directly to solve for the dynamic load
and lubrication behavior without having to solve the dynamic load

and contact path simultaneously using an iterative technique. The
elimination of this iterative procedure greatly reduces the computation

time.

3.4.4 Effect of Speed

Once the physical conditions of a gear set are determined, the
dynamic response depends on the operating speed. For a system with one
degree of freedom, such as spur gears, the maximum dynamic load occurs
when the meshing frequency, which depends on the operating speed, is
near the system natural frequency. Some peaks in the dynamic load
are caused by the varied meshing stiffness along the contact path, and
they appear at meshing frequencies lower than the system natural fre-
quency. The dynamic load factor,defined as the ratio of maximum
dynamic load to the average static load,is plotted against the gear
speed to illustrate the effect of speed in Fig. 3-18. Since there are
eleven degrees of freedom in the spiral bevel gear system, more peaks
in the dynamic load are expected.

It is seen that the highest dynamic load appears to occur near
the natural frequencies which correspond to the mode associated with
the largest displacements in the motion along the line of action. The

frequencies marked ¢ in Fig. 3-18 shows the system natural frequency
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causing a larger displacement in the motion along the line of action and
the ones marked + shows the system natural frequency with a small
displacement in that motion. It is clearly shown that the dynamic load
factor at the frequencies marked 4+ has a peak response, and the response

at the natural frequencies marked + is not necessarily a peak.

3.4.5 Effect of Contact Ratio

The contact ratio is defined as the ratio of the time required for
one tooth to go through the whole contact zone to the time required for a
periodic meshing cycle. It is believed that the load sharing
characteristics caused by more than one tooth in contact will reduce the
static load. The variations in the dynamic load factor due to the effect
of changing contact ratio is shown in Figs. 3-19(a) to (¢). It can be
seen that the maximum dynamic load factor does not change much. However,
the contact ratio's effect is significant in high speed regions, where
the load is spread out between meshing teeth pairs. A typical dynamic
load variation with a high contact ratio along the contact path is shown

in Fig . 3-20 .

3.4.6 Effect of Damping

Since the damping forces are usually not known in the gear system,
three arbitrary values are chosen for the damping coefficients: 2627,
4378, and 6129 N sec/m (15, 25, and 35 lb.sec/in). These values are
selected to give a range of non~dimensional damping ratios corresponding
to those commonly used in spur gears (0.1-0.2). The non~dimensional

damping ratios corresponding to the above damping coefficients are 0.087,

Crk
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0.14 and 0.203. The dynamic response for these damping cases can be
observed from Figs. 3-18, 3-19(a), and 3-21. It is expected that the
larger the damping force is, the smaller the dynamic load factor will be
in the resonance region. The large damping force will also level off the
peak of dynamic load factor in the subresonance region, and there is no
effect on the dynamic load factor due to the damping force in the

superresonance region.

3.4.7 Effect of Bearing Stiffness

It is well known that the bearing stiffness plays an important
part in the dynamic load response because it directly controls the static
displacements which determine the contact path. A large stiffness for
supporting bearings is sometimes desirable because it pushes all the
resonant frequencies beyond the range of the operating speeds. In Fig.
3-22, the dynamic load factor is calculated for a system with "infinite”
bearing stiffness. The contact ratio for this case is 1.16, and the
damping ratios are 0.058 and 0.14. Since the bearing stiffnesses are
infinite, only the rotational mode prevails. Three peaks are shown to
exist in Fig. 3-22; two of these are the subharmonics. These results for
infinite stiffness are compared with the results shown in Fig. 3-19(a)
for a finite stiffness of 3.5 X 108 N/m (2 x 10° 1b/in.). It is seen
that the natural frequency of the rotational mode with an infinite
stiffness is increased to 290 rad./sec. from the natural frequency of 200

rad./sec. for a finite stiffness of 3.5 x lO8 N/m.
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Fig. 3-1. Dynamic Modeling and Zone of Action of Bevel Gears.
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Fig. 3=2 Principal Coordinate in 3-D.

z'!

-

Fig. 3-3. Principal Coordinates at Different Time Intervals
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Fig. 3-6. Parts of Gear Shaft And Blank
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Fig. 3-7. The Elements of Rim And Three Adjacent Teeth of

Pinion
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CHAPTER IV

LUBRICATION OF SPIRAL BEVEL GEARS

4.1 Introduction

One of the most important failure modes in lubricated machine
elements is scuffing, which is where local wear occurs between the
contacting elements when the lubricant fails to separate them and the
protective thin surface film breaks down due to the high temperature. 1In
gearing systems this failure is affected mainly by gear geometry, speed,
load, and lubrication. For many years, the methods used to predict the
surface capacity of gear systems depended on empirical formulas based on
field experience. A major drawback in the application of the empirical
methods is that they do not consider the effects of lubrication, which
has been found to be of great importance in scuffing prediction. In‘
recent years, the fully developed theory in elastohydrodynamic
lubrication was successfully applied to spur and helical gears (9,52).
Because of the geometric complexity of spiral bevel gears, an analysis
covering all the possible factors to evaluate the risk of scuffing in
lubricated spiral bevel gear drives has yet to be developed.

In this chapter, an analysis of the temperature and film thickness
for spiral bevel gear teeth is performed. The bulk temperature is calcu-
lated by using the 3-D finite element method combined with a prescribed

heat input. For the heavily loaded system, the limiting shear stress
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depending on temperature and pressure is used to calculate the total
heat generated over the whole contact ellipse. The average and maximum
flash temperature in this contact ellipse is obtained by making a
finite number of stripes. Each stripe is oriented along the direction
of sliding velocity. It is assumed that the temperature profile along
any stripe is the same as that of an infinitely long band heat source
(in the direction perpendicular to sliding) whose width is equal to the
stripe length and has the same heat flux profile along the stripe. The
heat flux partition coefficient is calculated by assuming that the total
heat is generated in the mid-plane of the lubricant film, and that there
is no temperature jump in this plane. Hamrock-Dowson's equation is used
to predict the film thickness between matching teeth. All quantities
mentioned above, which include bulk temperature, flash temperature,
traction coefficient and film thickness, are interdependent. They

are solved as a system by an iterative method.
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4.2 Flash Temperature

During meshing,each tooth face will show a temperature increase
(flash temperature) due to the frictional heat developed at the surface
as the contact area moves along the tooth face. This temperature rise is
restricted to the instantaneous contact area and will disappear very
rapidly as soon as the area of tooth face is out of contact. Usually,

this temperature is very high and it is an important factor in gear

scuffing.

The first successful prediction of flash temperature, done
by Blok (13,14), was based on the heat conduction analysis of a
semi-infinite body with a uniformly distributed moving heat source.

J. C. Jaeger in 1942 (15) dealt with the problem of a moving source of
heat with variable heat source and variable velocity. J. F. Archard

(16) introduced a simple harmonic mean to obtain the interface temperature.
A refined solution including a local heat partition coefficient between

a pair of disks was derived by Cameron, et ai. (17). More recently,
Francis (18) made a further refinement in Blok's calculation by con-—
sidering a variable heat flux in the contact.

The calculation of flash temperature is based on the assumption
that the heat source passes over the surface of a semi-infinite solid.
For spiral bevel gears, the area of sliding contact is formed by elastic
deformation of curved tooth surfaces where, according to the classic
equation of Hertz (19), the area of contact is elliptical. Archard (16)
has shown that,when the dimensionless parameter vR/a > ~10.0 (where a
is the thermal diffusivity, v is the sliding velocity and R is the

nominal length), the heat flow in the direction perpendicular to sliding
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may be neglected. The temperature distribution within a heat source

of finite area can be determined by dividing the whole contact area
into differential stripes parallel to the sliding direction. The
temperature profile along any stripe is the same as that of an in-
finitely long band heat source (in the direction perpendicular to slid-
ing) of width equal to the stripe length and having the same heat flux
profile along the stripe.

The situation is illustrated in Fig. 4-1, which shows the
contact heat flux distribution in an elliptical contact area with an
angle a between direction of the velocity of heat flux (sliding velocity)
and semi~minor axis of this area. Letting the equation (X/AMAX)2 +
(Y/BMAX)2 = 1 describe this elliptic contact, the length ¢ of a stripe con-

taining point (x,y) in the contact is

YA = BMAX? tan® 6 + AMAX (4.1)
2 2 2
YB = tan 0 BMAX" x,.- y, BMAX’ tan® ¢ (4.2)
YC = BMAX® tan? 6 yi - 2 tan 9 BMAX? XY,
(4.3)
+ BMAX? xzi - AMAX? BMAX?

+,- _ - YB :JYBZ - YA YC 6.4)
yl - YA .
+’- = +’— -
xg tan 8 (yi yi) +x, (4.5)
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N + 72 + _ -\2
28 = {(yi yi) + (xi xi) (4.6)
The center of this stripe is
= 0.5 (x +x) (4.7
X0 . X, +x; .7)
= 0.5 (v + ) (4.8)
Vio = 92 Wy Ty :

The dimensionless parameter u is defined as

u = i‘/;x - xio)2 + (y - yio)z [} (4.9)

1f (x,y) is in the forward position of this stripe (upstream of the

sliding velocity), u is positive; otherwise, u is negative. The
temperature at this point can be obtained by using the equation developed
by Jaeger (15) for the temperature distribution along a stripe for a

f%rger value of vi/a.

1/2
T(x,y) = % (3%1)-] (4.10)

where k is the_thermal conductivity and q is a constant heat flux

(the reason for ﬁsing a constant heat flux will be shown later) Cameron,
et al. (17) showed that, for a uniform source, the temperature profile

is given almost exactly for 10 < vi/a < « by multiplying the asymptotic

/

(v/a v =) factor 1 + (2£/2-u)0°5[0.65 (a/ve) + 0.44 (a/v2)3 2], and

the temperature profile becomes
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0.5 10.5
T(x,y) = 2 [%v“)J 1+ (ZleuJ [0.65(a/ve) + 0.44(a/ve)3/?]

(4.11)

This factor will increase the maximum temperature and moves it toward the
center of the stripes as vf%/a decreases. Even if vi/a < 10, which occurs
in the outer stripes of the contact ellipse, the equation can still be
used because (1) the correction factor will hold approximately for

va/a < 10.0, and (2) the outer stripes are only a small fraction of the
area of the heat source. Thus, there will be a minimal effect on the
temperature in the whole contact area.

Heat is generated by viscous shearing of the lubricant between the
sliding surfaces. This heat is carried away either by the lubricant
through convection or by the gear blanks through conduction. The
relative importance between these two modes of heat transfer in EHD
contact was examined by Trachman (20). He concluded that the heat
carried away by heat convection can be neglected in comparison to the
heat diffused to the gear body, except at very high speeds which exceed
those of gears in current practice. Let the subscripts 1 and 2 denote
the pinion and the gear, respectively. The heat generated in the contact
area is divided betwen the pinion and the gear by the ratio a/(1l - a),
where o is the heat partition coefficient. Therefore, within the

contact, the temperature distribution in the pinion and the gear are

) al(ll_ul) 0.5 ( 221 0.5
T,(x,y) =a=4 |2 = = 1+ [0.65(a, /v, 2,)
1 k v 2.-u 1171
1 1 1™

3/2 )
+ 0.44 al/vlzl) ] (4.12)
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0.5 0.5
a,(2,~u,) {25
= 29 | 272 2 ] 2
T,(x,y) = (=) — 1+ 1= [0.65(a,/v,2,)
2 2 2 2
3/2
+ 0.44(a,/vy2y) 7 7] (4.13)

The lubricant local velocity profile and temperature profile
for the very high sliding velocity case were estimated by Plint (21)
and later confirmed by Trachman's analysis (20). For sliding contacts,
their results showed a sharp S-shape velocity profile across the film
with a large velocity gradient at the mid-plane. The temperature is at
igs maximum at the mid-plane and decreases almost linearly to both
surfaces. Since shearing of the lubricant occurs mainly in the mid-
plane, most of the heat is also generated in this layer. This
resultsin a triangular temperature distribution across the film.

According to Francis' analysis (18), if the bulk surface
temperatures for the pinion and the gear, TBl and TB2’ are different

(see Fig. 4-2), then the interfacial temperature can be expressed

Zq
. m -
(¢ + Aa) {Tl + —k;-] + TBl = Tmid (x,y)
t (h-Z_)q
= (1-a-Aa) lTZ + —k—o— + TBZ (4.14)

where Ao is the unknown function of (x,y) which expresses the local
deviation from heat flux distribution aq and (1 - a)q, Zm is the

distance from pinion surface to the layers at which all the shear
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. h .
is concentrated (Zm = ;), ko 1s the oil thermal conductivity, and

Tmid(x,y) is the temperature at the shear plane. Then

hq

h = - - —_—
(@ + da) |T, + 2| *Tpp = (- o= do) IT) + 52 + 1., (4.15)
17 2k, o
T, + hq/2k + T _ - T
2 i (o} B2 Bl
A+ Aa = s (4.16)
Tl + T2 + hq/kO
_ {
T (x,y) = TZ(X,Y) M hq/Zko ¥ TBZ TBl T, (x,y) + -—hq + T
mid ‘¥ T, (x,7) + T,(x,y) + ha/k_ 1 %Y 2k BL
(4.17)

The heat partition coefficient g must now be determined to calcu-
late the flash temperature of pinion and gear. The analytical expres-
sion for o in terms of local conditionsis difficult. The best approxima-
tion of o will be the value that satisfies the condition for which the
temperature fields of the two surfaces are identical over the contact
ellipse. Thus, an analytical approximation can be written by equating

the mean temperature of the two surfaces, as done by Jaeger (15)

( )
Qh _ . Qh
1,ave © 2k Tl = Q- T2,ave * 2k, *+ Tgy (4.18)

where
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Ir Tl(x,y)dxdy
Tl,ave " 7w AMAX BMAX

Jr Tz(x,y)dxdy
T2,ave m AMAX BMAX

Q is the total heat flux over the whole contact ellipse.

the o is determined, the flash temperatures become

Tl’f(x,y) = aTl(x,y) + TBl

Tz’f(x,Y) = (l-a) TZ(XaY) + TBZ

(4.19)

(4.20)

Once

(4.21)

(4.22)
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4.3 ' Bulk Temperature

The method mentioned in Section 4.2 is for calculating, with known
heat flux, the flash temperature rise above the surface temperature which
was assumed known beforehand. The existing criteria for scuffing of
heavily loaded gears is that the total surface temperature rises to a
critical value at which the oil film collapses, the protective surface
layer breaks and metal to metal contact occurs. Uncertainty in the bulk
surface temperature makes any scuffing prediction useless even if an
accurate calculation of flash temperature can be calculated.

Before the gear system starts to operate, all elements are at the
ambient temperature. Once the gear system starts to operate, the
temperature builds up as the gears are running due to frictional heat.
After a sufficient period, the gear surface temperatures reach a steady
state at which the heat flux flowing into the body is equal to that
flowing out of the body. At each revolution, the tooth is subject to the
same heating flux. Since the time period for each contact point in the
contact zone is only a small fraction of the entire period of revolution,
the local temperature jump (flash temperature) has completely decayed
before it enters into the contact zone at the next revolution. Thus, it
is justified to use an average heat input over the revolution to
calculate the steady-state temperature rise of the body.

The heat input is due to the heat generated at the instantaneous
contact ellipse, and the amount depends on the load and the viscous
shearing of the lubricant. The heat flux flowing out of the body is due
to the heat convection to the surrounding air and lubricant. The
relative importance of the heat transfer coefficient at different surface

areas was discussed by Patir (22) and Townsend and Akin (23) in spur gear
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systems. They also revealed the significant effect on temperature
distribution by the lubrication method. In this study, the oil jet
impingement depth is assumed to cover the whole area of contact side,
which can be obtained by using the proper pressurized oil jet. Estimated
values of the heat transfer coefficients are used on the other surface
areas to calculate the bulk temperature.

A three-dimensional finite element program is used to calculate
the temperature coefficient. The mesh of the system includes the gear
shaft, gear body and the contact tooth with one adjacent tooth on both
sides. The eight-node element is used. This model is the same as that
used for the deflection coefficient except that the boundary conditions
are different. In the temperature analysis, all the surfaces are subject
to heat convection with different heat transfer coefficients except for
the surface in the inner cylinder of the shaft, which is assumed to have
no heat convection. The inner cylinder of the gear, created for the
modeling, is very small in radius, therefore heat transfer can be
neglected for these surfaces. Since the air in the inner cylinder of the
pinion shaft is enclosed, there is no heat loss or gain in the steady
state, and the heat convection at this surface can also be neglected.

The heat transfer coefficient hj is assigned to the contacting tooth face
which is oil jet cooled. The topland and bottomland of the tooth and the
other side of the tooth surface, which are not cooled by the oil jet,
will have a heat transfer coefficient h, for air or air/oil mist. Since
only three teeth are made in the model, there is a surface region A
covering the surfaces where the teeth are taken off and the bottomland

between those teeth. The heat transfer coefficient at this region A is
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given a value of hj’ which is the same as that of the surface coefficient

cooled by the oil jet. The reason is that there is an oil jet cooled

surface on each tooth and most of the heat will flow out of the tooth through

this surface (hj >> ht). All the other convective surfaces of the gear
system are given a coefficient hs (Fig. 4.3). The theoretical estimated
values of hS and hj can be found in (Refs. 24 and 25). However, the
estimated values of hs’ hj and ht based on the experimental results are
used in this study (23).

Thirty nodes are created on the contacting surface. The tempera-
ture distribution on this surface is represented by TJI which is the
temperature at the grid node J due to a unit heat flux at node I. By
interpolation, the temperature at any contact point M due to a unit heat

flux at the contact point N <T§N) can be obtained in terms of T The

JI°
details of this interpolation can be found in Appendix D. Once the
contact path is located and the heat flux flowing into each body at each

contact point has been calculated, the bulk temperature at the contact

point M can be found as

M.B MN QN N=1...KMAX (4.23)

where KMAX is the total number of contact points along the contact path.
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4.4 Traction Coefficient

In analyzing lubrication related failure mode in EHD contacts, the
heat generated by traction in the contact area is the main concern. In a
conventional analysis, the rheology of the lubricant is ignored and the
local shear stress in the contact area is assumed to be proportional to
the local pressure and acts in the direction opposite to the local slip.
However, recent research into the shear behavior of EHD makes it possible
to examine the role of the fluid rheology.

The magnitude of the coefficient of friction in a highly loaded
disk machine was examined by Misharin (26) at high rolling and sliding
speeds. He also gave an approximated formula for the predidfion of the
friction coefficient based on his experimental data. But his formula did
not give realistic results at a very high or-very low value of the
rolling or sliding speeds. Smith (27) presented a set of results that showed that
the friction coefficient would increase to a maximum and then decrease
as the sliding speed is increased. He pointed out that the decrease of the
friction coefficient was due to thermal and non-Newtonian effects.

The thermal effect upon the viscosity of lubricant was examined
by Crook (28,29) and by Cheng (30). Crook used a disk machine to study
rolling friction and sliding friction. He observed that the plot of
traction against slip always showed a same kind of characteristic pattern
as that which was found by Smith (27) regardless of the variation of load
and speed. He also attempted to predict the traction analytically by
simplified friction theory based on the following assumptions: The film
thickness in  the contact area is uniform; the pressure distribution in the

contact area is Hertzian; the heat carried away by convection through the lubrican
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is neglected; and the temperature rise on the surface is neglected. His
method can predict a traction coefficient consistent with experimental
data in high sliding region. However, he could not explain the behavior
in low sliding region. Cheng used a thermal EHD theory which included
energy equation and was free of all the assumptions made by Crook.
Cheng's results, compared with Crook's experimental data, still showed

a big difference in friction coefficient in the low sliding region. Both
works suggested that the thermal effect alone cannot account for the
sharp reduction of the effective viscosity in the low sliding region.

A pioneering effort was made by Dyson (31). He studied various
experimental data and found that the curve of traction coefficient, when
plotted against sliding speed, can be divided into three regions (Fig.
4=4). Region I is the linear region which shows the characteristic
behavior of a Newtonian fluid. Region II is the nonlinear region which
shows nonlinear variétion of the traction coefficient with the shear rate, and
region III is the thermal region which is dominated by the thermal effect
on the shear stress of the lubricant. The fluid behavior in region I
is shown to be explainable on the basis of linear viscoelasticity. In
region II, the viscosity will decrease when the material undergoes a
steady continuous shear with large strain. Dyson (31) and Gruber and
Litvitz (32) suggested that the nonlinear behavior of the traction curve
is due to this effect. At a high préssure, the relationship between
stress and strain for the fluid is nonlinear; several equations were
developed to describe this nonlinear behavior. Bell, Kannel and Allen
(33), Hirst and Moore (34) used a "sinh" relation, and Trachman and Cheng

(35) used a hyperbolic model. Observing that the traction force never
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seems to exceed one tenth of the normal load, Smith (36), Johnson and
Cameron (37), and Plint (38) proposed that the lubricant film would fail
to retain a very high shear stress at extremely large strain rate, and
shears like a plastic solid.

More recent work on the rheological experiment was done by

Johnson and Roberts (39). They observed that the liquid-solid transition

was occurring in EHD contact and the transition point was dependent on
temperature and pressure. The same observations were made by Johnson

and Tevaarwerk (40) and Bair and Winer (41,42). Johnson and Tevaarwerk

(43) then developed an elastic-perfect plastic solid model for the traction

drive analysis. Based on their experimental results, most recently
Bair and Winner (44) proposed the following model to predict the lubri-

cant behavior over the whole range of visco-elastic-plastic change.

4.4.1 Bair-Winner Model

Bair and Winner fabricated an apparatus to measure the viscosity
thelubricant at high strain rates and a large shear stress similar to
those in an EHD contact. They found that the lubricant under high pres-
sure exhibits a classical visco-elastic behavior for small strain. For
large strain and large stress, the lubricant behaves like a material

having a limiting yield shear stress. For lubricant under a more

of

moderate pressure but large strain, the result is that the shear stress is

smaller and the lubricant is viscous.
From their experimental results for 5P4E Santotrac-50 at large
strain, the relationship of the dimensionless shear stress and the

dimensionless shear rate can be described reasonably well with a single
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A

natural log function. The dimensionless shear stress T is defined as
the actual shear stress T(P,T) divided by the limiting shear stress
TL(P,T), and the dimensionless shear rate ; is the actual shear rate Y
multiplying by the viscosity uo(P,T) and divided by the limiting shear
stress TL(P,T). T(?,T), TL(P,T) and uo(P,T) are all pressure and

temperature dependent.

This natural log function can be expressed by

Y=-2( - 1) (4.24)
which governs the nonlinear viscous flow.

Based on the conventional Maxwell visco-elastic model, the total
shear rate of the lubricant consists of the shear rate of elastic part

(%e) and that of the viscous part (§v)

~ >
"
< >
+
<o)

e v (4.25)
The elastic part can be nondimensionalized the same way as
~ Y. u (P,T) t(P,T) v _(P,T) s
y==-2 o =1 (4.26)

7, (P,T) G, (P,T)t, (P,T)

where G_(P,T) is the limiting elastic shear modulus at a given tempera-
ture and pressure. With the above natural log relation for the viscous

part, a modified Maxwell model is obtained:

§ =71~ n(l - 1)

or

<.

|
(]
(=%
rr

T
_____u_zn(l _T_.) 4.27)
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In order to use this equation, three primary physical properties are
required. These include the low shear stress viscosity By the
limiting yield shear stress Tos and the limiting elastic shear modulus
G- These three parameters are all functions of the temperature and
pressure.

In the application of the spiral bevel gears in heavy loaded
cases, the pressure in most contact ellipses is very high (1 G Pa to 2
G Pa or 150,000 psi to 300,000 psi) and the slide to roll ratio is about
0.05 - 0.3. Under these severe conditions, the limiting shear stress
for most lubricants should occur in most of the contact area. For the
temperature calculation, it is safe to assume that the uniform limiting
shear stress is applied at a given average pressure and temperature in

the contact ellipse.

T = TL(Pave’Tave) (4.28)

where 13 is given by experimental data.

Since experimental data for T in the temperatures encountered in spiral
gears are not available, the conventional way to calculate this yield shear

stress postulated by Dyson is used:

T, = G,/4 (4.29)

where E; is called limiting shear modulus, and 5; is a function of
temperature and pressure. Based on the experimental work of Hutton (11)

and Switch (27), Dyson proposed a relationship between E;, temperature

and pressure for high viscosity index mineral oils:
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_ 1.2p 4
C®D = T T o0 (T - 492) ~ 1.45x10 (4.30)

:e 3. O
where P is in psi, and T is in R,

A subroutine was prepared to evaluate the traction based on Bair

and Winer's model. Unfortunately, for the temperatures encountered in

spiral bevel gears, the values of Ho» 2 and G_ are not available from

Bair and Winer's work.
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4.5 Film Thickness

In 1916, Martin provided the first paper about roller lubrication.
Although he failed to predict a correct film thickness by using the
assumptions of a rigid body and an incompressible isoviscous fluid, his
approach was welcomed by later investigators. The influence on the film
thickness by the pressure dependence of the viscosity in the contact area
was examined by Gatcombe (45) by using an exponential relationship and by
Hersey and Lowdenslager (46) by using parabolic viscosity-pressure
relationships. More investigations in this field were made by Cameron
(49) and by McEwen (48). These results showed that the effect of
pressure dependence on viscosity could not alome account for the
difference between prediced and observed film thickness, although it did
provide some improvement. The effects of elastic deformation and
pressure dependent viscosity were considered first by Ertel and Grubin in
1945, who initiated the study of EHD lubrication. By assuming the
deformation in the inlet region of contact zone was the same as that of
the dry Hertzian contact, they calculated the pressure and film thickness
in this region. Dowson and Higginson (19) developed a general formula
for minimum film thickness for line contacts which included the effects
of elastic distortion and pressure dependent viscosity. The dimension-
less form of this equation is
0.6 U0.7 0.13

Hmin,z = 1.6 G WD (4.31)

where

c @
" ]
3

o B
e
~
T3
)

=
(]
=
~
tri
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R is the effective radius of the roller pair, E' is the effective elastic
modulus, n, is the atmosphere viscosity of the lubricant, o is the
pressure dependent viscosity parameter, n = "o exp(ap), w is the load per
unit length, and u is the speed. The thermal effect due to sliding
was examined by Cheng and Sternlicht (50) by using numerical technique
to solve the Reynold, elastic, energy and heat transfer equations. Their
results indicated that the isothermal Dowson-Higginson equation could
still predict a good approximation to the measured film thickness if n,
was taken as the value at the bulk surface temperature of the contact
bodies.

The 'cylinder model' used in the lubrication analysis of gears
is only good at the pitch point. Actually, the effective radius and rolling
velocity are varied from point to point along the contact path. Wayne
and Rodzimovsky (51) were among the first investigators who examined the
actual contact ratio, actual involute profile, the combined effects of
rolling and sliding, and film thickness in the whole course of the
contact path. Unfortunately, their analysis did not include the elastic
deformation in the contact zone. Based on the quasi-steady state assumption,
Gu (52) used the EHD lubrication theory to calculate the film thickness
of the spur gears by including the time dependent term 3(ph)/3t in the
Reynolds equation. He found that this term did not have much effect on
the minimum film thickness.

In spur gears, the contact between mating teeth is a line
contact extended from one end of the tooth to the other end of the tooth.

Provided that the bulk surface temperature of the gear teeth is known

beforehand, one cannot predict accurately the minimum film thickness by
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using the Dowson-Higginson equation. For conjugate spiral bevel gears, the
contact is still a full line from one limit to the other limit. However,
fully conjugated spiral bevel gears seldom exist in practice. The actual
spiral bevel gears are crowned in both directions (lengthwise and profile-
wise) to reduce sensitivity to the shift of contact patterns due to
misalignment. In such cases, an elliptical contact area appears between
the mating teeth under load, for which line contact solution is no longer
valid.

Hamrock and Dowson (53) evaluated numerically the analysis of an
isothermal EHD lubrication point contact. They showed that the minimum
£ilm thickness could be related to the well-known line contact solution
by simple expression involving the ellipticity parameter (54). 1In this
study, Hamrock-Dowson's point contact solution will be adapted in the
elliptical contact of spiral bevel gears.

The effective situation of contact between the spiral bevel gear and
pinion can be seen in Fig. 4-5, in which there is a flat plane contact
with a body which is described by the difference between neighboring
surfaces of the gear and the pinion at the contact point. This curved body
has effective radii Rx and R.y along the principal axis x and y, respec-
tively. Under a load P, the surface near the flat plane will deform
to an elliptical shape with semi-major axis AMAX and semi-minor axis
BMAX. Vp and Vg are the velocities of the pinion and gear at the contact
point. The ellipticity parameter was defined as the ratio of AMAX to
BMAX. The minimum film thickness in the contact zone was related to

Dowson-Higginson's line contact solution by the equation
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_ -0.62k
Hmin Hmin,z(l'o l.6 e ) (4.32)
where Hmin Q¢ Dimensionless film thickness of Dowson—-Higginson solution
’

K : Ellipticity parameter

h_.
and Hmin,z - m;nzz
X
U =V _ cos 8
Px P P
U =V sin 8
Py p P
U =V cos 6
gx g g
U v in 6
gy g%
U = .
X (pr + ng) /2.0
u =@ _+U )/2.0
y ( PY S}’)

v ='-\/Ux2 + U’y2

The dimensional form hmin 3 of the minimum film thickness for a line contact can

be written as

h = 1.6 0‘0.6(n V)0.7 E,0.43

0.13
w
min, % o]

/ (4.33)

where w = P/2AMAX is the load per unit length and P is total load. The
viscosity U is taken at the bulk surface temperature to account for the

thermal effects on the film thickness.
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It is important to note that Ny? P, AMAX, BMAX and V are varied
along the path of contact. V depends on the gear kinematics, and AMAX
and BMAX depend on the gear geometry and dynamic load P. . is strongly
dependent upon the local static surface temperature which, in turn, is
influenced by the local film thickness through frictional heating. Thus,
the film thickness and the static (bulk) surface temperature are
interdependent, and must be solved as a coupled system. The dynamic load

is assumed to be uninfluenced by the film thickness.
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4.6 Results of Lubrication Performance

The same set of gears used for the dynamic load calculations are
used here to demonstrate calculation of the lubrication performance. Results
were obtained for a range of operating conditions to determine the effect
of speed, load, lubricant viscosity, and ambient temperature on the film
thickness, bulk temperature, and flash temperature.

The sliding velocity decreases from the beginning of the contact
path where the gear tip contacts the pinion root, until the contact point
is near the pitch point where the sliding velocity becomes zero. Then the
sliding velocity increases all the way to the end of the contact path
where the pinion tip contacts the gear root. The current set of gears
has the feature that the sliding velocity at the end of the contact path
is larger than that at the beginning of the contact path; this fact
creates a situation where more heat is generated at the end of the contact
path.

Typical distributions of the bulk temperature along the contact
path are shown in Figs. 4-6 through Fig. 4-9 for various speeds.

The bulk temperature of the pinion is always larger than that of the gear
because the pinion speed is three times faster than the gear speed, and
receives more heat in a unit time than the gear does. Although the
temperature coefficients are higher near the gear tip, the maximum bulk
temperature of both gears occurs at the end of the single tooth contact
point where the maximum heat is generated. Distributions of the total
flash temperature for the same cases are plotted on Fig. 4-10 through
Fig. 4-13. The minimum flash temperature occurs at the pitch point where

the sliding velocity is zero. For the high speed case, the variation
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of dynamic load is less pronounced along the contact path. The rise of
flash temperature on both sides of the pitch corresponds directly to the
variation of sliding speed at the contact. The slight decrease at the
end of the contact path is attributable to the decrease in dynamic load
in this region.

Fig. 4-14 shows the distributions of the film thickness for four
different gear speeds. No excessive variations are seen along the
contact path. A moderate peak is evident at the pitch point for the high
speed cases, and this is associated with the slight drop of bulk tempera-
ture at the pitch point. The steady rise of film thickness along the
contact path is due to the increase in the entrainment velocity. The
final uptrend of film thickness near the end of contact is again due to
the decrease in the bulk temperature.

Finally, the effects of an increase in ambient viscosity, ambient
temperature, and load on the minimum film thickness hmin’ maximum bulk
and total flash temperatures is demonstrated in Fig. 4-15. As
expected, an increase in viscosity would improve lubrication performance
with a much greater film thickness and a slight drop in both bulk and
flash temperature. An increase in ambient temperature would reduce
the film thickness considerably, and an increase in load would also

reduce the film thickness due to the increase in the bulk temperature.
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sliding velocity

Fig. 4-1 contact shape and a differential stripe
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CHAPTER V
CONCLUDING REMARKS

A computer solution for the dynamic load in a pair of spiral bevel
gear sets was developed by solving the equations of motion for the pinion
and gear shaft. An existing finite element code was used to calculate
the combined stiffness of the contacting pinion and gear teeth as a
function of contact position in the zone of action. 1In addition to
the dynamic load analysis, a computer solution was developed to
predict the bulk surface temperature, the flash temperature, and the film
thickness along the contact path. An existing finite element heat code
was used to calculate the temperature influence coefficients from
which the bulk surface temperature is calculated. Both the lubricant
film thickness and the sliding traction are calculated from the recent
findings in EHL theories.

Results were obtained for a set of experimental spiral bevel gears
currently being tested at NASA Lewis Research Center. The results of
dynamic load show that there exist numerous peaks in the variation of
dynamic load against the gear shaft speed. These fluctuations correspond
reasonably well with the critical frequencies of the system. The en-
velope of the peaks suggests that the highest dynamic load occurs some=
where near the critical frequency corresponding to the rotational mode
oscillations of the two gears.

Results of the film thickness show that its variation along the
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contact path is not large, and is caused mainly by the increase in the
entrainment velocity and the change in the bulk surface temperature. The
total flash temperature variation ig controlled by the sliding velocity,
having its maximum near the end of the contact path where the transition
from double to single teeth pair mesh occurs. Effects of operating
variables on the minimum film thickness and maximum surface temperatures
along the contact path can be obtained readily with this program.

Results for the effect of change in the ambient viscosity show trends

consistent with those anticipated from existing EHL theories.
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TABLE II

GEAR DATA AND LUBRICANT DATA

Gear Data: Gear
Teeth 36
Pitch Angle 71°34"
Shaft Angle

Spiral Angle
Diametral Pitch

Standard Operating Conditioms:
Gear RPM
Pinion RPM
Load at Pitch Point N (1b)
Ambient Temperature °C (°F)

Geometric Dimensions: (see Fig. c-1)

DGG = 0.1658 m (6.527 in)
ROG = 0.0312 m (1.230 in)
RIG = 0.04336 m (1.707 in)
RZG = 0.1964 n (7.733 in)
DGP = 0.2515 m (9.901 in)
ROP = 0.0325 m (1.280 in)
RIP = 0.09311 m (3.6656 in)
RZP = 0.1987 m (7.824 in)

Gear Material Data:

Steel:

Density g/cm (1b/1n )

Thermal Conductivity at 311°K (100°F)
w/m°K (BTU/(sec) (in) (°F)):

Young's Modulus GP, (psi)

Poisson Ratio

Surface Convectivity
w/m? °K (BTU/(sec) (in

0il Jet

0il/Air Mist

Air

2y (°F)):

Lubricant Data:
Super-Refined, Napththenic, Mineral-0il
Dynamic Vlsc051tz at 311°K (100°F)
cp (lbesec/in
Density at 311°K (100 F) o/cm (1b/in3)
Thermal Conductivity at 311°K (100°F)
w/m°K (BTU/(sec) (in) (°F))
V1sc051ty-Pressure . Temperature Relation
= 4, explap + B( - —))

Pressure—Vlsc031ty Coeffic1ent
o m?/MN (in2/1b)
Temperature-Viscosity Coefficient
B °K (°R)

Pinion
12
18°26'
90°
35°
5.14
5000
15000
11800 (2660)
37.8 (100)
7.81 (.282)

46.7 (.000625)
207. (30000000)
0.3

397. (0.000135)
19.8 (0.00000675)
3.97(0.00000135)

64.7 (0.00000938)
0.61(0.022)

0.125(0.00000168)

0.023(0.00016)

3890 (7000)
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NOMENCLATURE

(For Chapter I1I)

outer cone distance

vector from machine center to the point on the surface

addendum

linear acceleration vector

vector from wheel center to the point on the surface

dedendum

distance from cradle center to cam rotation center

nominal wheel diameter

machine coordinate

side dresser offset

blank offset

running offset

face width

unit vector along the gear axis

distance along tooth axis from crossing point

inside dresser arm length
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Ldo outside dresser arm length

m, velocity ratio

N, n number of teeth for gear and pinion

n unit normal vector to the cutter blade

n, index interval

P unit vector along the pinion axis

Q cradle setting angle

R radius from tooth axis

R vector from crossing point to the point on the surface

=

vector from the intersection of plane containing the
cutter tips and wheel axis to the point on the surface

Y4 side dresser radial

B vector from machine center to the intersection of plane
containing the cutter tips and the wheel axis

(s) surface expression in matrix form

T cam setting

To standard cam setting

t unit vector along the direction of dressing diamond
movement

u velocity of contact point
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v linear velocity vector

v velocity of the contact point across the surface
L Y, X Cartesian coordinate

X machine center to back

Xb sliding base

X.di inside diamond setting

Xﬁo outside diamond setting

ng gear apex withdraw

XPY pinion apex withdraw

Zd side dresser axial

a cam guide angle

B eccentric angle

r, v pitch angle for gear and pinion
Po,yo face angle for gear and pinion
FY, YY root angle for gear and pinion
£ cam rotation

n cam pitch radius
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8 wheel cutter rotation angle based on the line perpen-
dicular to the S.

84 dresser rotation angle
A work rotation

p radius

I shaft angle

ZY running shaft angle
Z¢d dresser block angle

o4 outside pressure angle

/] cradle rotation

wm spiral angle

£

angular velocity vector

Subscripts g and p refer to gear and pinion, respectively.
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NOMENCLATURE

(For Chapter III)

a acceleration vector

F external force vector

Fe tooth contact force

Fr bearing reaction force

FMA scalar quantity of contact force

EG angular momentum about gravity center

_i, JT, k unit vector

I central mass moment of inertia about the principal axis
of inertia

J equivalent mass

ks combined tooth contact stiffness

m mass

ﬁb vector of external moment about gravity center

Y position vector from gravity center to the tooth

¢ contact point
?; position vector from gravity center to the bearing

reaction point

RBG radius of effective base circle of gear
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RBP radius of effective base circle of pinion

Tc static force

X, ¥y 2 translational displacement

] rotational displacement

Q relative rotational velocity of moving coordinate to

fixed coordinate

w nominal shaft velocity

{1} column matrix

[ ] matrix form

[cl damping matrix

[DC] transformation matrix

[DG] transformation matrix

[DK] transformation matrix

{Gni} normal displacement at point i due to rigid body motion
{k} stiffness matrix

[m] mass matrix

{8 .4} normal displacement at point i due to tooth contact

force



[e1]

[e

Subscripts p ,

177

transformation matrix

transformation matrix

g refer to pinion and gear.
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Hmin,l
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NOMENCLATURE

(For Chapter IV)

thermal diffusivity

length of semi-major axis of contact ellipse

length of semi-minor axis of contact ellipse
effective elastic modulus

material parameter

limiting elastic shear modulus

film thickness

surface heat transfer coefficient for oil jet cooling

surface heat transfer coefficient for free convective
cooling

surface heat transfer coefficient for air/oil mist
cooling

dimensionless film thickness of point contact solution
dimensionless film thickness of line contact solution
solid material thermal conductivity

0il thermal conductivity

ellipticity parameter

length of contact stripe



ave

mid

u, V
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pressure

heat flux

heat flux at tooth contact point

nominal length, effective radius

temperature

average temperature over whole contact ellipse

bulk temperature

flash temperature

temperature at shear plane

speed

speed parameter

sliding velocity

load per unit length

load parameter

distance from solid surface to shear plane

heat partition coefficient, pressure dependent viscosity
parameter

shear rate
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% dimensionless shear rate (¥ uolrL)
; shear rate of elastic part

Y shear rate of viscous part

n atmosphere viscosity of lubricant
1} low shear stress viscosity

T shear stress

. dimensionless shear stress (T/TL)
T limiting shear stress
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APPENDIX A

SAMPLE DATA FOR MACHINE SETTINGS

Gear Pinion

Concave Convex

Number of Teeth 36 12
Face Width 1.00

Shaft Angle 1.5708

Outer Cone Distance 3.691

Addendum 0.093 0.231
Dedendum 0.267 0.129
Pitch Angle 1.249 0.3217
Face Angle 1.276 0.3895
Root Angle 1.1813 0.2944
Spiral Angle 0.61086

Nominal Wheel Diameter 6.0

Machine Center to Back 0.0 -0.067 0.060
Sliding Base -0.016 -0.009 -0.046
Blank Offset 0.000 0.041 -0.045
Cam Setting 6.916 7.089 7.279
Eccentric Angle 0.3598 0.3616 0.3604
Cradle Angle 1.2116 5.3354 5.4990
Cam Guide Angle 0.0 0.0 0.0
Standard Cam Setting 7.00 7.00 7.00
Cam Pitch Radius 6.2273 5.9567 5.9567

Index Interval 11 11 11
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APPENDIX A (continued)

Dresser Block Angle
Outside Pressure Angle
Side Dresser Radial
Outside Dresser Arm Length
Outside Diamond Setting
Inside Dresser Arm Length
Inside Diamond Setting
Side Dresser Axial

Side Dresser Offset

Gear

0.7854

0.3490

3.113

0.223

1.00

Pinion
Concave Convex
0.7854

0.3490 0.3482

3.028 2.959
1.0 1.0
0.0 0.171
1.0 1.0
0.170 0.0
0.023 0.029

0.800 1.200
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APPENDIX B

From the geometry of Fig. 2-10, the motion formulas for a stand-

ard cam rotation Eo are obtained as follows:

€ (B-1)

An

sin wz = gin wo'+ sin a + iig sin(e:o - wo) (B-2)
w = 11)2 -2 (B_3)
82 = Eo + 11:2 + wo (3_4)
€e=¢, -a (B-5)

n,
A=—¢ (B~6)

n

dlpo "

From (B-1)

Differentiating (B-2) with respect to €,

day dwo Anu dwo
cos wz g = cos wo-azg + oc cos(eo - wo)(l - EE;Q
dy_ _ dy, ) n, An

u
——— o + —————— cos -
deo deo sec wZ DC + n, cos wo DC + n, ° (Eo wo)

sec wz

= e ——— B“7
N DC + nu ( )
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= + -
where N n, ¢os wo Anu cos(eo wo)

From (B-4) and (B-5)

de  _ Efz._ 1+ EEQ._ EEQ
de de de de
) o
Clan sec wz ) nu
DC + n DC + n
u u
sec wz
D 5e+ (8-8)
u
n,
where D = DC cos ¥_ + N and also a =-1.de
2 de n de
o o}
d d
dv _ dy ‘o _ v o n
dx  de_ di de de n
o o i
n N
= —— B~
ng D (B-9)
a2
The term ac = ——%- used in determining the motion parameters is
3

derived as follows:

A
<

!.

n 1 [ dN dD)
— = D= - N=
ar ni D2 dx dx

N



185

2
=1J U A (3-10)
n, D3 2 deo deo
and
dy dy
dy _ . o ; o
—ds nu sin wo deo Anu sin so w0] [l - ?
- . __AM
DC + Ny (B-11)
where
AM = 2 sin ¢ + An DC sin( )
= nu o n sin eo - wo
dy
dD - - . 2 _ AM
deo DC sin ¥) == = 5% n (B-12)
[o} u
-—t [DC N tan y, + AM) (B-12)
DC + n, 2 '
2 cos ¢
- 4y _ (i)2 -2 {N(DC N tan ¢, + AM) - D AM} (B-13)
e ny D> 2
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APPENDIX C

The details of the mass, viscous and stiffness matrices of the

equation of motion are shown here.

MAXC Number of contact points at each time
AXYZCG (I,K) Normal vector of gear surface at contact point
(inward to gear body)

AXYZCP (I,K) Normal vector of pinion surface at contact

point (outward to pinion body)
AI (J,K) Stiffness of contact point I due to a unit

load applied at contact point K

XGG, YGG, ZGG Translational displacements of gear gravity
center

AXG, AYG, AZG Rotational displacements of gear body

SGP, YGP, ZGf Translational displacements of pinion gravity
center

AXP, AYP, AZP Rotational displacements of pinion body

SYZCG (I,K) Position vector from gear gravity center to

contact point K
XYZCP (I,K) Position vector from pinion gravity center

to contact point K

where I = 1, 2, 3 indicates the component in three-dimensional axis.
J and K equal one to MAXC. Array ABG (J,I), J=1to 12, I -1 to MAXC
was introduced for convenience in developing equations:

ABG (1,I) = § - AI(I,K)*AXYZCG(1,K)
K



ABG (2,I) =3z
K

ABG (3,I) =z
K

ABG (4,I) =z
K

ABG (5,I) =3
K

ABG(6,K) =z
K

ABG (7,I) =z
K

ABG (8,I) =3
K

ABG (9,I) =3
K

ABG (10,I) = I
K

ABG (11,1I) =T
K

ABG (12,I) =z
K

The summation is from K = 1

The force situation
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= AI(I,K)*AXYZCG(2,K)

- AI(I,K)*AXYZCG(3,K)

- AI(I,K)[XYZCG(Z,K)*AXYZCG(B,K)

XYZCG(3,K)*AXYZCG (2,K) ]

- AI(I,K)[AYZCG(3,K)*AXYZCG(1,K)

XYZCG (1,K)*AXYZCG(3,K)]

- AI(I,K)[XYZCG(l,K)*AXYZCG(Z,K)

XYZCG(2,K)*AXYZCG (1,K) ]

AI(I,K)*AXYZCP(1,K)

AI(I,K)*AXYZCP(2,K)

AI(I,K)*AXYZCP(3,K)

AI(I,K)[XYZCP(2,K)*AXYZCP(3,K)

XYZCP(3,K)*AXYZCP(2,K) ]

AI(I,K)[XYZCP(3,K)*AXYZCP (1,K)
XYZCP (1,K)*AXYZCP (3,K) ]
AI(I,K)[XYZCP(1,K)*AXYZCP(2,K)

XYZCP(2,K)*AXYZCP (1,K)]

to K = KMAXC, and I = 1 to KMAXC.

is shown in Fig. 3-1 and Fig. C-1.
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For the gear, the components of the contact force are

AXYZCG  (1,1) {ABG(J,D)}T Dgilg
D
P
T 3
+AXYZCG (2,I) {ABG(J,I)} Dg} g
D
P
T k
+AXYZCG (3,I) {ABG(J,I)} L J=1to 12
D
P
where { } denotes column matrix, Dg T (XGG, YGG, ZGG, AXG, AYG, AZG,
D
P

XGP, YGP, 2ZGP, AXP, AYP, AZP) and I from one to MAXC. The damping force

at contact point I is

the force terms due to bearing reaction are

-2KXP*XGP + KXP(RIP-R2P)*AZP E?

-KYP*YGP JTP

-2KZP*ZGP + KZP (R2P-R1P)*AXP TEP

and the torque due to these bearing forces are
-(RlP—YGPo)KZP*ZGP—(RlP-YGPo)zKZP*AXP
+(R2P+YGP) KZP- (R2P+YGPo )KZP + AXP Ip

+(R1P-YGP9)KXP*XGP-(RIP-YGPo)ZKXP*AZP

= (R2P+YGP o ) KKP*XGP- (R2P+YGPo ) 2KXP*AZP Ep
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where YGP, is the rigid body displacement of the pinion in the pinion

fixed coordinate.

The damping force due to the bearing is

C' *XGP + C' *AZP I
xp azp P

+C' *YGP
yP

Ip

+C' *ZGP + C' *AXP Xk
zp axp P

and the damping torque is

to MAXC

define

C" *ZGP + C" *AXP 1
zZp axp P

+C" *XGP + C" *AZP k
Xp aZp P

Now the coefficients of damping will be determined. Let I =1

and

CBG

CBG

CBG

CBG

CBG

CBG

CBG

CBG

CBG

introduce array CBG(j,I), J = 1 to 12 for convenience, and

(1,D
(2,1)
3,D
(4,1)
(5,1)
(6,I)
(7,1)
(8,1)

(9,1)

CBG(10,1I)

-AXYZCG(1,1I)

-AXYZ€G(2,1)

-AXYZCG (3,1)

- [XYZCG (2, I)*AXYZCG (3, I)~XYZCG (3, I) *AXYZCG (2, 1)]
- [XYZCG (3, I)*AXYZCG (1, T)~XYZCG (1, I)*AXYZCG(3,1)]
- [XYZCG (1, I)*AXYZCG (2,1)-XYZCG (2, I)*AXYZCG(1,1)]
AXYZCP(1,I)

AXYZCP(2,1)

AXYZCP(3,I)

XYZCP(Z,I)*AXYZCP(B,I)—XYZCP(3,I)*AXYZCP(2,I)
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CBG (11,I) XYZCP (3, 1)*AXYZCP(1,I)-XYZCP(1,I)*AXYZCP(3,I)

CBG (12,1I)

XYZCP(1,I)*AXYZCP(2,1I)-XYZCP(2,I)*AXYZCP(1,I)

For gear, J =1 to 12

T
cng = AXYZCG(1,I) {CGB(J,I)} C.
- T
ccyg = AXYZCG(2,I) {CBG(J,I)} C_
- . T
czg AXYZCG(3,I) {CBG(j,I)} C.
éxg = [XYZCG(2,I)*AXYZCG(3,1)-XYZCG(3,I)*AXYZCG(2,1)]
T
{CBG(J,I)} C.
c&yg = [XYZCG(3,I)*AXYZCG(1,I)-XYZCG(1,I)*AXYZCG(3,I)]
T
{CBG(J,I)}" C,
Cézg = [XYZCG(1,I)*AXYZCG(2,I)-XYZCG(2,I)*AXYZCG(1,I)]
T
{cBc(JI,1)} C.
¢! = -C0G
Xg
' = -Cl1G - C2G
y8
c;zg = C1G* (R1G-XGG,)-C2G* (R2G-XGG,)
c' = -ClG-C2G
zg
c;yg = —=C1lG* (R1GH+XGG, )+C2G* (R2G-XGG, )
cgg = - (R1G+XGG, )C1lG+(R2G-XGG, ) C2G
o = —(RIGHXGG,)2 C1G-(R2G-XGG,)% €26

azg
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C"

vg (R1G+XGG, ) C1G- (R2G-XGG, ) C2G

"

ayg

- (RIG+XGG,)? C1G-(R26-X6G, )2C2G

For pinion, J =1 to 12

-AXYZCP(I,I){CBG(J,I)}T C,

cXp
- T

ccyp = -AXYZCP(2,I){CBG(J,I)} cc
. T

ccap = -AXYZCP(3,I){CBG(J,I)} C,

o
w
+
Q
o
[
+
(9]
=

P P p

The torque due to this contact force is

[XYZCG(2,1)*AXYZCG(3,I)-XYZCG(3, I)*AXYZCG(2,1)] {ABG(J,I) T

and the damping torque is

-3
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¢' ol T +c' D {j. +¢C! D
cxg 8 g cyg g g czg gl 8

D
p p P

The force terms due to the bearing reaction are

-KXG + XGG i

8
-2KYG*YGG+KYG* (R*G+XGG ) -KYG* (R2G-XGG) Eé
-2KZG*ZGG-KZG* (RLGHXGG ) *AYG+KZG* (R2G-XGG ) *AYG Eé

The torque terms due to these bearing reactions are

—RIG+XGG, ) *KZG ZGG- (RLGHXCG, ) **KZG*AYG

2

+R2G-XGG o, ) *KZG*2GG~ (R2G-XGG, ) " *KZG*AYG Eé

+(R1G+XGG°)*KYG*YGG—(R2G-XGG°)2 *KYG AZG Eé

where XGG, is the rigid body displacement of gear in the gear fixed

coordinate.
The damping force is

' % XGG 1
cxg lg

c' * GG + C' % AZG j
yg azg g

¢! * 266G + C' % AYG k
zg ayg g

and the damping torque is
c" * ZGG + C"__ * AYG j
zg ayg g

c" * YGG + C" * AZG k
yg ayg g
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For pinion case, the components of contact force are
T i
-AXYZCP(1,1I) {ABG(J,I)} D) P

D
P

-AXYZCP(2,1) {ABG(J,I)}T Dg jp

D
P
-AXYZCP (3,I) {ABG(J,I)}T Dg kp I =1 to MAXC and
D J=1to 12
P

the damping force at contact point I is

. _;""C . 3-+C . Ep
p )i
Cexp {‘g} pcyp {?g} Pczp {?g}
D D D
P

the torque due to this contact force is

-[XYZCP(2,I)*AXYZCP(3,1)-XYZCP (3,I)*AXYZCP(2,1) {ABG(J,I)}T

-[XYZCP(3,I)*AXYZCP(l,I)-XYZCP(l,I)*AXYZCP(3,I)]{ABG(J,I)}T

Dg Jp

D
P

-[XYZCP(l,I)*AXYZCP(Z,I)--XYZCP(2,I)*AXYZCP(1,I)]{ABG(J,I)}T
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J =1 to 12 and the damping torque is

¢t (p) +c D | T+ [ﬁ 3
cxp | 8 cyp | Vdp ezp el o
D D D
P P P
G~ - [XYZCP(2,T) ¥AXYZCR (3, 1)=XYZCR (3, 1) *AXYZCR (2, D)
T
{cBG(J,D)}" C,
L= ~[XYZCP(3, T)*AXYZCR (1, 1)=XYZCR (1, 1) *AXYZCP (3, )]
T
{CBG(I, D} C,
C1, = ~[XYZCP (L, I)*AXYZCP (2,1)-KYZCR (2, ) ¥AXYZCP (L, 1)
T
{cBG(J,I)}" C_
c! = -ClP - C2P
xp

C¢' = ClP*(R1P-YGP,) - C2P*(R2P+YGP,)

azp

c' = -COP

yp

' = -ClP - C2P

zp

;xp= -C1P*(R1P-YGP,) + C2P* (R2P+YGP,)
C;p = -(R1P-YGP,)Cl1P + (R2P+YGP,)C2P
C;xp= -(RlP-YGP,)ZClP—(R2P+YGP°)2C2P

C;p = (R1P-YGP,)CLP-(R2P+YGP ) C2P

cr, = ~(RIP-YGP, ) CLP- (R2PHYGE.) 2c2p
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GG

'KYG % ;CZG

|
R1G | R2G
coG
> -
A ROG
\
x GEAR
; %7 <
‘ 7,
7~ KXP C1P KXP - c2p
'[ . RIP | RZP | ’
1 1
5cop
By
— - & - -
24
~
\\ PINION

Fig. C-1. Bearing Force Configuration
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APPENDIX D

INTERPOLATION OF THE COEFFICIENTS OF DEFLECTION

AND BULK TEMPERATURE

(A) Deflection Coefficient

There are thirty nodal points in the contacting tooth surface.
The deflection coefficient Dij is the deflection (normal direction) at
point i due to a unit load applied at point j. The coefficient Dlj was
obtained from the finite element method. Fig. D-1 shows these grid points
in the axial plane and also shows the contact path. It is desired to
determine the deflection Dg at contact point I in surface element o
with four corner points jl, j2, j3 and j4, due to a unit load at this
point I. The concept of the shape function used in the finite element method
was borrowed here to solve the problem. A mapping diagram is shown in
Fig. D-2, correspondent to fig. D-1. All the surface elements in
this mapping diagram are of the same size as the square shape. Intro-
ducing two new local coordinate variables r and s, one can obtain the

deflection at I by

C
DI

0.25%(1-r)*(1-s)*D + 0.25*%(1+r)*(1-s)*D

J1,J1 J2,J2

+ 0.25%(1+r)*(1+s)*D + 0.25%(1~-r)*(1+s)*D

J3,33 34,34

r, s are defined as

[
I

= *(1-1r)*(1l-g)* % %(1=g)*
0.25*%(1-r)*(1-s) XJl + 0.25%(1+r)*(1-s) XJZ

+ 0.25*(l+r)*(1+s)*xJ3 + O.25*(l—r)*(l+s)*XJ4
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YJ = 0.25*(1-r)*(l-s)*YJl + 0.25*(1+r)*(l—s)*YJ2

+ 0.25*(1+r)*(l+s)*YJ3 + 0.25*(l-r)*(l+s)*YJ4

which X and Y are the coordinates in the axial plane.

(B) Bulk Temperature
The temperature rise (Tg) at contact point I due to a unit heat
flux at the same point can be calculated the same way as that for the

deflection coefficient. If Tij is the temperature rise at nodal point i

due to a unit heat flux at nodal point j, then

c

TJ = 0.25%(1~ )*(1-s)*T + 0.25% (14 ) *(1-s)*T

J1,J1 J2,32

* * *(l-r)*(1-g)*
+ 0.25%(1+r) (l+S)TJ3,J3 + 0.25%(1-r)*(1-s) TJ4’J4

Now the temperature rise (Tg,I) at contact point J due to a unit
heat flux at contact point I (I#J) has to be determined. If point J is
far away from point I, then the temperature rise at point J will not be
influenced by the local temperature jump at point I. Fig. D-3 shows
this situation where contact I is in surface element B with nodal points
I1, T2, I3, I4 and contact point J is in surface element o with nodal
point J1, J2, J3 and J4. The temperature rise at nodal points I1, I2,

I3, and I4 due to heat flux at contact point J is

= *(l-r )*(l-g_)*
T J 0.25%(1 rJ) (1 sJ) T

4+ 0.25% *(l-s_)*
11, 0.25 (l+rJ) 1 sJ) T

I1,J1 I1,J2

+ 0.25""(1-*-:'J)*(l-i-sJ)”c'I.‘],_I’J3 + O'25*(1-r3)*(1+sJ)*T11,J4

where II = I1, I2, I3 and I4, respectively, and ry, sjare local
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coordinates in surface element a.

point I will be

C

T

= * - * - *
1,3 0.25%(1 rI) 1 SI) T

* * *
+ 0.25 (l+rI) (l+sI) TI3

I11,J

Then the temperature rise at contact

* %(]l-g )*
+ 0.25 (l+rI) (1 sI) ‘1']:2’J

+ O.25*(l—r1)*(1+sl)*T

,J 14,3

where Yy and SI are local coordinates in surface element 8.

If contact point I is close to
temperature effect should be counted.
same size as any other squares so that
within this square and contact point J
points of this square (see Fig. D-4).

corner point due to heat flux at point

Let rI and SI be the local coordinates
C = *(l-r )*(1-
TI,J 0.25*%(1 rI) 1 sI)*TJ +

* * *
+ 0.25 (l+rI) (1+sI) T2

the order of T_, T

3 T, and T

1> "2 3

new element is formed.

will be

contact point J, the local

One can make a square with the
the contact point I will be

will become one of the four corner
Then the temperature at each

J can be determined as above.

in the new surface element, then

* *(]l- *
0.25 (l+rI) (1 sI) Tl

*(l-r_)* *
+ 0.25*%(1 rI) (1+SI)'T3

changed, depending on how this

In order to cover all the possible cases where

this new element may locate, a new element layer was created to surround
the original mapping diagram (as shown in Fig. D-4). The temperature at

these new added grid points due to heat flux at any possible grid point

was given artificially.
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= 73
ol I

J2

Fig. D-1.

Fig., D-2,

Grid Points And Contact Path in Axial Plane

sl
(=1,2) 1 | 1.1)
J4 73
ol T r
(‘1"1) / (1,—1)
J1 J2

/

Mapping Diagram
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14 2
I
? |
11 12
3 /‘~ 2
i |/ |3
I > T
ol I 1

J1 J2

Fig. D-3. Mapping Diagram For Temperature Calculation
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Fig. D-4. Mapping Diagram With A New Element Layer
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