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ABSTRACT

Nonlinear effects are introduced in the dynamics of large space truss

structures by the connecting joints which are designed with rather
important tolerances to facilitate the assembly of the structures in

space. The purpose of this work was to develop means to investigate the
nonlinear dynamics of the structures, and particularly the limit cycles

that might occur when active control is applied to the structures. An

analytical method was sought and derived to predict the occurrence of

limit cycles and to determine their stability. This method is mainly

based on the quasi-linearization of every joint using describing

functions. This approach was proven successful when simple dynamical
systems were tested. Its applicability to larger systems depends however

on the amount of computations it requires, and estimates of the

computational task tend to indicate that the number of individual

sources o£ nonlinearity should be limited. Alternate analytical

approaches, which do not account for every single nonlinearity, or the

simulation of a simplified model o£ the dynamical system should

therefore be investigated to determine a more effective way to predict

limit cycles in large dynamical systems with an important number of
distributed nonlinearities.
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CHAFFER ONE

INTRODUC_ ION

1.1 Presentation o£ some New Classes o£ Problems Associated with the

Design of LarHe Space Structures.

A new stage in space development is approaching that sees an

important increase in space-based activities. This increase should

result in spacecraft o£ much bigger dimension, where size will be mainly

determined by the need to collect and transmit more radiative energy

like solar power or radio signals, the only form o£ energy that can be

exchanged in outer space. The Hoop/Column antenna, as well as the

current Large Space Station configuration should have, for example,

dimensions exceeding 100 meters, and comparable, or even bigger

spacecraft, stations or satellites are expected in a more distant

future.

Truss structures offer a satisfactory answer to the problem of

spanning large distances or large areas, and they are extensively used

in the design of new spacecraft: they constitute, for example, the

backbone o£ the space station, or so-called "power tower" configuration.

The reason for this is that they have a very high stiffness to mass



//

/
11

ratio, which is even more important in the construction of edifices in

space than it is on Earth.

However, the use of truss structures in space presents specific

problems of vibration and instability. These problems arise from the

inherent flexibility of structures which have very large geometrical

characteristics, and which are built with a minimal amount of material,

as weight is a limiting factor in the launch process. The situation is

aggravated by the way the structures are assembled. Since it is not

feasible to weld or bolt the different parts together in space, or to

launch a structure in one piece, Joints with rather large tolerances

must be used so that structures can be erected by astronauts, or

automatically deployed. The resulting stiffness is therefore reduced,

and low frequency vibrations occur that may be very detrimental both for

the hardware and for the completion of the mission. The behavior of the

joints can even become predominant in the dynamics, and a lot o£ t_e

benefits expected from a truss can be lost in joint dominated

structures. A sometimes strongly nonlinear behavior of the joints

induces other unwanted effects and complicates further the study of

these problems.

Unfortunately, with the absence of gravity, a negligible internal

energy dissipation in the material, and no possible energy loss with the

non atmospheric environment, there is no natural phenomenon that can

provide damping for the vibrations and assure stability.
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All these characteristics make active dynamic control of a flexible

structure compulsory, so that vibrations and geometric distortions be

kept within an acceptable level. The National Aeronautics and Space

Administration (NASA) is scheduling a series of experiments, referred to

as Control Of Flexible Structure, or COFS program, in order to

investigate, and to validate a technology data base for the suppression

of inherent dynamic responses in large flexible spacecraft and the

avoidance of undesirable interaction between flexible structures and

controls. The COFS I experiment will be a 60 meter high truss mast

bearing a I00 kg tip mass, and will be deployed from the cargo bay of

the Space Shuttle. Figures I-I and 1-2 illustrate its characteristics in

greater detail. The mast structure is made of more than 600 struts put

together with about 1200 pinned-joints whose characteristics are

described in figures 1-3 and 1-4. This study is a contribution to the

COFS project, and is aimed at obtaining a better understanding of the

effects of the joints on the structure dynamics.

1.2 Review of Previous Related Works.

Studies have already been conducted concerning the characteristics

o£ the joints and their effects on the structure dynamics from a linear

point of view, assuming that each joint has a constant stiffness and a

constant viscous damping, or from a nonlinear point of view, assessing a

more realistic behavior of the joints.

Among recent works, R.Y.-K. Lee, [1], examined the linear effects
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o£ the joints on a three piece boom. He also derived nonlinear models

for the joints, based on a physical understanding of what causes the

nonlinear behavior, such as Coulomb friction or surface mating. These

models were then used to simulate dynamic responses. Problems in

simulation raised by the nonlinear character of the systems were also

investigated for various integration schemes.

K.W. Belvin [2] also presented a thorough investigation on how to

model the nonlinearities in the joints, how to obtain a simpler model

more useful for larger problems, and how to use these models, along with

an elaborate finite element analysis of a truss structure allowing_large

deflections, to simulate its dynamics. Next, he analyzed some of the

effects o£ the joints on the dynamics of a plane truss structure with

the new refined simulation technique, and obtained some interesting

qualitative indications of its behavior. He also addressed the problem

o£ parameter identification, and derived a method to fit optimally,_in a

least-square error sense, his model to experimental test results.

Parameter identification was the only goal of the thesis by

K.J.O'Donnell, [3], where dynamic characteristics of the joints are

found through force-state mapping techniques which yield very realistic

and accurate models.

1.3 Thesis Objectives and Organization.

All of the aforementioned studies look only qualitatively by means

of simulation at the effects of the joints on free structure dynamics.
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They do not address the problem of the structure behavior under the

effect of a control system, nor do they take into account the

applicability of the simulation techniques to very large structures.

This present study is therefore aimed at filling this gap and at

investigating some possible approaches to analyzing the behavior of

nonlinear truss structures under active control.

Chapter 2 shows how to model the problem, and specifically how to

transform the continuous mechanical problem into a finite state variable

representation which is very well suited for the design and the study of

control systems.

It would have been possible to investigate numbers of th system

properties using the newly developed finite state description, but among

the different issues, the major problem of stability was not addressed

and the study was focused instead on the possible occurrence o£ limit

cycles in the structure under active control. In fact, stability appears

to be easy to guarantee for the particular type of problem found with

the control of the ODFS I Mast, and it is felt that the design of a

controller that stabilizes the structure should be a rather simple task

in this case. On the other hand, significant nonlinearities can interact

with the control system and produce sustained oscillations, also called

limit cycles, and because of the expected properties of the _oints,

those limit cycles seem likely to occur. The reasons for particularly

studying limit cycles are developed more detail in Chapter 3, with the

rest of the chapter being devoted to deriving analytical tools to
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predict their occurrence.

Limit cycles are studied under a restrictive single harmonic

hypothesis. The hypothesis allows the nonlinearities in the joints to be

taken into account through the use of describing functions, giving means

to derive methods applicable to large systems for the search of limit

cycles and for the eventual determination of their stability. The

special form of the COFS I Mast problem seems to indicate that the

accuracy of the solutions found through these methods may not suffer too

much from this simplifying hypothesis, and their use seems, therefore,

to be rationalized.

In Chapter 4, the practical aspects are taken into account, and the

section shows how the theoretical methodology of the previous chapter

can be computationally implemented to determine limit cycle existence in

real problems. Minimization methods are used in the limit cycle search

algorithms derived. Some of the presumedly most effective minimization

methods are reviewed in the section, and their pros and cons are

discussed. The computational task associated with the different

numerical implementations is evaluated in order to facilitate the

selection of a most efficient algorithm, and also to permit the overall

evaluation of the effectiveness of analytical methods, and ultimately to

allow to compare it to the effectiveness of alternate methods.

Finally, some simple examples are derived as an illustration in

Chapter 5. They allow comparisons between the different numerical

techniques for very small order problems, and they confirm results

previously obtained on their efficiency.
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The conclusions that can be drawn from this first very general

study about the applicability of analytical methods to predict limit

cycles in very large structures under active control are presented in

Chapter 6.

Possible improvements of the analytical methods, as well as

alternate methods which should constitute the object of further studies,

are indicated in this last section. Among the alternate methods, the

determination of limit cycles through simulation is more specifically

detailed, and a rough estimate of the computational task associated with

it is given. The comparison of the estimates of the calculation

requirements obtained for the two different approaches, the analytical

approach and simulation, gives a strong indication that simulation

should be in fact one of the most effective approaches to the

determination of limit cycles in large structures comparable to the COFS

I Mast. It is therefore believed that simulation techniques for large

structural systems should be further studied in order to improve them

and to reduce the computation they require, which still appears to be

considerable when dealing with large dynamical systems like space

structures.



OE poOR QUaLiTY,

17

CONTROL OF

IFLEXIBLE STRUCTURES

Figure 1-1: General View of the OOFS I Mast Experiment



IS

ORIGINAI_ PAGE IS

OF POOR QUALITY

• :iii!i:iiiii!I, i!i i:i iii!:i-_ Tipmass,assemblyparameter(tip

modification,

actuators, sensors,
and cover)

Graphite/epoxy struts

Titanium hardware

Two bays deployed

56-bay stack

Figure 1-2: Beam Subsystem Durin_ Extension



19

TYPICAL BEAM TWO BAY SECTION DIAGONAL JOINT ASSEMBLY

__.]BATTEN END FITTING

I I!l_irl..,i' L_.o__o_o
!

LONGERON JOINT ASSEMBL,Y
(TOP VIEW)

VIEW B

LONGERON JOINT ASSEMBLY
(SIDE VIEW)

Fi_are I-3: Mast Experiment Articulation Joints



2O

LOAD
100

6O TEST

FIT

.I .3

-2o DISP.

-I00

Figure I-4: Load-Displacement Curve for a Pinned-_oint



21

CIIAFrER 2

PROBLI_ NOI_LING

2.1 Basic Hypothesis on the Nature o£ Problems in Structural Nechanics.

In most o£ the developments of Structural Nechanics, the hypothesis

is made of the linear behavior of continuous materials. The strain, or

local distortion of a body, is linked to the stress, or effort, through

linear relations which use characteristic parameters of the material

like the Poisson coefficient and Young's modulus for an isotropic

material. This hypothesis is verified as long as the body is not subject

to large deformations, and allows a great simplification of the study of

the dynamics of the non-rigid body.

2.2 Review of a CommonApproach for the Analysis of theD_L_mics

of Non-RiKidBodies.

2.2.1 Problem Statement: the Nodal Analysis.

The dynamics of a non-rigid body are governed by a set of partial
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differential equations, along with a set of boundary conditions. Under

the linear hypothesis, the general form of the problem can be written as

follows ( Meirovitch [4]):

tt

L u + H u = f ,P E D (2-1)

B. u = 0 , P E S; i=1,2 .... p (2-2)

where L is a differential operator matrix of order 2p, H is a mass

matrix, u(P,t) is the displacement vector at time t of the point P of

tt

the domain D occupied by the structure, u being its second partial

derivative relative to time, B.'s differential operator matrices of
1

strictly smaller order than L, and S the boundary of D.

f(P,t) represents the external loads which can be either distributed or

discrete, where in the latter case it can be expressed as:

f(V,t) = FCt)SCV - Vo),

where 5(P - Po) is a spatial Dirac delta function.

(2-3)

Because of its linear character, the problem can be solved in a

particular way, through modal analysis: periodic solutions of (2-1) are

sought when no external load is applied. Exponentially decaying

solutions will be sought if damping is introduced, but the structure's

internal damping is usually assumed to be zero. A mode r is then

represented by a complex parameter k that describes the frequency o£
r

the solution and a mode shape _r which is a function vector that

associates the maximum amplitude o£ the displacement to each point of
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the body. Looking for solutions of the form

~rU(P. t)--_rCP) exPC;k r. t)
(2-4)

in equations (2-1) and (2-2) yields the following equations for (_r,_r):

(L + M )X2r ) _r = O~ . P C D (2-5)

Bi _r = 0 ,P £ S ,i=1 .... p (2-6)

which is an eigenproblem ([4]).

The eigentunctions _r'S constitute an orthonormal basis of the

space of the solutions, provided they have been normalized, and for a

chosen dot product, they satisfy:

ID¢T ¢r dD= . (2-7)~s rs

for any two modes r and s, where 5rs is the Kroenecker symbol.

Solutions for any kind of loading can therefore be projected on the

space spanned by the modal solutions. Writing the solution _ as

u(P,t) = Y. Ur(t ) _r(p) , Ur(t ) e _ , (2-8)
r--1

transforms the partial differential problem into an infinite dimensional

system of ordinary time differential equations satisfied by the modal
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coordinates Ur(t):

where :

" _2u - u = f (t) , r=l... _, u e IR (2-9)
r r r r r

fr(t) = fD _T(P)'f(P't) dD (2-10)

is the forcing term for mode r.

2.2.2 Practical Solution for a Real Problem.

To find the eigenvalues and eigenfunctions of the modes is usually

very difficult and closed-form solutions only exist for very particular

problems. Approximate solutions for a limited number of modes can

however be found through finite element analysis for example.

Approximate eigenfunctions _r associated with approximate eigenvalues bar

are defined by a finite number of parameters or degrees of freedom, and

thus only span a finite dimensional subspace of the solution space. The

problem is discretized and can therefore be treated computationally,

whereas the continuous problem cannot be treated at all.

Discretization preserves the orthonormality property and the _'s

still Constitute an orthonormal family on which the general solution can

be projected.

The error of the approximate solution can be tuned by choosing an

adequate number of degrees of freedom to describe each mode shape.
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However, the number of degrees of freedom has to be increased if a

better accuracy, and a larger number of modes, are wanted.

A practical solution will therefore be sought in the form ([4]):

r=n

u(P,t) = _ Ur(t) _r(P) , (2-11)
r=l

where n is the number of selected modes.

The modal coordinates Ur'S satisfy the following finite dimensional

differential system:

with:

and:

I ,, 2Ur + a r Ur = fr (t) ' r=l...n, (2-12)

fr(t} = _r (P).f(P,t) dD,

)_ra= j a .2r ' J =-1 ::

A lumped linear system can therefore approximate the dynamics of

non-rigid bodies, simplifying tremendously the analysis, even though the

dimension of the linear system must be very important for a satisfactory

accuracy to be reached. Any solution to the dynamical problem for the

body will be sought only in the form:

r=n

_(P,t) = _ UrCt ) _r(P) ,
r=l

where (_r,__)~,is a mode or an approximation we have of it.

(2-13)
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2.3 Modeling o£ a Truss Structure with Nonlinear Joints.

2.3.1 General Approach.

Nonlinear systems with two distinct parts, one linear and one

nonlinear, constitute a special class o£ nonlinear systems which have

received a lot of attention already. Their general architecture is shown

in figure 2-1

Extensive study o£ the behavior of this type o£ system with a SISO

nonlinearity is made in Gelb and Vander Velde [5]. Extension to the MIMO

case exists in [6,7].

A truss structure is essentially constituted o£ linear elements,

the struts, connected by nonlinear elements, the joints, and it would be

appealing to put the problem under the aforementioned form to make best

use of its linear characteristics.

The most staightfoward approach would be to describe each strut

with a linear model and cascade and feed these linear subsystems back

through the nonlinear joints, but this would result in a maze of

inextricable connections. Thus our approach is to first replace the real

joints by linear equivalents. The resulting altered structure becomes

linear, and modal analysis of the whole linearized truss is applied as

described before. The linear model of the structure includes state

variables for the joints which will be used to feedback the remaining

nonlinear part as forcing terms.
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FiKure 2-1a: SISO Nonlinear Feedback System.
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FiKure 2-1b : MIMO Nonlinear Feedback System.
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9..3.2 Mathemtical Formulation.

Let 1,2 ..... N. be the indices o£ the joints in the structure.
J

The joints are assumed to be massless and each joint is described by

only two nodes at its ends located at P. and11 Pi2

The efforts applied by joint i on the rest o£ the structure are

considered discrete, and can be written:

F i(P,t) = ~FLi(P,t) + ~FNL(p,t) , (2-14)

where F_. is linear in the displacement of the joint and its rate of

displacement and F NL is the remaining nonlinear part.

The way the F_.'s are chosen is theoretically unimportant, as long as it

yields a linear model for the entire structure: the nonlinear feedback

will anyway cancel out any unrealistic dynamics assumed for the joints.

It would be much more satisfactory, however, i£ the linear

equivalent retained as much as possible o£ the real behavior for

principally two reasons:

First, it might allow to design the controller using only the linear

part, when the remaining nonlinearities are small enough, and to apply

therefore only linear system control design tools.

Secondly, and more importantly, the modal analysis fixes the subspace

where solutions will be sought. Thus, a main concern is that the

component o£ the complete solution obtained on this subspace may not be

preponderant. Perpendicular components may not be negligible, as it was
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implicitly assumed, if the linear equivalents differ too much from the

real joints.

Throughout the study, we will assume that such a close linear

description of the joint exists as suggested by the test curve we have.

( figure 1-4).

Since the linear part has been included to perform the modal

analysis of the overall structure, the problem can be written as

follows:

i--N.
" 2 j
U + _ U -- _.

r r r i=l

L
[_Tr(Pil)-_FNi(Pil,t) +

L
+ _T(Pi2)._i(Pi2, t) ] + (2-15)

+ feTt(t ) , r=l,2 n

where fext is an external forcing term, basically control forces and
r

disturbances, and can be the result of either distributed or discrete

loads.

The matrix formulation of the problem is the following:

,t

q/ + A _/= Bj_NL + B _ + L._t
(2-16)

where % is the vector o£ modal coordinates

= [ u 1, u2 ..... Un IT ,
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and

A = diag( o_, {o2,

_NL is the vector o£ nonlinear forcing terms,

LT " _NL T

= ,t) F2(P21,t)...:NL [ _:(Pll
LT

 N!PN1
J J

T

,t)] , (2-17)

the B. matrix is:
J

B °

J

_:(PII) - _:(P12)

_(PII ) - _(PI2)

_T(PII ) - g(Pl2)

:(PN.I ) - _:(PN.2 )
J J

J J

_(PN.I ) - _(PN.2)
J J

(2-1s)

a vector of supposedly discrete control
_C

different locations P_'s,
3

forces applied at

= [ FT.pc,t) T c
~c ~c( 1 _c(P2 't)

FT.pc ]T~c t m t) (2-19)

g

C

T c

_l(Pl) T c_I (P2)

T c

_(PI) i

T c

_I (Pm )

T c
_(Pm )

T c

_(P m)

(2-20)
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represents the disturbances and L the matrix through which they act on

the system.

We implicitly took massless joints by assuming that the sum of the

efforts on any joint is zero. Hence, the term _NL contains only the

forces applied at one end of each joint.

The nonlinear terms depend on the joint's state variables, and we

can write _NL as :

= '

where q contains joints' history states which are necessary to

completely describe the joints' behavior, and whose dynamics are usually

nonlinear.

The block representation of figure 2-2 summarizes the way the open-

loop system is described.

2.3.3 Dimensionality.

All vectors and matrices presented before have various dimensions,

and it is important to know them to appreciate the size of the problem

and later discuss the computational load and the size of memory required

for its resolution.

The modal vector _ is an n x 1 vector and the modal matrix h is

therefore n x n .

Each eigenfunction _r is a 6 x 1 vector function, since it is

necessary to include rotational deformation along with displacement in
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the finite element representation.

The discrete forcing terms F are also 6 x 1 and include a three

dimensional force as well as a three dimensional torque.

Nj) is an n x ( 6 Nj) matrix.Hence, _NL is a (6 x 1 vector, and Bj

Similarly, _ is a (6 m) x 1 vector end B is an n × (6 m)
_C ' C

matrix, where m represents the number of actuators.

Typically, the COFS I experimental mast has about 1200 joints, s_ud

we will take thereafter N. = 1000 as the order of magnitude to discuss
J

the size issue. The modal analysis should therefore include at least

1000 nodes and about 10,000 degrees of freedom. The number of modes to

be retained should be in the range of 100. Hence, the model yielded by

the modal e_ualysis is considerably reduced compared to the one used to

perform the analysis. However, it should still be meaningful if the

modes are carefully selected.

2.3.4 Introducing the Control Laws.

As mentioned in the introduction, active control is required on

most of the large flexible spacecraft to transform their dynamics and to

obtain an acceptable behavior.

The type of control laws we will consider here are linear control

feedback laws. It might be, for example, full state feedback control, or

a LQG/LTR controller: the main purpose of this research is not, however,

to study the design of controllers for linear descriptions of large

space structures, and we do not include in this discussion the use of
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reduced order dynamic controllers nor a wide variety of design methods

which appears in the literature.

Thus, the control vector
_C

_c = - G1 _ - G2 _ '

has the general form:

(2-21)

where G1 and G2 are two (6 m) x n gain m_trices. We can therefore

rewrite the problem as follows:

vt

_ + Bc G2 _ + (A + B Cl) _ = B g_NL + L dc j (2-22)

The state vector can also be augmented if integrators are to be

included in the control system, before the actuators' command inputs for

example, in order to have a zero steady-state error in the presence o£

constant disturbances. This operation is classic in linear feedback

control design ([8]), and the resulting form o£ the problem is similar

but with an increased state vector.

As we can see in figure 2-3, the system still keeps a desired form

with separate linear and nonlinear parts when the control loop is

closed. Closing the loop only affects the linear part, and there is no

need to repeat the modeling process for different control feedbacks.

In sunm_ary, only one very expensive modal analysis of a linear

equivalent of the entire structure with no active control is required,

yielding a linear model whose dynamics is modified by the introduction
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of various feedbacks, one nonlinear corresponding to the remaining

nonlinear characteristics of the joints, eventually a second nonlinear

one corresponding to a possible nonlinear control feedback law, and a

linear one corresponding to the linear control feedback law. As the

control feedback loop is closed on the linear dynamics of the open-loop

model, a new closed-loop linear system is formed, and this system

becomes the linear part of the total system, to which the nonlinear part

is fed back. The model of the system stays, therefore, in the form of a

nonlinear feedback system, which allows simpler and further studies of

its behavior.
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FiKure 2-2: Block Dia_ramRepresentation of the Nonlinear System.

Disturban_ s2 I + s BcG 2 + A + BcG 1 I

Figure 2-3 : Block Dia ram Re resentation of the Closed-Lo_
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CHAFFER THREE

ANALYTICAL PREDICTION OF LIMIT CYCLE

IN LARGE TRUSS STR_

3.1 Foreseen Importance of Limit Cycle in Behavior o£ LarKe

Truss Structure under Active Control.

Nonlinear systems can behave in a lot of different ways, and any

designer should look for properties such as the presence of multiple

equilibrium points, their stability, the possibility of jump phenomena

and the occurrence of limit cycles and amplitude dependent behaviors in

the closed-loop system. Everything is equally important for the

performance of the design, but some assumptions made about the joints in

the COFS I mast make some of them less critical.

3.1.1 Multiple Equilibrium Points.

Multiple equilibrium points means the possibility of having steady-

state geometrical deformations of the structure and thus a loss of

conformity in its shape. It could be very damaging if the geometry is a

preponderant factor in the completion o£ the mission, as it is for large

flexible antennas.

Even though the study does not address the issue directly, we will
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show how to modify the limit cycle search technique to be able to

determine the equilibrium points.

3.1.2 Stability about an Equilibrium Point.

Stability is always a major issue in any control problem, and if it

is quite straightfoward to evaluate it for linear systems, special care

has to be brought when it comes to nonlinear cases. The center manifold

theory permits one to go further and extend linear system stability

criteria to nonlinear systems to assess local stability, and Lyapunov's

second method is a very powerful tool used to answer global stability

questions. ( [9] and [10]).

However, in the case of the joint dominated truss structure some

heuristic arguments will easily convince one that stability can be

guaranteed provided the joints possess certain properties. More

precisely, we suppose the joints to be asymptotically linear, or if f

represents the load at one end of a joint and x its displacement, we

suppose that there exists a stiffness K such that:

lim (fCx) - K x )/f(x) = 0 . (3-1)
X _

The range of x is naturally limited inside the region where the

materials have a linear behavior, but it can be assumed that this region

is wide enough, compared to the area where the nonlinear effects are

predominant, so that (3-1) is satisfied. The property is illustrated in

figure 3-1
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Figure 3-I: Asymptotic Linearity Property
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Another underlying assumption made here is that the joints have no

real dynamical characteristics, or that the restoring force depends

mostly on the displacement x and not the rate of displacement _, and

that the energy dissipated per cycle depends on the amplitude of the

excitation rather than its frequency. Otherwise,.a viscous damping term

must be added to the asymptotical linear model in (3-1).

The pinned-joints used in the COFS experiment seem to fall in this

category of asymptotically linearly behaving elements because the main

nonlinear phenomenon is thought to be the play at the pin connection and

the Coulomb friction which opposes the backlash.

If the linear asymptotes are used to build the linear equivalent

model of the structure, and a controller that stabilizes it is added,

then the closed-loop nonlinear system will not blow up, since for large

enough initial conditions the joints will behave like their asymptotical

equivalents and the state variables will decay. Hence, bounded initial

conditions result at least in bounded responses, which means that the

system is stable.

3.1.3 Jump Fhenomere.

Jump phenomena occur when the system switches from one equilibrium

point to another for an infinitesimal change in one parameter. They are

also referred to as catastrophe and are mostly studied in the very
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powerful theory known as the catastrophe, or bifurcation theory ([9]).

Buckling is an example of it, and it is the usual jump phenomenon found

in structural problems.

Such things do not seem likely to happen in our system since the

purpose of the structure is not to carry axial loads, and the presumed

asymptotically linear behavior of the joints should guarantee continuity

of the response of the structure. Hence, further study seems not

important to this point.

3.1.4 Limit Cycles and Amplitude Dependent Behavior.

3.1.4.1 Limit Cycle Definition.

A limit cycle is a sustained, or self excited oscillation in a

nonlinear system. Its representation in state space is an isolated

closed ____h, and if the initial conditions are set on one point of the

path, the trajectory of the system will remain on it.

A limit cycle is said to be stable if the trajectories originating

in its vicinity tend toward it as time goes on. On the other hand, it is

said to be unstable if the trajectories go away from it. Figures 3-2a

and 3-2b illustrate the concept of stable and unstable limit cycles.

Unstable limit cycles are also called stability boundaries, limit

cycle implying stability in that case.

Self excited oscillations might occur in the structure because of

the nonlinear character of the joints: the nonlinearities may introduce
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some delay in the transmission of the actions of the controller and they

may change the phasing to such a point that the controller would add

energy instead of dissipating it.

3.1.4.2 Amplitude Dependent Behavior.

Amplitude dependent behavior happens in the presence of two limit

cycles and is best explained in figure 3-3:

The inner limit cycle is unstable, or is a so-called stability boundary,

and the outer limit cycle is stable. Therefore, for initial conditions

within the stability boundary, the system will come back to zero, and

will be stable, whereas it will be trapped and will display a limit

cycle if the initial conditions are anywhere outside this boundary.

Hence, the behavior of the system depends on the amplitude of the

initial conditions.

3.1.4.3 Consequences of Limit Cycle Occurrence.

Limit cycles in a structure can cause trouble of the same nature as

free oscillations do when no active control is applied.

Their worst effect would be to interact with dynamics of modules or

other Systems connected to the truss and excite those dynamical systems

periodically near their own resonant frequencies, thus forcing an

amplified response or even causing instability.
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Figure 3-2a: Stable Limit Cycle

. II

X

Figure 3-2b: Unstable Limit Cycle
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But even i£ unstability is not at stake, vibrations can be

detrimental for the completion of the mission: loss of accuracy in the

geometrical shape can result in a less efficient reception of solar

power for solar arrays, or it can degrade the signals received and

t ransmi tted by flexible antennas. The vibrat ions can induce an

unacceptable level of acceleration for microgravity experiments taking

place in a lab facility of the Space Station.

Finally, it can be very damaging for the spacecraft itself, and it

can reduce its reliability and its mission time by speeding the process

of fatigue in the joints, in the electronics on-board and usually very

sensitive to vibration, and also in the sensors and actuators of the

control system which interact with the structure to produce the limit

cycles and which are continuously sollicitated.

Therefore, the control system should be designed in such a way that

no possible oscillation can occur, and searching for limit cycles must,

hence, be of prime concern.

3.2 Analytical Determination of Limit Cycle: Problem Formulation.

3.2.1 General Approach.

A.A.Aderibigbe made a thorough study on how to predict limit cycles

in multivariable nonlinear dynamic systems ( [11]). He reviewed some

already used techniques and he presented an alternate one based on a
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particular Ritz-Galerkin methodknownas the Harmonic Balance _ethod.

From his work it appears that all applicable analytical techniques

share some common features:

First they reduce the general multivariable nonlinear problem using

quasi-linearization techniques in order to get a practical model to work

with. As we will see later, quasi-linearization methods involve writing

the dynamic equations as linear equations with coefficients that depend

on certain properties of the state variables and which are chosen in

order to reduce in some way the error made in the approximation.

Then a search technique is employed. It is usually an algorithm

which will iterate until limit cycle conditions are reached. It also

usually tries to make best use of the quasi-linearized form of the

problem and track eigenvalues or characteristic equation roots.

The effectiveness of a technique can be appreciated by the degree

of approximation reached in the process of getting a workable mode_ and

by the efficiency of the search algorithm in terms of memory and time.

3.2.2 Quasi-Linearization Methods.

Since a limit cycling behavior is essentially oscillatory,

periodicity in the dynamical equations has to be considered; the quasi-

linearization processes perform a sort of Fourier series expansion.

However, there are different approaches to do it, involving global or

local approximations and retaining only one or more harmonics in the

model. Three basic methods can be used.
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The first method uses a global statistical linearization. Assuming

the system is in the form:

= £(x) + r w (3-2)

where x

component

is the state vector which contains a bias 5b, a sinusoidal

x , and a random component x :
~s ~r

= 5b + Xs + Xr (3-3)

_(5) represents the system's nonlinear dynamics, and w is the input

with:

= _b + _r (3-4)

where %b is a bias input and _r a random one.

i(5) can be approximated by the quasi-linear form

_(5) = Nb_Xb + Ns~sX + Nr~rX (3-5)

Nb ,N and N are obtained by minimizing the mean square error of thes r

difference e
~

e = £(x) - NbX b - N x - N x (3-6)~ s~s r~r
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The general form of the result is shown in Spanosand lwan

([12]), and is the following:

Nb : (E[_ _]) (E[_]) -l (3-7)

Ns : (E[_ T]) (F.[_s_])-i (3-S)

N r = (E[£ xT]) (E[xrxTr])-I (3-9)

An alternate method consists in replacing individual constituting

elements by their own quasi-linear representations. If x(t) is the

scalar input to the nonlinearity, it is assumed that it only contains a

bias xb, a sinusoidal term x s. and a random one x :r

+ x (3-10)x = x b + x s r

The output is also assumed to be the sum o£ a bias, a sinusoid and a

random signal and is written as:

+ n x (3-11)y(t) = nbx b + nsX s r r

The gains nb n s and nr also minimize the mean square error of the

difference between the real and the approximate signal and are called

describin_ functions ( [5]). It is shown in [12] that for systems

consisting of isolated nonlinear elements connected between nodal

points, the global and the element-by-element quasi-linearization yield

the same model.

A third method uses the harmonic balance method and describes the

nonlinear system as a proportional plus derivative system as a whole.

Its main feature is that it involves more than one harmonic in the
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assumedform of the state variables, as detailed in [11].

The assumedform of the state vector is:

= xb + x + x + . . + x , (3-12)
~s I ~s 2 ~s h

where the subscript b stands for bias, and the subscript sk for the k th

harmonic of the sinusoidal term.

The system :

x = £(x. )

is rewritten using:

f(x _ ) = NbX b + NplXsl + 1 Ndl_,s I +
• (a (3-13)

+ Nphxsh +h 1 Ndh_s h

where each harmonic term Npk and Ndk are again found to minimize a mean

square error. For only one single harmonic, the solution yielded is the

same for all three approaches.

3.2.3 The Single Harmonic Hypothesis.

In simulations performed in [2], a four bay plane truss structure

excited by a sinusoidal input responded with a marked sinusoidal

character and without any other apparent harmonic terms. In the presence

o£ active control, it is also presumed that higher harmonic resonances

will be damped enough so as not to appear in the response of the

structure. We must emphasize here that the linear system to which the
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nonlinear joint effects are applied is the closed-loop controlled

structure. Therefore, the structural resonances within the bandwidth of

the control system will be damped, and the bandwidth of the overall

system will be limited. Hence, it is believed that a study of possible

sustained oscillations involving only the first harmonic will be enough

to predict whether or not limit cycles can occur. Anyhow, an analytical

study involving higher harmonics would result in the multiplication of

state variables and would rapidly make the problem untractable.

Furthermore, no stability results can be derived if more than one

harmonic is retained.

We shall mention however that an attempt to quantitatively evaluate

the quality of the first harmonic approximation is presented by

Chouldury and Atherton ( [13]). It involves the computation of the

distortion of the signal fed back after a sinusoidal input is sent in

the open-loop. If the signal x(t) has a Fourier series expansion of the

form

x(t) = _ akcos(l_t ) (3-14)
k=l

the distortion is

2 1/2

A = (k=2 / a I , (3-15)

and it is claimed that if the distortion is less than 6%, one can expect

an error no more than that amount. Hence there exists at least one test

that can be performed to validate the approximation, but it requires

mostly simuIation techniques to be performed.
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3.2.4 Quasi-Linearization of the Problem using Dual Input Describing

Func tions.

Because of the form of the problem, quasi-linearizing the nonlinear

part of each joint is obviously the best way to operate. Dual Input

Describing Functions (DIDF) are used under the single harmonic

hypothesis.

3.2.4.1 I}ual Input Describing Functions.

DIDF involves SISO nonlinearities. If x is the input and y the

output of such an element, x is first assumed to be:

x = B + A sin_t (3-16)

where A an B are real, and y is related to x in the most general case as

follows:

y = nB(A,B,o ) B + nA(A,B,o ) A sinot , (3-17)

where nB is a real, and n A is a complex, gain chosen so that the mean-

square error of the difference between the true and the assumed signal

is minimized.
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As shown in [5], the general forms for the gains are:

- y( B + Asine, A_cose )de
nB 2= B (3-18)

nA =np + j nq ,

np= -- y( B + Asine, A_cos8 ) sin8 de
7rA

(3-19)

n - y( B + Asin8, Awcos8 ) cos8 d8 (3-20)
q 7rA

A simplification occurs when it is supposed that the output y only

depends on the input and not its first time derivative. If

y = y( x, _) = y(x) (3-21)

then there is no term in Aecos8 in the expressions 3-18 to 3-20. The

same simplification occurs when, as it is assumed for the joints of the

COFS I Mast problem, the nonlinear function is symmetrical, even though

not necessarily single-valued.

3.2.4.2 General Quasi-Linearized Form.

The inputs to the global nonlinear part of the system are the modal

coordinates u's contained in the modal vector _. The outputs are the
r

forcing terms applied at one end of each joint, i.e. the FN_ 's. The

11
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global representation of the nonlinear part has the following form:

_iNL : JVB( _0' _1 ) _0 + _/A( _0' _1 ) _1 exPCj_t) (3-22)

where the modal vector is supposed to have the form

where:

= _ + _I exp(j_t) (3-23)

_0 is a n x 1 real vector representing bias

_I is a n × 1 complex vector representing the amplitudes as

well as the phases of the oscillations of the state variables.

_A and_B are both (6Nj) x n matrix functions.

3.2.4.3 Quasi-Linearization Process for One Single Joint.

The first step in getting the global model is to find the quasi-

linearized model that gives for one joint i the forces FNL in terms of
"_ 1

% and

The use of DIDF implies a SISO relation between an excitation term

and an output from the nonlinear device. However a joint is described by

6 parameters: 3 displacement parameters and 3 rotational parameters, and

the efforts it transmits are also 6 dimensional, consisting of a 3

dimensional force and a 3 dimensional torque. This indicates that 36

coefficients should be found to fully describe the behavior of the joint

in the most general case.



53

Hopefully however, there should not be too many nonlinear effects

and they should be decomposed into simple SISO nonlinear relations such

as the one relating the axial load to the axial displacement in figure

1-4. Hence. the decomposition of the problem will have the following

steps.

i
First, consider the vector o£ parameters called q

deformation of the i th joint:

i
q =[VxV v e e e] T

y Z X y Z

that defines the

(3-24)

v x. Vy and v z are the components of the deformation o£ the joint

measured at its end Pil' along the reference coordinate frame axes Oxyz,

and 8x. ey and 8 z account for the rotational distortion of the joint's

body. The deformation components in a two dimensional case are shown in

figure 3-4.

0

4
I@z

X

Figure 3-4: Joint's Deformation Parameters
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i
q is obtained by a linear transformation o£ the state vector _.

and it can be written as:

i
q = C. • (3-25)

where C. is the following matrix:
1

Now suppose that one particular nonlinear effect has been retained,

which depends on a one dimensional quantity which is linearly related to

i
q , and whose output is also one dimensional. The direction along which

P?.the input and the output respectively occur are and The input

to the nonlinear element is therefore:

IT i
x:P. q

evl *xn

iT
x = P. C. • (3-27)

x can be separated as the sum of a bias B and a sinusoidal term

of amplitude A and phase @ which are directly related to the bias

and sinusoidal components assumed for the modal variables as shown:
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iT
×=P. c. + jut))~I I _Iexp(

iT iT

x = P. C. _0 + P" C. _1 exp(jet)_'I 1 _'I I
(3-28)

= B + A exp( j((at+ ¢))

The one dimensional output y is approximated using DIDF by:

y = nB(A,B ) B + nA(A,B ) A exp( j(et + (_)) (3-29)

iT
= nB([ _PiCi _1 [ '

iT

+ nA(l P. C. _1~` : I •

iT IT

P" C" _0 ) P" C" _0_1 +~1 I I

IT i T
P. C. _0 ) P" C. _I exp(jet)~I 1 ~I 1

(3-30)

where I z I represents the nmgnitude of the complex number z. The phase

term _ does not appear explicitly in (3-30) since _1 is already

expressed as a complex vector, and the sinusoidal term in x is therefore

described with a complex amplitude.

The resulting forcing term is:

pO (3-31)
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Hence, for one given SISO effect recognized in the joint, the load-

displacement law can be written as follows:

F NL N_(._), N_( "_0' exp(jwt)~ i= + (3-32)

where:

and

i = pO I T
NB ~I nB(l P" c _1 I

i T i T

PC %)PC~1 i ~1 i
(3-33)

i = pO I T IT IT
NA ~x nA([ ~xP" C.I _1 [ ' ~xP" C.x ,_0 ) ~1P" C.I (3-34)

i and i
NA NB are two 6 x n matrices that depend on the characteristics of

the joint through the direction of the main exciting variable, the

direction o£ its action, the nature of the SISO nonlinearity summarized

by a describing function and the way the exciting deformation of the

joint is related to the state variables.

It is possible to consider that more than one nonlinear effect

exists, but in that case the process shall be repeated and the matrices

NAi as well as NBi found for each process summed up, provided all the

nonlinear effects are SISO with a good approximation.

3.2.4.4 Quasi-Linearization Process for the Whole Structure.

The general model is obtained by assembling the different models

found for each joint. Since the general forcing term _NL has the form

L
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shown in (2-17), it can be rewritten in the form (3-22) with:

$1)= (3-35)

_A(_O ' _1 ) = (3-36)

3.3 Limit CycleCo_litions.

3.3.1 Closed-FormConditions.

A limit cycle occurs when an oscillatory regime is established in

the system and when both the nonlinear forcing terms and the modal

variables are sinusoidal functions of time.

In steady-state, the state vector _ is related to the forcing term

_NL through a linear n_ttrix transfer function we call G, which can be

derived from equation (2-22). Equation (3-22) on the other hand shows

the relation between the forcing term _NL and the modal vector _.

Combining the two equations, and balancing the harmonic terms, leads to
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a system of 2 n equations, with n of them on _, when the bias terms are

considered, and n of them on ¢ when the sinusoidal terms are treated:

[ I- G(O) _B{ _0' _I ) ] _0 = 0

[ I - G(j_) _A( _0' _1 ) ] _I = _

_0 e _n ' _1 e cn
(3-37)

where I is the n dimensional identity matrix and where 0 is the n

dimensional null vector.

The unknowns in (3-37) are _0 ' _I and the frequency _. I£ a limit

cycle exists, the system must admit a solution with _1 different from O,

which means that there must be at least one modal coordinate that

displays a sinusoidal oscillation of non zero amplitude.

It must be mentioned here that an alternate system can result from

the combination o£ equation (2-22) and equation (3-22) which results

from the elimination of the state variables between the two expressions:

[ I - ){B( _0' _1 ) G(O) ] _0 = 0

[ I - JVA( _0' _1 ) G(j_) ] _1 = 0

(3-38)

where I is the N. dimensional identity matrix and 0 is the N.
j ~ j

dimensional null vector.

Since it is supposed that N. is much greater than n, it is obvious
J
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that the system (3-38) must contain redundant equations, and in any

case, the system of the smallest dimension must be retained.

3.3.2 Expansion of the Equations on _.

Handling complex variables is not a natural operation for

computers. Therefore, in view of a numerical resolution of the system

(3-37). and in order to be able to evaluate the computing task, it is

relevant at this point to develop the equations on _. This requires

first to express the variables on _ as

uO-TEuO.o. o,

J% 1 eJ% IT

(3-39)

k

where the ui's are all real variables and where the _i's represent the

phases between the sinusoids coming into each mode. The phases of the

different signals are defined to an arbitrary constant, and the phase of

the first sinusoidal component has been taken as zero without loss of

generality. In a vector form, we can regroup the uk's in
l

uO-Tca?. .
U r lr lr ulr.T
~1 = [ Ul ' u2 ' ' n j

U i li uli.T
~1 = [ 0 ' u2 ' ' n j

(3-40)
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where for any i:

1 J_i lr li
u. e = u. + j u. (3-41)

1 1 1

The transfer matrix G as well as the DIDF matrix _/A shall also be

separated into their real and imaginary parts. 24A can be written as

N A = JVp + j14q" (3=42)

where _ and _ are functions of _0' _1 and the frequency _. A
P q

simplification appears when partitioning G that can also save an

expensive matrix inversion if we recall (2-22). Expecting a sinusoidal

solution in (2-22), the equation can be rewritten as:

(_2 I + h + B G1 + Je Bc (;2) _ = B. _NLc J
(3-43)

Therefore, (3-371 can be expressed as the following system o£ three

subsystems of n simultaneous nonlinear equations

r i

[A + BcG I - Bj_B(,Uo.UI.UI)],U 0 =

r i r r i i =0[A-w2I+BcG 1 - Bj#p(Uo,U1,U1)]U1- [eBcG 2 - Bj_q(,_:).U1.UI)]U I

[h_ 21+BcGI r i " r- + -

(3-44a)

(3-44b)

(3-44c)

The system can be solved in _0' _ ui' ~1 and _, knowing that u_ i is

1
null, or it can be solved in _0' the u.'sl and the phase variables, but

the latter case requires the use o£ sines and cosines functions to

further express the real and imaginary parts o£ the complex amplitude

vector _I"
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3.4 Limit Cycle Stability.

3.4.1 Introduction.

Stability of limit cycles is an important issue since it can

determine important stability properties for the system as seen in

section 3.1.d. Simulation techniques are mostly used to assess stability

by perturbing the system around a limit cycle. However an analytical

determination can be made under the single harmonic hypothesis([11]).

The trajectory of a limit cycle is approximately an ellipse in the

n dimensional state space, and may not be centered at 0 (figure 3-5 ):

- _0 = Re( _1 exPJWt)

- _0 = Re( _l)COS_t - Im( _l)sinet (3-45)

In the subspace orthogonal to the plane _ of the ellipse, the

system is believed to be asymptotically stable. The assumption is

similar to the one used in the Hopf bifurcation theory ( [9]), and it

states that the tangent linear model found about _0 should have all but

two eigenvalues strictly stable and only two on the imaginary axis for

formerly reviewed nonlinear phenomena such as a limit cycle to exist.

The study of the nonlinear part is then carried in the 2 dimensional

manifold e c tangent to ge at the limit cycle conditions. Therefore, the

stability of the system in the subspace orthogonal to this plane does

not affect the question of the limit cycle stability, and perturbation

of the limit cycle for the purpose of testing stability should occur in

e to be consistent.
c
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FiKure 3-5: Example of Limit Cycle in 3 Dimensional State Space
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3.4.2 Consistent Perturbation Conditions.

The parameters of system (3-37) are perturbed around the limit

cycle conditions in terms of amplitude, phase and frequency. More

, Icprecisely, if o Ic _c and _1 define the limit cycle conditions, the

perturbed terms will be

ic
k = j(a + 5o' + j()(a

(3-46)

If we rewrite the system (3-37) under the generic form

I fo _0' _1' e) = 0

fl ( _0' _1' e) = 0

(3-47)

the consistency conditions become

(3-48)

Furthermore, if the vectors of parameters are expressed in terms of

their amplitudes and phases as in (3-39), then the condition (3-48) can

be developed by linearizing (3-47) about the limit cycle condition.
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n 6£0[ 0 n _fo[ " 1

6fO = Y .-'0[ _ui + Y" 1] _ui +
i=l _ui ]lc i=l _ui [lc

no+o,+ 2 5_i + (5_ - j_a)

i=2 6dpi I 1c lc

(3-49a)

n 0
6fl = 7" 6u. + _. 6u I. +

i=1 5u ic i i=l _u lc

o++11+ x _bi + (_- j_)

(3-49b)

Regrouping the equations (3-49a) and (3-49b) in a matrix form. the

condition (3-48) can be written as:

M 5V = -P 6a (3-50)

where:

0 1 1 1n5[ = [6U ,_U O, ,_Un,6Ul,_U 2. .,Su ,_2,6_3,

,6_) n, &a] T (3-51)

and where the matrix M and the vector P depend on the parameters at the

limit cycle conditions.

Therefore ([11]), a consistent perturbation can be put in the form:

-1p (3 52)5V = -M _cx
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3.4.3 Stability Conditions.

The method to determine the stability of a limit cycle involves

first some geometric transformations: basically one which transforms the

coordinates so that the equation of the plane g of the ellipse be in a
e

canonical form, and that in the new coordinate frame n-2 states remain

zero for any point of ge" A scaling of the coordinates then brings the

ellipse back to a circle. Details can be found in [113 .

Stability can then be assessed by applying a consistent

perturbation which is also put in the new coordinate frame. Figure 3-6

gives an illustration of the transformation and shows how stability can

be checked after that, as it is explained in the following:

The distance to the origin of the point of initial conditions defined by

the perturbation can be measured to see if it is inside or outside the

circle representing the limit cycle. The position is next compared to

the sign of the parameter _which governs the size of the perturbation

through the consistency condition (3-52): a stable limit cycle will

require a positive _ to place the perturbation inside the circle, and a

negative one outside, whereas the correspondency is inverted for an

unstable limit cycle. In other words, the sign of

5cx _x7

5r - r - r (3-53)
0

is determined, where r is the distance of the perturbed point to the

origin and r the radius of the transformed limit cycle. The sign must
0

be negative for a limit cycle to be stable.
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, 1 X

A

FiHure 3-6: Geometrical Transformation for Stability Assessment
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CHAPTER FOUR

N_IC_ DETERMINATION OF LIMIT CYC_

4.1 Choice of a Resolution Hethod.

4.1.1 Possible Approaches.

The system (3-37) is a set of 3 x n simultaneous nonlinear

equations. It is generally advised to approach the resolution of such

systems by keeping their multidimensional vectorial form, using

techniques based on the Jacobian of the sytem of equations. Numerous

algorithms have been developed, the best of which being reported to be

one based on a hybrid Newton-Raphson method [14]. A ready-to-use code,

MINPACK-1 [15]. is available and applies this method. The code is

limited to problems with less than 20 variables.

Dealing with the Jacobian becomes very expensive beyond that range

of variables, and since the present problem is very similar to a

singular value decomposition problem, it can be soved at least as

efficiently with a function minimization approach. The methodology used

here is therefore to try to minimize the square of the norm of the
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residual vector _, where

(4-1)

and where fo' fl and V are the notations used in 3-46 through 3-51.

4.1.2 Residual Functions.

A limit cycle condition is reached if and only if the set of

variables satisfying (3-37), or its equivalent form (3-44), is such that

_1 is not the zero vector. Hence, using the variables as defined in

chapter 3, and using the system of equations (3-44) rewritten in closed-

form, the following residual function can be derived as

II [_(0) - Bj.NB( V )],_:)II2
R(V) = +

II_1 I12

+
[[ [_(¢o) - B._.NA( V )]_1 [[2

[I_1 [[2

(4-2)

where the matrix function • is defined as:

@(_) = -w21 + j_ BcG 2 + h + B c G 1 , _ E (4-3)

and where the rest of the parameters are defined in chapter 2. Dividing

the square of the norm of the residual vector by the square of the norm
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of the complex amplitude vector ensures that any solution will have at

least one non zero sinusoidal signal.

Similarly, a residual function can be built to search for multiple

equilibrium points. Since the origin is an equilibrium point, the

residual function is straightfoward and is

RO( _0 ) = H E _(0) - Bj_B( _0' 0 )J_O ,,2 (4-4)

A set of limit cycle conditions equivalently satisfies (3-37) or

sets the residual function R to zero. A limit cycle will therefore occur

whenever the function reaches zero, and the parameters of the limit

cycle are the ones for which this value is taken. Since R is always

positive or null, it is also theoretically possible to infer the

nonexistence of limit cycles by checking the absolute minimum of the

function over the whole range of values the variables can take. If the
J

absolute minimum is strictly greater than zero, no limit cycle can

occur. On the other hand, i£ it is zero, limit cycles will occur

whenever the residual function reaches its absolute minimum.

It is clear, however, that restrictions apply, and a practical

solution can only rely effectively on finding a limited number of limit

cycles, if some exist, since the computational task is the major

limiting factor in the application of the theory.
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4.2 Adapted Minimization Algorithms.

4.2.1 Presentation of Unconstrained Minimization Techniques.

.

Unconstrained minimization can be achieved with various degrees of

complexity which goes along with various effectiveness. It is obvious

that the more information is known on the function behavior -i.e. the

more derivatives we consider- the faster the convergence can be.

However, the derivatives may not exist, but if they do, their

computation can be very time consuming, and can require a lot of extra

memory. Not only shall the methods with the highest rate of convergence

be therefore considered to solve problems with a great number of

variables.

Almost all the minimization algorithms share the following

features: from a current point, the algorithm finds a direction in the

state space where the function is most likely to decrease. An univariate

minimization, or line search, is then performed along this direction to

locate the local minimum which becomes the new current point for the

next iteration.

The way those operations are performed separates the techniques,

and it is possible to classify them into three main types:

The first type is constituted by nongradient techniques which do not

require any derivatives, but only grope toward the solution by

evaluating the function at many locations, and make use of these

computed values to determine the search directions. Their only advantage
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is that they save the computation of the derivatives, but they suffer a

very low rate of convergence and require many function evaluations.

The second type is constituted by gradient methods which make use of the

first derivatives to create a search pattern which yields search

directions better distributed to find the solution more rapidly. Their

rate of convergence is higher, but the line search is still blind.

Finally, Newton and Quasi-Newton methods go one step further, and by

using the Hessian or by approximating it, they allow the forecast of the

location of the local minimum along a line search direction. Their rate

of convergence is quadratic, but their main drawback is the necessit_ to

update the Hessian matrix which can be a very large matrix.

4.2.2 Possible Algorithms for the Determination of Limit Cycles.

According to Scales [16] who reviews a great number of existing

unconstrained minimization techniques along with their advantages and

their disadvantages, the Conjugate Gradient method is the most

appropriate when the number of variables becomes very large, above 250

variables. The main reason is that the method requires much less

function evaluations than nongradient methods, even i£ the gradient is

derived numerically, but it does not require the computation of the

Hessian matrix which is square with dimension equal to the number of

variables.

However it is also reported in Scales that _uasi-Newton methods are

very superior in terms of execution time and convergence rate. Among
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those methods, the one suggested independently by Broyden, Fletcher,

Golfarb and Shnnno ([17,18,19,20]), and also referred to as the BFGS

method is more specifically reported to be the most effective. The claim

is also confirmed by Himmelblau [21], who conducted a uniform evaluation

of the performance o£ different types of unconstrained optimization

techniques. Even though the size needed to store the Hessian is a mjor

problem when the function depends on a great number of variables, an

other positive point is that the BFGS method suffers rather rough line

searches, thus saving many function evaluations which appear to be one

of the computationally most important burdens, as shown later on.

Therefore, the BFGS method is another candidate to consider for the

determination of limit cycles.

4.2.3 PolakRibi_re Conjugate Gradient Method.

The main feature o£ a conjugate gradient method is that the search

lines are conjugate. For a non-degenerate quadratic function, this

property means that the search directions form an orthogonal base, the

dot product taken being the one induced by the Hessian of the function

which is a constant positive definite symmetric matrix in that case. I£

f( X ) = XT~ G ~X ,X £ _ m (4-5)

is the generic function to minimize, where G is a positive definite

symmetric matrix and m an integer representing the number of variables,
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I

then the search directions _i s satisfy:

T

pj G Pi = Pi TG Pi 5ij (4-6)

where 6ij is the Kroenecker symbol. Furthermore in the quadratic case

the minimum o£ the function is reached in exactly m iterations. Things

change in the nonlinear case since the Hessian is not constant. If m

still represents the number of variables, the algorithm will perform

major iterations, which are groups of m minor iterations ..... or

computations of a search direction _k and an univariate minimization

along the line. During a major iteration the directions are generated so

that they satisfy the conjugacy property. It is proven, [16], that if _k

represents the gradient of the function f at a current point X k, the

direction _k along which to find the next point Xk+ 1 should be o£ the

form

= - +  k k-1 (4-7)

to ensure conjugacy between the search directions in a major iteration.

Pk is a scalar which can be chosen according to the particular form of

conjugate gradient method wished to be used ([16]). The choice of Pk

due to Polakand Ribi_re [22] reportedly succeeds more often and should
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be therefore preferred to other choices. Its form is

(gk - gk-1)Tgk

_k =_T

 k-1  k-1
(4-s)

The update of the search direction _k requires the knowledge of the

previous search direction _k-l' the gradient at the previous iteration

_k-1 as well as the gradient at the current point _k"

When m minor iterations have been performed, the search direction

is reset equal to the gradient at the current point: this reset has been

reportedly very successful to prevent the search directions from

drifting and lie in a subspace of Nm because of rounding errors in the

update formula.

Hence, only four m x 1 vectors have to be stored to update the

search direction and this constitutes the main advantage of the method

for large systems. Also, when close to the minimum, the Hessian matrix

is approximately constant and a quadratic termination can be expected.

The gradient can be found by finite difference as well as

analytically without influencing the convergence properties of the

method. However the method requires a very precise univariate search,

and each updated point coming from each minor iteration has to be very

close to the true local minimum in order to get an acceptable

convergence speed. This can be one of the major problems in applying the

conjugate gradient method since the evaluation of the function can be

very time consuming, and that is why other methods might be considered.
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4.2.4 The BFGS Quasi-Newton Method.

The Newton method uses Taylor series expansion of the function up

to the quadratic term to find the next step, or equivalently a Taylor

series expansion of the gradient to the first order. If the next point

Xk+ 1 is related to the current point Xk as follows

_Xk+ 1 = _ + _ (4-9)

then the Taylor series expansion of the gradient g( X ) is:

+ = + ck (4-10)

where Gk is the Hessian matrix of f at X k. A successful step is one

which sets the next gradient g(Xk+l) to zero. Using the first order

approximation for the gradient, this step is found to be

= - Gl_:lg( _Xk) . (4-11)

which gives not only the direction, but also the step to take in that

direction, at each iteration.

The pure Newton method however suffers from multiple problems among

which is the necessity to compute the Hessian G at each iteration and to

invert it, which is expensive and not always possible. Quasi-Newton
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methods have therefore been developed: they avoid the computation of the

Hessian, and they carry and update instead an approximation of its

inverse.

As seen in [16], there exists families of Quasi-Newton methods, but

the most successful seems to be the one referred to as the BFGS method.

If H k represents the approximate of the inverse of the Hessian at the

k th iteration, it is updated as follows:

where AXk is the step taken in the iteration, Agk the vector difference

between the gradient at point X k and Xk+ 1 ,I the m dimensional identity

matrix and Hk the current approximation of the inverted Hessian.

The step pk is given by

_k = - I'Ik,_k (4-13)

_k represents the step in a real Newton method. However the Quasi-Newton

method starts only with an approximate Hessian, and therefore the method

only considers _k as a search direction and still performs an univariate
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minimization. But it must be noticed that if the step is

= % . % c {4-14}

the sequence of crk tends rapidly toward I. It therefore provides a good

initial mess in the univariate minimization and the line search can

eventually be abandoned in the final steps.

The search directions are still better distributed in quasi-Newton

methods than in first order methods. It is proven in [16] that they too

satisfy the conjugacy property. It is also reported there, and in Dixon,

[23], that the method suffers an imprecise line search, and that not

reaching the local minimum at each iteration can indeed improve the

convergence.

Since updating the matrix H is not a much more expensive task than

evaluating the residual function, as it will be seen later, the method

appears potentially better than the conjugate gradient method, whose

advantage lies principally in the small cost associated with the

computation of the search directions.

4.3 Evaluation of the Computational Task.

4.3.1 General Purpose.

It is necessary to estimate the computational task of any

analytical limit cycle prediction method in order to be able to comment
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on its effectiveness. Determining the most applicable minimization

method shall then be possible, as well as comparing alternate methods

that can be used to study the nonlinear dynamics, such as simulation.

Hence, the following sections will be devoted to finding rough estimates

of the calculations undertaken in the different parts of the limit cycle

determination process. The most general case is studied, and the

estimates can be taken as upper bounds, but they shall however be

considered as significant results.

4.3.2 Residual Function Calculation.

The way to compute the residual function is to first evaluate the

residual vector as in (4-1) using (3-44), then compute the square of its

norm and divide it by the square of the norm o£ the complex amplitude

vector. The main chore of the computation is to evaluate the forcing

terms through the matrices _B and SA" Following the steps of section

3.2.4 to build the nonlinear terms, and referring to the expression

(3-44), the computation of one forcing term can be summarized as

detailed in figure d-1. Following the calculation shown there, the

number of required operations can be estimated to the order of

O(21Njn) multiplications, when all the joints are taken into account,

and not accounting for the 3 N. evaluations of describing function
J

terms.

If the describing functions are evaluated on line and computed

through a numerical integration of some available test functions, then
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L
I" COS(_

L___.I L

proj. on

input axis

3xnop.

_ np (Ak °Bk) _ npAkC°S_k-nqAkS in_k _ Yp

J L I L J

comp. of sin. DIDF comp. of the harmonic

amplitude evaluation components of force

3 op. ( 3 x nop. 5 op.

YB

Yp

Yq

L___J L___J

proj. of the

force on joint's

output axis

3 × 6 op.

calculation of

the force's contribution

on the modes' dynamics

18 x nop.

Fibre 4-1: Steps of the Computation of the Forcing Term

due to One Single Joint
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the extra task can be evaluated on the order of 0(3 Njn) operations,

assuming that about n points are taken to perform the numerical

integration. The choice seems reasonable if n is about 100 as we have

implicitly assumed.

On the other hand, models can be available that simply describe the

shape of the envelope of the load-displacement test curves ([2d,25]).

In that case, closed-forms may exist that give the values of the

describing functions taken for each joint, and the task then would be

reduced to O(3Nj).

The rest of the residual function evaluation requires O(Sn 2)

operations, as shown in figure 4-1 Therefore, we can evaluate the

chore to be of the order of O( 24 N.n + 5 n 2) multiplications, which
J

represents about 2.5 million operations for one function evaluation if n

and N. are 100 and 1000 respectively. Hence, it is clear that minimizing
J

the number of function evaluations is of prime concern, and that the

fastest method should be considered.

4.3.3 Gradient Evaluation.

The gradient can be evaluated numerically by perturbing one

variable at a time. However two main problems arise:

first the size of the perturbation must be chosen small enough so that

the step taken lies in the linear domain, but also large enough so that

rounding errors do not dominate the variations. Unfortunately, the

choice is made blindly since the necessary information is contained in
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the second derivative of the function.

The second and more crucial problem is that given the number of

operations required to evaluate the function, repeating the process 3n

times appears unacceptable from an execution time viewpoint.

If an analytical calculation of the gradient is undertaken, it

would proceed as follows.

Since:

_( V )T( V )

r( V ) = .rT.r .iT.i (4-15)

_1 _1+ _1 _1

we have:

ar
_( V )T ae

9

-- - 2 .rT.r .iT.i @u0 (4-16)
_Ul Ul+ Ul Ul 1

where

ae / au.0 =

FA+BcCI-Bj'VB]- Bja B/ °

r i
-Bja#p _ U I + Bj q _ UI

0 i .c9# /au 0 r-Bja#p/_ _I- Bj q _ _I

(4-17)

with E. = [0 .... O, 1 o]T,the 1 component being the i th element.
_1 g I-*-t
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_r _( Z )T O_ r( Z ) u_ r
2

brT. r .iT.i aulr .rT.r .iT.i '
1 _1+ _1 _1 i _1 _1+ _1 _1

(4-18)

where:

lr
Oe / 8u. =

1

-BjO_B/_u_r_o

[A_ 2I+BcGI_BjSp] lr r lr i~IE"-Bj [adp/aUi _1 - a_q/°Ui _I ]

lr i lr r
E. -B.[6_ /Ou. U. + 6_q/OU i _1 ][WBcG2-Bj_q] ~1 j p 1 ~1

(4-19)

Or _ (z)T am r(Z)._
2 2

ouli- .rT.r .iT.i ouli .rT.r .iT.i
i _I _I + _I _I 1 _I _I + _i _I

(4-20)

where

Oe / Ou!i=
_" 1

-BFB/o- i o

-[_BcG 2 - Bj_q] _i -B.[a_jp/aU}i_1 _ O_q/eU ili_li]

[A_ 2I+BcGI_Bj li i /auli r

(4-21)

and finally

Dr
-2

_( Z )T a_

_rT.r .iT.i
I _1 + _1 _1 O_

(4-22)
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where

Oe / 8_ =

0

-2¢0 Ur Ui
~1 - BcG2 ~1

Ui Ur
-2¢0 ~1 + BcG2 ~1

(4-23)

Assuming the residual vector has been stored, each element of the

gradient can be computed using (4-16) through (4-23), recalling there is

li
no u 1 variable. Again, the evaluation of the partial derivatives o£

the matrices SB' _p and _/q are the longest operations. Assuming the

state of each joint is available from the computation of the function,

figure 4-2 shows that still O( 18 Njn) operations are required to get

only one partial derivative of the function. The cost of computation of

the derivatives of the describing functions can be assumed similar to

the cost of the computation of the describing function, especially if a

model is available. The analytical evaluation of the gradient might

therefore be marginally less expensive, but accuracy is much likely to

be gained over the numerical evaluation.

In summary, computation of the gradient needs approximately 3n

times the number of operations needed to compute the function, whether

it is evaluated numerically or analytically. The latter method may be

however faster and probably more accurate. And even though the gradient

is expensive to get, it is still believed, based on [16] and [21], that

gradient and Quasi-Newton methods are still more efficient than
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anB/aa
nB u B + nB Bu ' YB

u

Ak, Bk----

_ Onp/OB n_
/OA

_ npu AkCOS_k- n_ Aksin_k + _ ,

A' - n A'
np Pu q qu YPu

n_ AkCOS% + PU

I A' A' 'n + n
q Pu P qu Yqu

u

YPu

u is the generic variable relatively to which the derivation

performed. We use the following notation: z' = Oz/Ou
U

Au = P j)cos A' = P j), A' = 0 B' = 0 if u = u.
' Pu qu ' u j

A' I( n(_j, qu kI(j) li
= P ])si A' = O, A = P B' = 0 i£ u = u.

u Pu ' u 2

A' kI( 0= O, A' = O, A' = O, B' = P j) i£ u = u.
u Pu qu u 3

is

FiKure 4-2: Steps of the Computation of the Derivative of the

ForcinK Term due to One SinKle Joint relative to One Variable
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nongradient methods.

4.3.4 Univariate Minimization Scheme.

The univariate search scheme is important, since multivariate

minimization needs rather precise line searches, and since the technique

used should provide the required precision in as few steps as possible.

An efficient univariate minimization scheme is used by Dixon in

[23], based on a bracketing technique and quadratic fit to improve the

bracket. The bracketing technique consists in having the local minimum

of a scalar function h( a ) enclosed between a lower and an upper bound

called L and M to respect Dixon's notation. A third point a is the
m

current estimate of the minimum location, and the exact values of the

function h( a ) are known at those three points. In order to improve the

bracket, a parabola is fitted using those points and its minimum

estimated at a (E) If the prediction a (E) = L + E (M - L) is such that

0.25< E <0.75, the prediction is accepted, otherwise E is replaced by

0.25 or 0.75 in order to have the length of the bracket decrease by at

least one quarter. The exact value of the scalar function h is then

computed at a = a (E), and a new bracket is formed using the four points

at L, M, a and a (E) by enclosing the one giving the smallest value
m

for h between the two nearest points.

The first bracket is obtained by taking a unit step a (I) downhill

from the first current point a = O. The exact value of h is computed and

a parabola is fitted using the two points and the slope at a=O. If a
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bracket is not formed, the process is repeated with a (2) = 5xa (I) i£ the

absolute value of the estimate of the minimum a CE) is bigger than a (I),

or with a (2) = a CE) if it is smaller.

The acceptance criterion stops the process whenever the new

predicted value a CE) agrees with am within elaml, or the bracket has its

size less than a gaml, where e is the accuracy parameter.

The univariate scalar function used to execute a line search from

the current point X k in the direction _k is

hcf) = f (4-24)

and its derivative relative to a used to give the downhill direction and

to fit the first parabola is

dh T

da _k" _k g (4-25)

where f is a generic scalar multivariate function, _k the gradient at

point Xk, and pl< the line search direction.

The accuracy of the line search given in [16] for the different

multivariate minimization techniques is given in terms of gradient

discrepancy: it states that a step should be accepted if

Ig( XI<+I)Tpk I < 'TIg( X_k)Tl_k I (4-26)
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can be as large as 0.9 in the BFGS method, but it has to be at least

equal to 0.001 in the conjugate gradient method. The search termination

test has to be converted in terms of the precision parameter e, since

the computation of the gradient is too expensive. Nevertheless, the

value of the parameter W provides a meaningful idea on what accuracy is

required in the two methods.

Two factors should make the line search process in the BFGS method

faster than in the conjugate gradient method. The first factor is the

precision o£ the local minimum prediction, which has to be high only in

the Conjugate Gradient method. The second factor is the a priori

knowledge o£ the location of the minimum, which is contained in the

value of the second derivative of the function, and which is only

derived in the BFGS method. This latter technique should therefore have

much faster line searches.

4.3.5 Update of the Search Direction.

According to formula (4-7) and (4-8), the update of the search

direction in the conjugate gradient method only requires 3x(3n)

multiplications, which is very low. On the other hand, the update of the

matrix Hk and the computation o£ the new direction can be estimated as

requiring at least 5x(3n) 2 multiplications if intermediate vectors are

being used in the update formula (4-12) and if best advantage is taken

of the symmetry of the Hk'S. It is therefore obvious that if the number

of joints is much greater than the number of retained states, the
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computational task of updating the matrix Hk is negligible compared to

the task of computing the function itself.

4.3.6 Stability Determination.

Recalling section 3.4, the trajectory of the limit cycle is an

ellipse, and perturbations in the ellipse plane are the only consistent

disturbances to apply in order to check stability. Using (3-45), the

principal axes of the ellipse have to be computed. If _. is
u

_u cos-1 rT i r i= (_1 _1/" _1 "'It _1 ") (4-27)

in other words the angle between the vectors U 1 and U 1,' and if theor

following vectors are defined with

¢_ = 1/2 atan (

r2., Ul,,., cos%
,, _ ,, 1,2

//
) + t_- , t= 0,1 (4-28a)

r i= U 1 cos¢ 6 + U 1 sin_o t , t= 0,1 (4-28b)

the equation of the ellipse becomes

_- _0 = _ cose + _ sine (4-29)

where e is a dummy variable, and where _ and U_2, as defined before, are
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orthogonal, thus lying along the principal axes, and with norms equal

respectively to the maximum and minimum distance from the ellipse to its

center.

In order to check for stability, consistent perturbations have to

be found. Recalling (3-52), a matrix M and a vector P must be computed.

M is the Jacobian of the residual vector _( V ); P can be expressed as

P

0

- Sc%

r Ui
2o U 1 - BcG 2 ~I

(4-30)

and is closely related to the last column of the Jacobian, as can be

seen from (4-23).

The main task is therefore to compute the Jacobian at the limit

cycle conditions, which takes O(21Njn) operations, and to invert it.

The Jacobian is not hollow, thus its inversion should be performed using

for example a QR decomposition algorithm.

Once @V = - M-1p is found, the corresponding initial point of the

perturbed trajectory _' must be determined in the modal space. Recalling

(3-45), which is the equation of the limit cycle trajectory, and using

the notation as in (3-46) for the perturbed point in state space, _' is:

_, : _Ic + (5_0 + Re( _c + 6_I) (4-31)

This represents some projections and some other O(n) operations.
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The final step involves comparing the perturbed point to the ellipse,

which is done by comparing the expression

p = + - 1 (4-32)

2 2

to O. Hence, once the consistency condition has been found, the

remaining operations cost only an O(n) and they are not therefore the

principal source of computation.

In summary, the stability determination consists mostly in

inverting a large 3n × 3n matrix, and this is a computationally very

important calculation since the matrix is not hollow.

4.4 The Singular Value Test.

We are concerned in this last section about finding a more global

type o£ test which could yield some information on the size o£ the

different limit cycle parameters, in order to determine some region

where they should lie, and to be able to pick initial guesses to start

the limit cycle determination process.

The system (3-37), or any o£ its alternate expressions, states that

two complex matrices M0 and M1 are singular, where

M 0 = I - G( O)_B( V )

M 1 = I - GCj_)_A( V )
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The system also states someproperties for the eigenvectors of M0

and M 1 associated with the zero eigenvalue, more specifically that they

must be respectivelY_o and _I" A very conservative test, however, is to

check only for the possible singularity of the matrices without any

regard to the eigenvectors' directions.

In order to perform the test, we use a general property o£ matrices

of the form

M=I-HN

where M, N and H are here only generic matrices.

The property is the following ( [8]):

The matrix M is not singular if the matrices H and N satisfy

Smax( H ) < (4-3_)

s. c N )

where Smax( P ) represents the maximum singular value of a matrix P.

If the test is applied to the matrices M0 and M l, which depend on the

limit cycle parameters, it is theoretically possible to determine values

of V and e where the test stands and where it is violated.

If the test is true for all values of the parameters, then no limit

cycle can occur. However, the test is very conservative and it is very

likely that it will not stand if any performance has been sought in the

design o£ the controller. On the other hand, the test can provide a
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region in the variables space where a singularity can occur, and thus

where limit cycles can occur. Hence, it provides bounds for the

variables, and it may help choose an initial point to start the

iteration in the limit cycle search process.
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FIVE

EXAMPLE OF ANALI"rICAL DE_INATION

OF LII_IT CY(_ AND THEIR STABILITY

5.1 Scope and Means of the Section.

Examples of analytical determination of limit cycles are derived in

this section for simple dynamical systems. They are constituted of a

series of one or two masses connected by nonlinear springs, and they are

under active dynamical control through full state feedback.

The number of nonlinearities is much smaller in these examples than

what occurs in the case of large truss structures. However, very complex

examples are likely to complicate the understanding of the problems

arising in the implementation of the analytical search methods.

Furthermore, the chore associated with their derivation would be

considerable since no actual controlled truss model is yet available,

and extended computer capabilities would be necessary. Hence, the study

is limited to simple problems, but this only forbids the addressing and

the analyzing of the size issue, and still provides valuable results on

the performances of the analytical methods.

The simplicity of the examples limited the need for computing

power, and an IBM PC/AT personal computer was used to implement the

search algorithms. The software package HATLAB, [26], was extensively
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used for its capability to handle vectors and matrices and its ability

to manipulate real as well as complex numbers. The complex formulation

of the limit cycle conditions, as expressed in (3-37), was therefore

conveniently used. The software was also utilized for simulation. It

provided graphic outputs, and the plots and tables of results relative

to the examples derived can be found at the end o£ this section.

5.2 Presentation of Tested Systems.

5.2.1 General Architecture.

Two systems were used, one with only one SISO nonlinear joint, the

other one with two joints. Their general architecture is similar: they

are constituted of masses assembled in series by the nonlinear joints

and clamped to a fixed wall.

FiKure 5-1a: SinKle Joint System.

c x I 'l_ F 1 ,l_i F2

x2 'i

FiKure 5-1b: Two Joint System.
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The masses were taken unitary. It was supposed that full state was

available, and that each mass could be independently driven by an

actuator. Those last hypotheses gave complete freedom in the design of

the linear feedback controllers and thus allowed controllers that

induced limit cycles. The joints are represented as springs in figure

5-1, but they are nonlinear types of spring, and they were chosen to be

identical in case 2.

5.2.2 Idealized Joints' Characteristics.

A simple idealized model of a joint that fits in the hypotheses

made in Chapter 3 was chosen. Each joint is constituted of a linear

spring of unitary stiffness attached to a simple Coulomb friction

element with threshold F . The displacement of the Coulomb element is
c

limited to a bound S. The joints were supposed massless.

[_-=S --_

s V
I -,{ •

Figure 5-2: Model of Nonlinear Joint.

This type of joint can be modeled with two states, one giving the

total deformation, x, and one giving the sliding of the friction

element, s. The load, F, required at one end to produce the displacement
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is the following

F = K (x - s) . K = 1

and the dynamics of the joint is

s = x

s=O

(5-1)

, if I s I < s, I v I = F and s_(x) = sp(F).
c (5-2)

Such a model of a joint is a very simplified version of what are

believed to be the true elements, and it more particularly displays the

two properties we assumed in Chapter 3, which are, that it is

"asymptotically linear", and that it has a hysteresis whose size does

not depend on the frequency of the excitation.

Starting from x = 0 and s = O, the joint is truly linear and s

stays constant as long as F does not cross the threshold F . This
c

corresponds to the linear behavior in figure 5-3a. I£ s is not initially

zero, and if the load does not cross the threshold, the joint will still

behave linearly, but around an other operating point: because of the

Coulomb element, there is a loss of static accuracy.

When the load crosses the threshold, the Coulomb element "gives way" and

starts to slide. The sliding will not stop until the maximum play is

reached, and the spring will then be streched again. When the load is

released, the spring will start to shrink back and may be compressed,

but the Coulomb element will not slide back toward s = 0 until the

compression force reaches -F : hence the load-displacement curve
c

displays a hysteresis, as shown in figure 5-3b.
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I

-S

F
c

load

S

-F
C

FiHure 5-3a: Restorin_ Force for Small Displacements

load

fibre 5-3b: Hysteretic Behavior for LarHe Displacements
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5.2.3 Describing Function for Idealized Joints.

The use o£ integrators in the control design prevents, in all

cases, any non zero steady state errors when a static disturbance is

applied. This implies that the gain RB need not be calculated, and that

the gain nA only needs to be evaluated for B = O, since, as it will be

shown later, the controller forces the biases to zero. In other words,

Sinusoidal Input Describing Functions can be used here, rather than Dual

Input I)ecribing Functions.

A closed-form expression can be found for the describing functions

o£ the remaining nonlinear part of the joints. I£ FNL is defined as:

FNL = Fl°ad - K x, (5-3)

where F l°ad is the total load as in (5-I), and F = K x is the linear

spring model taken to replace it, then we have the following expressions

for nA:

nA( A, O) = np( A, O) + j nq( A, O)

np( A, O) = 0
ifA<F

nq( A, O) = 0 c

1 2Fc - A)
np( A, O) = _ [ -1 + f( A ]

A2
nq( A, O) = - ( 2Fc - A) 2

A 2

ifF <A<F
c c

(5-da)

+ S (5-4b)
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1 _ f[Fc+= A ]

4Fc S

nq( A, O)- _ A2

if A > F + S (5-4c)
c

where the function f is given by:

f(_)

=-1, z <-1

2 [sin-I J 2[/ z + 1 - z ] , -1 < z < 1 (5-5)

=+I, z > 1

5.2.4 Closed-loop Linear Models.

The linear model for the joints is obviously a simple linear spring

of unitary stiffness, F = K x, where F is specified in figure 5-2.

The controllers implemented are multivariable PID feedback control

systems. The integrators were found necessary for two reasons: first,

they keep the system from settling down in a steady state that shows

constant biases, which otherwise occured due to the loss of static

accuracy implied by the Coulomb friction. Second, they provide the

necessary phase lag to lead the systems to limit cycle.

It must be noticed that the examples differ somehow from the large

systems presented in the previous chapters, since the number of states

is superior to the number of nonlinearities in these examples.

Nevertheless, this only requires minor changes in the implementation of

the method, as it will be shown later, and it does not change the way

the problem is approached.
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The state variables taken are the displacement x., the rate of
1

displacement _. and the integral o£ the displacement _ x.dt o£ each
l 1

mass. Once chosen, the feedback systems yielded respectively the

following dynamics for the closed-loop systems:

System I:

where:

X = A 1 ~X - BciK1 X+ Bjl FNL (5-6)

0

A 1 = 0

0

B =[0
ci

0

-I

0 1] T .- B. = -B
J1 cl

K 1 = [ -0.5 0 -13 ,

where:

Cl=[O 1 O]

The poles of the closed-loop linear system are the following:

El/2= -0.1761 i j 0.8607

A3 = -0.6478

The damping ratio of the oscillatory mode is only 0.2.

d = C 1X (5-7)

and where

F NL = F l°ad - K x

where F l°ad is the total force to be applied at one end o£ the joint to

produce a displacement x.

The displacement of the joint d is:
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System 2:

where:

X = A2 X - Bc2K 2 X+ Bj2L ENL
(5-8)

A2 =

0 1

0 0

0 -2

0 0

0 0

0 1

0 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 -1 0

[0 0 1 0 0 0 ]T , [0 0 -I 0 0 0 ]T• B ,

Bc 2 0 0 0 0 0 1 J2 0 0 1 0 0-1

K2 [6.3156 4.4587 4.7650 5.4444 6.8613 1.1250 ]=5.30566.80620.57506.45445.51385.2250

The ._lL's are the remaining nonlinear parts o£ each joint.
1

The displacement of the joints, called d. 's, are:
1

d 2

where:

0 1 0 0 00]C2 = 0 -1 0 0 1 0

The poles of the closed-loop linear system are:

hl/2 = -0.05 i j 0.5

k3/4 = -1.4 _ j 1.4

X5 = -3.0

X6 = -4.0

(5-9)
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The damping ratio of the first oscillatory mode is only 0.1. The

damping ratio of the second mode is 0.707, and therefore, only one

closed-loop resonant mode really appears.

The eigenvectors associated with the first oscillatory mode are:

_1 = [1.0000 -0.0500 -0.2475 -1.0000 0.0500 0.2475] T (5-10a)

V2 = [0.0000 0.5000 -0.0500 0.0000 -0.5000 0.0500] T (5-105)

The controller was designed using eigenstructure assignment

techniques, ([8]), in order to have a resonant mode where x 1 = -x 2 when

the system is oscillating along this mode, as one can check on _1 and

The linear transfer functions can be readily derived from the state

representations o£ the closed-loop systems. The transfer functions to be

_NL
used go from each forcing term F-k to each joint's displacement d..1

In case 1, the transfer function G1 is defined as:

G1 - _L - CI(Pl - A1 + Bc_KI )-1Bj_ (5-11)

In case 2, the matrix transfer function G2 is defined as:

G2 = = C2(PI - A2 + Bc2K2 )-I Bj2 (5-12)
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5.3 Residual Functions.

The set of equations (3-37) can be rebuilt for those simple

examples by writing the following generic relations that stand for both

cases, when the indices i, k and 1 are specified:

Displacement and forcing terms:

d. = B. + A.exp Jet
1 1 1

0 + .1 jet
F_kL= Fk rkexp

Relationship between forcing terms and displacement:

Fl_kL = n B Bk + nA( Ak. IIk} Akexpj°t

di = kF. Glik(O)FO + kF. Glik(e)F1 ,

(5-13)

(5-14)

Equating the different harmonics, the sytem of equations becomes in the

single joint case:

[ 1 - nBCl(O) ] B = 0

[ 1 - nA( A,B)GI(Je)] A = 0

(5-15)
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and in the two joint case:

0 1 - G2(O) x ] =0
n B B 2 ~

io]_E[o I c2(j ) x [nA(AI'BI) 0 ] IAI [0 3 A2 eJdP = 0
nA(A2,B2) ~

(5-16)

In both applications, the bias terms B, B 1 and B2 are zero, since

both GI(O ) = 0 and G2(O ) =[0 0]. The problems therefore decouple,
and

the residual function becomes, in the single joint case

R(A,_) = I 1 - nA(A)GI(J_)I (5-17)

and in the two joint case

II [-G211 (_)nA(AI)+I -G212 (w)nA(A2)
L-G22 i (_)n A (A 1 ) -G2_(_)n A (A 2)+ I,

R(A 1, A2, _), _) =
2 2

A 1 + A2

I::e °lll2

(5-18)

5.4 Limit Cycle ReKions.

It is simple here to find the maximum singular value of the matrix

_A' where _A is defined as in section 3.2, since the matrix is

diagonal, equal to diag(nA(Ai) } for both examples. Therefore, Smax(_A)
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is bounded by MA = max (nA(A)). Figure 5-4 represents the values of
A

1/nA for the values of parameters Fc = 0.1 and S = 0.5. Figures 5-5 and

5-6 show respectively the maximum singular value of the respective

transfer function of case 1 and 2. Regions where limit cycles might

occur can therefore be determined in both examples, and the limit cycles

parameters will verify

System I:

0.5143 rad/s < w < 1.2397 rad/s

0.1556 < A < 1.7333 (5-19)

System 2:

0.3082 rad/s < _ < 0.8577 rad/s

0.0889 < AI< 3.3778 or 0.0889 < A2< 3.3778 (5-20)

It must be noticed, however, that the mathematics only requires one

of the variables A 1 or A2 to be within the indicated range, and not both

o£ them simultaneously. The information is, however, still valuable,

particularly for the frequency.

Furthermore, the nonlinearities are only perturbation terms, and it

can be seen that the limit cycle areas are defined by values of the

frequency for which the input forcing terms are amplified, or in other

words, where the linear system displays a resonant peak.
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FiEure 5-4: 1/nA( A, O)
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S.S Shape of the Residual Function.

In order to get some insight, the log of the residual function in

case i was plotted on figure 5-7 on a 3 dimensional mesh representation.

The scale on the frequency is logarithmic.
\

Particular features of the residual function include two plateaux,

one occuring when A _ _ or e _ _, the second one when A _ 0 or _ _ O.

The value of the residual on the plateaux tends toward 1. In fact, in

both cases, either n A or GI(_ ) goes to O, and the value of the limit can

be directly checked from the equations.

The importance of the linear system's resonant mode is again

underlined. A valley appears for _ below the resonant peak frequency,

at e = 0.8785 rad/s, and there is a ridge around _ = _ . The ridge seems
r r

to keep any search starting with e greater than _ from being
r

successful, and such an attempt will end up in the plateau region.

It appears, therefore, from the general shape of the residual

function, that the initial conditions should be around the lower bounds

given by the Singular Value Test, in order to reach the valley region

during the search process and not to be trapped in the plateau area

where the search can drift toward points located at infinity. Caution

should also be taken during the search process so that a step does not

lead to frequencies well above the resonant frequency.
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FiEure 5-7: Three Dimensional Plot o£ Single Mass Case's

Residual Function
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5.6 Evaluation of the Limit Cy,cle Prediction Method Based on The BFGS

Algor i thm.

S.6.1 General.

Two limit cycles were found in the first system, using the BFGS

based limit cycle prediction method. The first one was located at:

A = 0.2739 , o = 0.5748 rad/s

and the second one at:

A = 1.1510 , _ = 0.6835rad/s.

Simulations were performed to confirm the existence of such limit

cycles, but only one was found, corresponding to the second set of

conditions. The results o£ the simulations are shown in figure 5-8

through 5-10 As it can be checked there, the characteristics of the

limit cycle found by simulation were accurately predicted by the

analytical method: the measured frequency is at e _ 0.68 rad/s, and the

measured amplitude is A _ 1.14 .

Two limit cycles were also found in the second system,

corresponding to the following conditions:

A i = 0.0698 , A 2 = 0.1391 , _ = 3.1410 rad , o = 0.4375 rad/s,

for the first limit cycle, and,

A 1 = 2.3441 , A 2 = 4.6675 , _ = 3.1351 rad , e = 0.4950 rad/s

for the second one.



112

Simulations shown in figures 5-ii through 5-13 confirmed the

existence of the second limit cycle. It can be seen in the phase plane

representation of figures 5-II and 5-12 that the expected elliptic form

of the trajectory suffers some distortion that shrinks it in its middle.

However, only the first harmonic is really present in the displacement

of the masses, as it can be checked in figure 5-13. The parameters of

the limit cycle measured from the simulation results correspond to

A 1 -_2.30 , A2 m 4.63 , _ m 3.11 , ¢0 _- 0.49 rad/s

and are therefore very close to their predicted values.

Interestingly, the limit cycles are closely related to the resonant

mode of the linear part the systems. The frequencies of the limit cycles

are only slightly smaller than ¢0 = 0.8785 rad/s in the first case, and
r

again s Iight ly be low _0 = O. 5025 rad/s in the second case.
r

Also, calculating the displacements of the masses from the

characteristics of the joints' deformations in the two joint system

case, one can find that, for the first limit cycle:

x 1 = 0.0698 cos(O.4375t)

x 2 =-0.0693 cos(O.4375t) +0.0001 sin(O.4375t) (5-21)

and for the second limit cycle:

x I = 2.3441 cos(O.4950t)

x 2 = -2.3233 cos(O.4950t) + 0.0303 sin(O.4950t) (5-22)

Hence, it is very interesting to note that, in both cases, x I is

almost equal to -x 2, and therefore, that the oscillations strongly

resemble the oscillations of the resonant mode of the second system,
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where x 1 always equals -x 2, as one can find from the expressions (5-10a)

and (5-lOb).

5.6.2 Effects o£ the Line Search Accuracy.

5.6.2.1 Tests Performed.

Searches were undertaken, for both systems, with various values of

the line search accuracy parameter e in order to verify that the BFGS

method suffered rough univariate minimizations.

With the single joint system, all searches were started at

A = 0.11 , e = 0.25 rad/s, (5-23)

and e was set successively to 10 -1, 10 -3, 10 -5 and 10 -7. The convergence

criterion compared the value o£ the gradient at each iteration to 10 -10,

and terminated the search as soon at it was below the threshold. The

number of iterations, as well as the number of function evaluations, the

converged point and the residual are recorded in table 5.1, and figure

5-14 shows the residual values during the different searches.

With the two joint system, three sets o£ initial conditions were

taken. The first two sets corresponded to starting points far from a

zero of the residual function. The first set was located at

A 1 = 0.11 ; A2 = 0.11 ; _ = _ ; _ = 0.3 rad/s. (5-24)

and the second at:

A 1 = 0.11 ; A 2 = 0.11 ; _ = _/2; _ = 0.3 rad/s. (5-25)
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e was set to 0.5, 0.1 and 10 -3 . The features of the searches are

gathered in tables 5.2 and 5.3. The residual values during the searches

with the first set of initial conditions are displayed in figure 5-15.

Figure 5-16 shows the values taken by the amplitude parameters for the

different searches, and figure 5-17 shows the frequencies. The residual

values during the searches, started with the second set of initial

conditions, are plotted in figure 5-18.

The last set of initial conditions was:

A 1 --0.6 , A2 = 0.14 , _ = _ , _ = 0.4 rad/s (5-26)

and searches were made with e equal successively to 0.5, 10 -1 , 10 -2 ,

down to 10 -5 . The results were gathered in table 5.4, and the residual

values were plotted in figure 5-19.

The convergence criterion in the two joint case was unchanged.

5.6.2.2 Discussion.

The increase o£ the line search accuracy appears to have little, or

unfavorable effect on the number of iterations. It can be seen from the

results of the single joint model that the accuracy fixes the sequence

of points in the search process: the first trial converges to a

different limit cycle than the three last trials ( table 5.1). On the

other hand, figure 5-14 shows that the sequences of points become

similar after e has been chosen small enough.

Results obtained on the second system show that a rough line search

with e = 0.5 is always more successful when the search is started far
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from a minimum (tables 5.2 and 5.3), and this same value of e only

implies one more iteration when the search is started close to a limit

cycle ( table 5.4). Also, figures 5-16 and 5-17 indicate that the

sequences o£ points generated by the various line search accuracies are

different. However, figure 5-19 indicates that all the sequences of

points converge toward a similar bound as e tends to 0. Hence, it can be

concluded that the BFGS method might be more successful when the

sequence o£ points generated in the search process is not close to the

sequence o£ exact local minima which should theoretically be used: this

conclusion meets what is reported in the literature.

The value o£ e for which the method is the most efficient appears

to depend on the problem, and is for example 10 -3 in the first case, and

0.5 in the second case.

5.6.3 Influence of the Initial Conditions.

Some assessments were already made about the values o£ the initial

parameters: the singular value test provided some limits for the

amplitudes and the frequency, and the shape of the residual function

indicated that the search should be started with parameters equal to

their lower bounds.

It was also noted that the characteristics o£ a limit cycle were

close to the characteristics o£ the first resonant mode. This can help

fix the initial phases, as well as the relative amplitudes o£ the modal

variables.
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Information about the relative amplitudes appeared not to be really

relevant, since searches can start far away from a minimum, and the

values of the amplitudes can be considerably modified. Some trials,

where the inverse of the limit cycle relative amplitude was taken

initially, where A1 = 0.2 and A2 = 0.1, were even found to converge

faster than others, started with the right relative amplitude values,

where A 1 = 0.1 and A 2 = 0.2.

On the other hand, phase initial conditions appeared to strongly

affect the length of the search. Various trials were made, to assess the

influence of the initial phase conditions. The searches were started

successively with _ = -E/2, 0 , E/2 and E, and the remaining variables

were kept to

A 1 = 0.11 ; A2 = 0.11 ; o = 0.3 rad/s. (5-27)

The line search accuracy was set to 0.5, and the convergence threshold

to 10 -10. Results of the searches can be found in table 5.5, and the

residual values were plotted in figure 5-20.

It appears clearly from the results that the fastest search occurs

for _ = E, that is, for the initial phase condition corresponding to the

phase between the oscillations of the masses in the resonant mode. For

= E/2, the search even converges toward the second limit cycle, which,

in term o£ magnitude of the defining paramaters, seems to be more

distant from the chosen initial conditions than the first limit cycle

( table 5.5). For the other phase initial conditions, the relative

increase in the number of iterations compared to the one required when
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= g, is 33%. Hence, the phase information provided by the study of the

eigenvectors of the resonant mode appears extremely valuable, and should

enable the search to converge in a minimum amount of steps.

5.7 Evaluation of the Limit C_.cle Prediction Nethod Rq_ed on the

Conjugate Gradient Algorithm.

5.7.1 General.

The evaluation of the limit cycle prediction method, using: the

conjugate gradient algorithm, was conducted in the same manner as in the

previous section. The exact same limit cycles were found for both

systems. The influence of the line search accuracy, as well as the

importance of the choice of the initial phase conditions were studied,

as in the previous case.

5.7.2 Effects of the Line Search Accuracy.

5.7.2.1 Tests Performed.

The same evaluations as in section 5.6.2.1. were conducted on the

first system with the conjugate gradient based search method. Results

were gathered in table 5.6, and the residual values during the searches

plotted in figure 5-21.

With the second system, only the set of initial conditions (5-27)

was used to evaluate the performance of the method when started far from
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a minimum. The line search accuracy parameter a was set to 0.5, 0.1 and

10 -4 . Table 5.7 and figure 5-22 show the interesting features of those

trials.

For the evaluation of the convergence properties of the search when

started close to a minimum, the set of initial conditions used was:

A 1 = 0.065 ; A2 = 0.140 ; _ = _ ; _ = 0.45 rad/s.

e was decreased from 10 -1 to 10 -5 . The results are shown in table 5.8,

and the residual values generated during the searches plotted in figure

5-23.

Throughout the trials, the number of iterations was limited to 50.

5.7.2.2 Discussion.

The different tests proved that the line search accuracy is a

crucial factor in the success of the search processes based on the

conjugate gradient method, and that, in order to be efficient, any of

these algorithms should produce a sequence of points as close as

possible to the sequence of exact local minima generated by the

univariate minimizations along the line search directions. Even for this

case with as few as four variables, the search began to be admissibly

successful for e less than 10 -4, as one can check in table 5.7 Figure

5-22 accentuates the failure of search processes using a rough line

search.

Another interesting result is indicated in table 5.8, and is

confirmed by the plots of figure 5-23: there appears to be a threshold
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for the accuracy parameter e. For e above 10 -4, the search fails to

converge, or is very slow. For e below 10 -4 , however, the sequences of

points generated by the algorithm are close to the exact sequence of

local minima, and the total number of iterations does not noticeably

change. Decreasing e below 10 -4 therefore implies only more function

evaluations. The threshold is the same for the two different systems

studied, but it cannot be concluded at this point, that it would not

change when other systems are considered.

5.7.3 Influence of the Initial Conditions.

The influence of the initial phase conditions was investigated as

in section 5.6.3. The initial phase was set successively to -_/2, O, E/2

and _ and the remaining variables were as in (5-27). e was taken to be

10 -4 . The convergence test was relaxed, and a search was terminated

whenever one o£ these two events occured first, the gradient became less

than 10 -8 , or 50 iterations were completed. Table 5.9 summarizes the

features of the searches, and figure 5-24 shows the values of the

residuals during the different attempts.

= _ does not lead, here, to the fastest search. Interestingly,

when R = O, the search converges toward the second limit cycle in the

smallest number of iterations. In that case, the initial phase is not

close to the value of the phase corresponding to the limit cycle.

However, to ensure continuity, we allowed a point to have different

formulations in polar coordinates. Hence, as seen in table 5.9, the
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limit cycle found by the search started with [/ = O, is defined by A 1 =

-2.3441, A2 = 4.C_75, and _ = -0.0065, but can otherwise be defined by

A 1 = 2.3441, A2 = 4.C_75 and _ = _ - 0.0065. Therefore, it can still be

claimed that the fastest search occured when the initial phase condition

was close to the phase derived from the resonant mode direction.

Thus, with the conjugate gradient method too, the phase information

brought by the resonant mode characteristics appears to be very

valuable, and allows the search to converge more rapidly.

5.8 Evaluation o£ the Limit Cycle StabiliW in the Two Joint Case.

5.8.1 Stability of Limit Cycle I.

The state variables considered in the following are _Xldt, x 1, Xl'

_x2dt, x2 and _2' where x 1 is the displacement of the first mass, and x 2

the displacement of the second mass.

= [ fXldt ' Xl' _1 ' Sx2dt' x2' _2 ]T

The limit cycle trajectory expressed in the state space is:

= cos(O.43vst) + sin(O.43VSt) (S-2S)

r i
where, _1 and _1 can be found from the expressions of Xl(t ) and x2(t ) in

formulas (5-21), and are:

]TU_=[ O. AI, O, A2sin_I/_. A I + A2cos¢,-A2sin¢_ (5-29)

U_=[ AI/_ ' O,_AI _, (A I + A2cos_)/_ _A2sin_,_(Al + A2cos_ } _ ]T (5-30)
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Using the values defining the first limit cycle, one finds:

U_=[" O, 6.9795 10 -2 , O, 1.7461 10-4,-6.9318 10-2,-3.6 10-5] T

U_=[1.5953 10 -1, 0,-3.0537 10-2,-1.5844 10-1,-7.64 10 -5 ' 3.0328 10-2] T

The transformation into principal axes indicated in section 4.3.6

yields the following vectors:

U_I=[2.BS 10-6,6.9795 10-2,-5.4 10-7,1.7178 10-4-6.9318 10-2-3.25 10-5] T

U_2=[1.5953 10-1-1.2 10-6-3.0537 I0-,2-1.$B44 10-1,7.76 10-5,3.0328 10-2] T

The matrix 14 and vector P are respectively found to be

M ._

1.0000 -1.7324 0.0000 -0.7620
0.0000 -0.5019 -0.0698 0.$648
0.0000 2.4534 0.0000 1.5229
0.0000 0.9991 0.0000 -1.1292

(5-31)

P __

0.5648
0.7620

-1.1292
-1.5229

(5-32)

Perturbation parameters were found using (3-52), and expression

(5-29) was used to generate an initial point in the state space

corresponding to these perturbed values. The stability index p derived

in expression (4-32) was computed, and was found to be: p = +12.04 _.

The positive sign of p indicates that the limit cycle is unstable. It is

not surprising, therefore, that it could not be found through

simulation, since infinitesimal perturbations make the system drift away
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from the limit cycle trajectory.

5.8.2 Stability of Limit Cycle 2.

The parameters of the second limit cycle yield the following

directions for the ellipse:

U_=[ O, 2.3441, O, 6.1518 10 -2, -2.3233, -1.5074 10-23 T

_=[1 4.7355, O, -1.1604, -4.6934, -3.0453 10 -2, 1. 1501] T

The transformation into principal axes indicated in section 4.3.6

yields the following vectors:

U_I= [ 3.076 10 -2 , 2.3441, -7.54 10 -3 , 3.103 10 -2 , -2.3234, -7.60 10-3] T

U_=[ 4.7354, -1.523 10 -2, -1.1604, -4.6937, -1.536 10 -2, 1.1501] T

The matrix M and vector P are respectively found to be

M =

0.9948 -0.0013 0.0004 -6.6431

-0.0146 -0.0072 -1.5611 46.9348

0.0108 -0.9974 -0.0566 13.2108

0.0287 0.0209 -7.7851 -93.9046

(5-33)

P =

46.9348

6.6431

-93.9046

-13.2108

(5-34)

As before, the stability index was computed for the new values of

amplitudes, phase and frequency generated through (3-52). The stability

index was found to be: p =-41.50 5a.



123

The negative sign of p indicates that the limit cycle is stable.

The second system has, therefore, a stable, and an unstable limit

cycle, which, recalling section 3.1.4, leads to amplitude dependent

behaviors. These results should not, however, be surprising, since the

system is truly linear for small amplitudes, and the linear controller

ensures asymptotic stability in that range, and since the system is also

"asymptotically linear", which implies that very large initial

conditions result in bounded responses. Hence, if limit cycles exist,

there must be one stable, since the system is stable, and there must

also be a stability boundary that separates the truly linear behavior

around the origin from the more nonlinear behaviors that appear for

larger values of the state variables.

5.9 Conclusion.

Examples of analytical determination of limit cycles in nonlinear

dynamical systems were derived in this chapter, and they proved that the

analytical techniques previously derived could successfully locate the

conditions of sustained oscillations.

The two different techniques presented in Chapter 4 were used. The

influence of the line search accuracy was investigated: as reported in

E16] or EP_.3], the BFGS method was found to perform better with a poor

line search accuracy. The process seems, however, always successful,

whatever level of accuracy is used in the univariate searches. On the

other hand, the conjugate gradient method seems to require very accurate
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line searches. It can fail to succeed if the local minima along the

search directions are not closely approached, and thus, appears to be

very sensitive to changes in the accuracy parameter.

The influence of the initial conditions was also investigated. Very

valuable results were found in the Singular Value Test. The shape of the

residual function, for the single joint case, showed that the amplitudes

as well as the initial frequency should be chosen around the lower

bounds yielded by the Singular Value Test in order for the search to be

successful. The limit cycles were also found to be very close to the

first resonant mode o£ the linear parts of the systems, and this might

provide valuable initial phase information. It was shown that starting

with a phase in accordance with the one yielded by the resonant mode

direction resulted in the fastest searches, with either one of the

minimization techniques. However, the conjugate gradient method

appeared, again, to be very sensitive to the initial phase condition,

whereas the BFCSmethod was found more robust.

Generally, the BFGS method always appeared to be noticeably more

successful than the conjugate gradient method. When the line search

accuracy parameters were taken to be the optimal values for both

methods, the BFGS method consistently required less iterations. In fact,

looking back at the results found in table 5.5, the BFGS method could

complete a search in about 4 to 6 major iterations with the two joint

model, whereas table 5.9 shows that, with the conjugate gradient method,

6 major iterations correspond to the most favorable case with a relaxed

convergence test, and that the number of major iterations is spread



125

between 6 and more than 12. depending on the initial condition chosen.

Furthermore. more function evaluations are required in the conjugate

gradient method, since a better line search must be performed.

increasing accordingly the length of the process.

Being faster, and being much more robust, the BFGS method appears

to be. therefore, very superior to the conjugate gradient method, and

should be retained to perform the analytical determination of limit

cycles in dynnmical systems.
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A = 0.11 ; _ = 0.25 rad/s

Line Search Number Number of Converged Residual
Accuracy o f func t i on Po in t Func t i on
Parameter e Iterations Evaluations A ; co value

10 -1 12 66 A = 1.1510 2.6 10 -29
co = O. 6835

10 -3 9 93 A = 0.2739 7.6 10 -31
= O. 5748

10 -5 7 84 A = 0.2739 6.7 10 -26
= 0.5748

10 -7 7 95 A = 0.2739 7.4 10 -26
= O. 5748

Table 5.1: BFGS Method's Performances for Different Line Search

Accuracies in Single Mass Case
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A1 = 0.11 ; A2 = 0.11 ; _ = // ; ¢0 = 0.3 rad/s

Line Search

Accuracy
Parameter e

0.5

0.1

10 -3

Number
of

Iterations

15

18

17

Number of
function

Evaluations

64

112

154

Converged
Point

A's,_,_

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698
A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698
A2= 0.1391

= 3.1410
o = 0.4375

Residual
Function

value

2.1 10 .26

1.9 10 -27

2.1 10 -27

Table 5.2: BFGS Method's Performances for Different Line Search

Accuracies in Two Mass Case with Remote StartinH Point

A_1 = 0. ii ; A2 = 0.Ii _ _ = ///2 _ e = 0.3 rad/s

Line Search

Accuracy
Parameter e

0.5

0.1

-3
10

Number
of

I terations

25

26

25

Number of
function

Evaluations

107

121

215

Converged
Point

A's,_,_

AI= 2.3441

A2= 4.6675

= 3.1351
= 0.4950

AI= 2.3441
A2= 4.6675

= 3.1351
= 0.4950

AI= 2.3441
A2= 4.6675

= 3.1351
= 0.4950

Residual

Function

value

9.9 10 -25

1.3 10 -29

4.8 10.25

Table 5.3: BFGS Method's Performances for Different Line Search

Accuracies in Two Mass Case with Remote Startin K Point
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_i = 0.06 ; A2= 0.14; _ = //; _= 0.4 rad/s

Line Search

Accuracy
Parameter 6

0.5

i0-I

10 -2

10 -3

10-4

10-5

Number

of

Iterations

13

12

12

12

12

12

Number o£

function

Evaluations

58

61

82

IO0

104

140

Converged
Point

A's,_,_

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0 1391

= 3.1410
= 0.4375

AI= 0.0698
A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410

= 0.4375

Residual

Function

value

2.0 10 -29

2.9 10 -28

2.4 10 -29

8.1 10-30

1.5 10 -29

1.0 10 -29

Table 5.4: BFGS Method's Performances for Different Line Search

Accuracies in Two Mass Case with Accurate Start
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AI= 0.111 A2= 0.11; _ = 0.3 rad/s; e = 0.5

Initial
Phase

Condition

=-//12

_=0

= _12

_=//

Number
of

Iterations

20

2O

25

15

Number of
Function

Evaluations

89

7O

107

64

Converged
Point

AI= 0.0698
A2= 0.1391

=-3.1421
= 0.4375

A.=-0.0698

A_= 0.1391

= 0.0005
= 0.4375

AI= 2.3441
A2= 4.6675

= 3.1351
= 0.4950

AI= 0.0698
A2= 0.1391

= 3.1410
= 0.4375

Residual
Function

Value

-26
2.9 10

1.6 10 -28

9.9 10 -25

2.1 10 -26

Table 5.5: BFGS Method Performances for Different Initial Phase

Conditions in Two Mass Case
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A = 0.11 _ _o = 0.25 rad/s

Line Search Number Number of Converged Residual

Accuracy of function Point Func t ion
Parameter e Iterations Evaluations A ; ¢0 value

I0 -I 24 121 A = 1.1510 2.6 10 -21
co = 0.6835

10 -3 I0 82 A = 0.2739 6.9 10 -26
¢o = O. 5748

10 -5 9 115 A = 0.2739 1.8 10 -24
¢o = O. 5748

10 -7 9 141 A = 0.2739 1.B 10 -24
¢o = 0.5748

Table 5.6: Conjugate Gradient Method's Performances for Different

Line Search Accuracies in the Single Mass Case
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A 1 = 0.11 ; A2 = 0.11 ; _)= 17 ; o = 0.3 rad/s

Line Search

Accuracy
Parameter e

0.5

0.1

10-4

Number

of
Iterations

5O

SO

42

Number of

function

Evaluations

307

327

397

Converged
Point

A's, _, ¢n

A.=-0. 0698

A2=-O. 1391

= 3. 1378
= O.4375

AI= 0.0698

A2= 0.1391

= 3.1400

o = 0.4375

AI= 0.0698
A2= 0.1391

= 3.1410
= 0.4375

Residual

Function

value

1.8 10 -6

1.9 10 -7

I.1 10-20

Table 5.7 : OG Method's Performances for Different Line Search

Accuracies in Two Mass Case with Remote Startin_ Point
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AI= 0.0651 A2= 0.141 _ = _1 _ = 0.d5 rad/s

Line Search

Accuracy
Parameter e

i0 -I

10 -2

10-3

10-4

10 -5

Number

of

Iterations

5O

31

24

23

25

Number of

function

Evaluations

297

211

193

208

307

Converged
Point

A's,_,_

AI= 0.0698

A2= 0 1391

= 3.1411
= 0.4375

AI= 0.0698

A2= 0 1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

AI= 0.0698

A2= 0.1391

= 3.1410
= 0.4375

Residual

Function

value

1.6 10 -10

4.1 10 -26

1.8 10 -23

1.1 10 -27

1.9 10 -24

Table 5.8: CG Method's Performances for Different Line Search

Accuracies in Two Mass Case with Accurate Start
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AI= 0.11; A2= 0.11; 63 = 0.3 rad/s; e=lO -4

Initial
Phase

Condition

=-R/2

_=0

= _/2

Number
of

Iterations

50

(grad>lO -8)

28

5O

Number o£
Function

Evaluations

610

293

Converged
Point

AI= 0.0631

A2= 0.1341

=-2.6755
63 = 0.4432

A. =-2. 3441

A2= 4. 6675

=-0.0065
63 = 0.4950

AI=
684 A2=

(grad>lO -8) _ =
63 --

AI=
38 373 A2=

63 _--

2.3441
4.6676

3.1531
0.4950

O. 0698
0 1391

3. 1410
O. 4375

Residual

Function
Value

0.0337

9.9 10 -17

8. I 10 -11

3.3 10 -20

Table 5.9: CG Method's Performances £or Di££erent Initial Phase

Conditions in Two Mass Case
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(HAFrERSIX

COB(a_USIONS AND _ATIONS

6. I Conclusions on the l_odelil_ of Large Nonlinear Dyrmmical Systems.

In the field of Applied Mathematics. a theoretical answer to a

problem is considered an acceptable solution only if the required

derivations and calculations can be actually carried out, and even

though computers keep enlarging the capability to solve complex

problems, the study of large dynamical systems may result in problems

whose size makes the implementation of a solution impossible. The object

of this work was to show a possible approach to the study of the

dynamics of large controlled structures with nonlinear joints that would

allow the derivation of applicable resolution techniques, especially

concerning the determination of limit cycles.

In Chapter 2, a general modeling framework for large structural

systems having distributed nonlinearities was shown. The modeling

included forming an equivalent linearized structure by replacing the

nonlinear elements by linear ones, and performing a modal analysis on

this Rltered structure, thus providing a finite state variable linear

model. Nonlinearities were then fed back as forcing terms in the linear

model. This modeling offers many advantages, among which are the use of

existing modal analysis techniques to obtain a linear model, the global
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way the entire system is treated, as opposed to cascading subsystems

through nonlinear elements, the simplicity of the resulting

representation with a linear model and a nonlinear feedback and the

easiness to include a control feedback law. Its main disadvantage lies

in the number of approximations that have to be made. such as taking

approximate modes of an equivalent system, or taking only a finite

number of them. but the accuracy can be increased at the cost of

increasing the number of states. Hence, the modeling o£ the structure as

a nonlinear feedback system appears very convenient. It can be readily

done, requiring only a little additional work during a standard modal

analysis, when one has to choose a linear model for each joint to

include as the finite element equivalent stiffness.

6.2 Analytical Determination of Limit Cy.cles in LarKe Dynamical

Systems.

The remainder of this work was concerned with determining

analytically the existence of limit cycles, using the model derived in

C]uapter 2.

In Chapter 3, it was decided to keep only one harmonic to model the

periodical behavior of the different state variables. This hypothesis is

believed to be satisfactorily verified when dynamical systems such as a

truss are considered, but should nevertheless be checked whenever the

study of an actual structure is undertaken.

Under the single harmonic hypothesis, Dual Input Describing
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Functions were used to model the nonlinear load-displacement law of the

joints. Then, limit cycle conditions were derived, as well as stability

conditions of the eventual limit cycles.

In Chapter 4, an applicable resolution method was derived to detect

whether limit cycle conditions can be met in a given system, and what

would be the limit cycle parameters, if one is detected. The methodology

retained was based on the minimization of a scalar residual function.

Two minimization algorithms were pointed out in the reviewed literature:

the BFGS method was reported to be the fastest and most successful

minimization algorithm, and the conjugate gradient method wa_ reported

to be the most applicable for very large problems. Rough evaluations of

the computational task made in the same chapter showed that both methods

require a considerable number of calculations, where the computation of

the residual function and its gradient are the most important task,

therefore making the calculation savings of the conjugate gradient

method irrelevant.

The importance of the computation was found to come principally

from the need to calculate the effect of each and every joint on each

and every mode, and although the single harmonic analysis yields a

simple model of each joint, the order of computation was shown to be an

O(24Njn) to evaluate one residual in the minimization process, where Nj

is the number of distributed nonlinearities and n the number of modes in

the linear model. It was also shown that the gradient computation takes

3n times this number of operations. Furthermore. even efficient search

techniques cannot converge in less than 3n iterations, which is the
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number of variables that are necessary to describe a limit cycle, and

groups o£ 3n, or major iterations may have to be repeated an important

number o£ times.

Examples of search for limit cycles in simple systems ( one and two

nonlinearities) were made in Chapter 5, and they confirmed the overall

superiority of the BFC,S method. This latter approach was always found to

be faster, and was also found very robust; that is, that the required

number of iterations to converge only moderately depends on the initial

conditions.

The influence of the line search accuracy on the performance o£ the

different methods was investigated. Results showed that the BFC_.S

algorithm performed better with a poor determination of the minima along

the search directions, whereas the conjugate gradient method required a

high accuracy in order to be successful.

The problem of finding sets of initial conditions that ensure fast

searches was also addressed. The study showed that the first resonant

peak o£ the linear part o£ the system plays a very important role in

limit cycle occurrence. It led to the conclusion that the limit cycles

must resemble the first resonant mode in terms of frequency, as well as

phase between the oscillations, and relative amplitudes of the

vibrations of the different parts of the structure. Most efficient sets

of initial conditions should, accordingly, have a frequency below the

first resonance, have small amplitudes in the neighborhood o£ the lower

bounds given by the singular value test, and have initial phases derived

from the ones found in the resonant mode directions.
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The general conclusion of the thesis is, therefore, that the

analytical determination of limit cycles is theoretically possible, and

is applicable for systems of reasonable size. The computational task,

however, rapidly grows as the number of nonlinearities N. increases. The
J

number of modes on which to approximate a solution is also an important

factor since it fixes the number of variables on which limit cycles can

depend, and if the typical data of the COFS I Mast experiment are taken,

where about 1000 joints act on 100 modes, the estimates derived in

Chapter 4 easily convince one that the size of the problem has become

too large to be treated without further simplifications. It is..therefore

believed that only systems smaller than the Mast experiment can be

studied with the method presented, where every single nonlinearity is

being considered, and alternate approaches shall be taken for larger

problems.

6.3 Alternate ApproewhesandFurther Study.

6.3. I Complementary Studies.

Only simple examples were derived in this study, and they brought

no insight on the effect of the size on the performance of the

technique. Hence, consistently larger models should be derived and

studied, in order to consolidate the results and the conclusions

presented before about the effectiveness of analytical methods to study

limit cycles. More precisely, it would provide data to compare the
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performances of different minimization algorithms, and enable to

interpolate the number of major iterations and function evaluations

required for very large problems. It would also allow the study of

possible improvements of the algorithms, by introducing of hybrid

methods for example.

6.3.2 Global and Reduced Joints Xodels.

A field o£ further study could be the investigation of techniques

that enable the concentration of the effects of groups of

nonlinearities. This would result in feeding back a smaller number o£

global non-linearities which would result in less nonlinear forcing

terms than in the case where each and every nonlinear element is fed

back. The computational task would be directly affected by a decrease in

the number of nonlinear terms fed back, and could be drastically

reduced.

A basic simplification that would occur in the treatement of real

models would be to simplify the action o£ the forcing nonlinear terms,

reducing it to one torque or one unique force, therefore limiting the

action to a subspace of smaller dimension. Joints linking axial struts

for example have only axial effects, and an elaborate routine could make

use of this a priori information by avoiding the computation of their

transverse components on the different modes, since those components are

known to be zero. This could reduce considerably the computation. Only

the action of the diagonal elements requires, in fact, a full numerical
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treatment like the one described in figure d.l, in order to be projected

on the 3 dimensional space.

Thus, it might be possible to reduce the computation in the

analysis of limit cycles in large truss structures by simplifying the

action of the joints, and by making best use of the geometrical

characteristics of the structure. It might also be possible to decrease

it by finding ways to reduce the number of nonlinear forcing terms, and

by deriving a global representation of the effects of clusters of

joints. The influence of those further simplifications on the solution

accuracy should also be investigated.

6.3.3 System Simlation.

Simulation is almost always used in the process of analyzing

dynamical systems. However simulation has its limitations:

Firstly, it does not enable to forecast any trend in the behavior

of the system, and it is theoretically necessary to try all possible

initial conditions along with all other possible operating parameters to

get a complete description of the system's behavior.

Secondly, simulation can be computationally expensive, due to the

necessity of taking very small time steps in order to get a stable and

accurate integration scheme. However, the cost associated with the

analytical investigation of limit cycles may be more important than the

one associated with the direct simulation of the system, and this latter

approach might be worthwhile.
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Very refined models using finite elements representation, like the

ones shown in [2], can hardly be used to simulate very large dynamical

systems, since they retain too many variables and cannot reasonably be

implemented. Simple models have to be utilized, and the modeling derived

in Chapter 2 appears to fit the purpose of simulation of large

structures. The dynamics are approximated with the same degree of

accuracy as when the analytical method is used, and both approaches

should therefore yield the same solutions. The nonlinear feedback

formulation can be readily employed in an integration scheme, and

equation (2-22) needs very few changes to be implemented in a program.

The main task in a simulation would be again to calculate the

forcing terms and their effects on the modes. The forcing term due to

one single joint requires the knowledge of only the joint displacement

and rate of displacement, if a simple model as presented in E2] is

retained. The estimate of the number of operations associated with the

calculation can be made in the same manner as in Chapter 4, and

indicates that O( S N.n) multiplications are necessary to find the
J

effects of all the nonlinearities on all the modes. The rest of the

linear effects can be evaluated with O( 2n 2) operations, which is not

preponderant when many nonlinearities are distributed in the system. The

number of times the evaluation is performed depends on the integration

scheme and the number of time it is called.

The range of integration can be expected to be long, and many

oscillations are likely to be required in order to conclude on the

existence of a limit cycle. A method having a small per-step truncation
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error should therefore be used in order to minimize the cumulative

error. Hamming's method ( [28]) has such a property. The method is a

predictor-corrector type of method. The recursive integration formula is

stable, and it is also relatively stable, which means that the rate of

growth o£ the total error during the process is always less than that of

the solution. The use of a predictor and a corrector implies that the

function must be evaluated twice per iteration. There is a benefit

however in that the length of the step can be varied and in that the

accuracy of the solution can be controlled. A fourth order Runge-Kutta

scheme is usually chosen to start the process. The following, estimates

of the computational chore will be based on the use of Hamming's method.

Data from the COFS I mast experiment locates the lowest mode at

0.18 Hz, corresponding to the first bending mode, and places significant

modes up to lOOHz. Even though the controls change the natural

frequencies, those values indicate a reasonable order of magnitude for

the closed-loop modes.

In order to obtain a sufficiently accurate solution, and because of

the small per-step error of _ing's method, the time step could

1 is the
reasonably be estimated in the order of V - 20 f , where fmax

max

maximum circular frequency. A reasonable value for the time step in the

case of the Mast experiment should therefore be T = 0.5 milliseconds.

The frequency of the limit cycle is believed to be around the

lowest linear mode's frequency, and a simulation may be run for as long

as 50 cycles, depending on the speed with which the system tends toward

zero, or a limit cycle. This time period corresponds to about 4.5
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minutes in the case of the COFS I Hast, and the total number of

evaluations of the nonlinear forcing term in that case can therefore be

estimated to be equal to about 1,120,000.

Comparing this figure with the computation required by the

analytical method, it must be recalled that a single major iteration o£

the analytical process requires 3n×3n×3 times the determination of a

nonlinear term equivalent to the nonlinear forcing term computed for the

simulation. This means 270,000 evaluations of this equivalent nonlinear

forcing term when the data of the Hast case are taken. Thus, the

analytical procedure should converge in less than 5 major iterations to

be faster than the simulation, and this is most unlikely as n keeps

increasing.

According to these rough estimates, the simulation approach appears

to be an interesting alternative to the analytical determination of

limit cycles in dynamical systems having a large number of distributed

nonlinearities. The determining factor in both approaches is to compute

the effect of the numerous nonlinear forcing terms on a quite important

number of modes. Simulating the system appears to require all together

less evaluations of the linear forcing terms. Hence, it should to be

faster to approach the problem by means of simulation.

The analytical method yields stable as well as unstable limit

cycles. However, it fails to declare the absence of limit cycle, which

can be seen more easily by simulating the system. Thus, the biggest

advantage one method can have on the other is to be faster. Based on the

estimates derived before, simulation was shown to be faster, but this.
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however, might become untrue i£ the time step was to be reduced, and

more importantly, if the model of the joints required more than two

states, since it would increase the number of operations needed to

calculate the nonlinear forcing term for every individual joint.

Nevertheless, the effectiveness of simulation has to be considered,

especially since alternate integration schemes such as the ones reported

in [283 appear to be very promising, and shall result to be very

appropriate for simulating nonlinear feedback systems. Those techniques

are based on a better understanding of the specificity of the problem

they try to solve. Approaches, such as Frowler's method, utilize as

effectively as possible the linear character of the system. Those

methods replace the linear continuous system by its discrete equivalent,

thus yielding the exact homogenous response, whatever time step is used.

The inputs to the discrete system are sampled versions o£ the continuous

inputs, and compensation is used to reduce the distortion introduced by

the sampling. Such integration schemes are always stable, and they are

unusually accurate, even for large time steps.

Therefore, limit cycles should be analyzed in significantly larger

systems with different simulation techniques. This study would allow to

determine the best adapted one, and it would allow to compare its

performance with the performance of the analytical methods. Definitive

conclusions would then be made on the real efficiency of simulation

techniques to determine limit cycles in large actively controlled

dynnmical structures.
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