View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

- . ///,¢/ 0 /C—»
DEPARTMENT OF MATHEMATICAL SCIENCES $il2 J
COLLEGE OF SCIENCES _
OLD DOMINION UNIVERSITY 515
NORFOLK, VIRGINIA 23508 / /

THE PREDICTIVE INFORMATION OBTAINED BY TESTING
MULTIPLE SOFTWARE VERSIONS

By
Larry D. Lee, Principal Investigator

(NASA-CR-1£1148) THE EREDICIIVE INFORMATION N87-2€521
CETAINED BY TESTING MULTIFLE SCFTHAKE

VERSICNS Final Eeport, period ending 3 Sep.

1€€7 (0ld Dormimicn Uriv.) 12 ¢ Avail: Unclas
MIIS HEC AQ2/BF 201 CSCL 09B G3,61 0084121

Final Report
For the period ending September 3, 1987

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under

Research Grant NAG-1-744

Dr. Dave E. Eckhardt, Jr., Technical Monitor
[SD-Systems Architecture Branch

Submitted by the -
01d Dominion University Research Foundation

P. 0. Box 6369

Norfolk, Virginia 23508

o @

August 1987

https://core.ac.uk/display/42835758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE PREDICTIVE INFORMATION OBTAINED BY TESTING
MULTIPLE SOFTWARE VERSIONS

L. D. Lee*
01d Dominion University
Norfolk, VYirginia 23508
Dave E. Eckhardt, Jr.

NASA Langley Research Center
Hampton, Virginia 23665

ABSTRACT

Multiversion programming is a redundancy approach to developing highly
reliable software. 1In applications of this method, two or more versions of a
program are developed independently by differeﬁt programmers and the versions
then combined to form a redundant system. One variation of this approach
consists of developing a set of n program versions and testing the versions to
predict the failure probability of a particular program or a system formed
from a subset of the programs. In this paper we examine the precision that
might be obtained, and also the effect or programmer variability if
predictions are made over repetitions of the process of generating different
program versions.

Key Words: N-version programming, multiversion software, binomial mixture
sampling model, failure intensity, intensity distribution, estimation.

*.. D. Lee was supported by the National Aeronautics and Space Administration
under Grant NAG-1-744.

1. INTRODUCTION

N-version or multfversion programming, originally proposed by Avizienis
[1], is a redundancy method of structuring software components to cope with
residual software design faults. Ideally, the use of multiple versions will
greatly decrease the probability that a majority of the versions fail on the
same input, thus providing a system having greater reliability than a single
version. The N-version method involves independently generating N > 2
versions of a program and running them concurrently, all versions receiving
the same inputs and producing their own outputs. The outputs of the programs
are compared by a voter to determine, for each.input, a majority decision

output.

To model the effect of using multiple versions, several assumptions are
required concerning the process by which programs are created and are run in
an operational setting. The model we proposed in an earlier paper (Eckhardt
and Lee, [2]) assumes that if program versions are generated by physically
separated programmers or programming teams and according to a common set of
requirements, they are, in some sense, independent and identically distributed
objects. Littlewood and Miller [3] argue in favor of dropping the identically
distributed assumption to model the effect of diverse methodologies (i.e., the
use of different languages, development environments, etc.). In the absence
of any systematic differences between versions (i.e., no forced diversity),
the present paper is concerned with analyzing the predictive information

obtained when testing multiplie versions of a program.

2. DESCRIPTION

The purpose here is to describe modeling considerations for failure
probability estimation. Predictive information may be measured as the
precision with which one can estimate the failure probability of a given
program or a given system of programs. It may also be measured as the
precision obtained when estimating probabilities across a population of
programs. Since it is unlikely that small probabilities can be estimated for
a population of programmers with adequate precision, our concern is the
precision obtained when estimating the failure probability of a particular

program or system.

Uncertainity associated with the process of testing refers to whether a
program fails on an input condition and whether the input condition ever
occurs during testing. Failure is an event realized if a program produces
incorrect output. However, a failure is recorded during testing only if there
is a mechanism by which an error is detected; with multiple versions the
testing process can be automated since different versions provide a basis for
error detection. - An important assumption is that the occurrence of identical
incorrect ouput among the available programs has a very small probability, in
comparison to other types of errors, so that errors are detected if they occur
and the true failure probab%lities are as low as indicated by the data

obtained by testing.

Uncertainty concerning the failure of a program is conceptually
inseparable from uncertainty about the effect of the programmer. Modeling the

occurrence of failures is most easily motivated in terms of a sampling model

3
in which one imagines that programmers are picked at random. Such a model may
not be the correct model, and this may have some effect when estimating small
probabilities. Our purpose, rather than explore modeling possibilities, is to
give a basis for the proposition that small probabilities may be estimated
with adequate precision.

Since a model is a necessity in this context, we relate a sampling model
under which failure data may be obtained to a theoretical model for the
failure probability of a system having N component versions. When a larger
set of n versions is run on a random input series Xj, X2, ..., Xk,
summary information is provided by counts Y1, Y2, ..., Yk of the numbers
of versions which fail simultaneously (i.e., oﬁ the same input condition).
This information may be summarized and conveyed through a cumulative
distribution function (cdf). This cdf indicates the tendency for program
versions to fail together as percentages of inputs on which various

percentages of the versions fail.

Section 4 describes a sampling model and a theoretical model for a system
of N versions. In section 5 we consider a statistic gﬁ and describe a
framework within which 3& has the optimal property of minimum variance
within a restricted class of statistics. In section 6 we obtain the variance
of ;N. There and in section 7 we consider an interpretation of variability
with the emphasis in section 7 being on the precision of estimates as obtained
from the Knight and Leveson [4] failure data.

3. NOTATION

Q Input space for programs designed to a common set of
requirements

8(x) Probability a program fails on input x

V(x) The binary random variable defined by V(x) = 1 if a
program fails on input x and V(x) = 0, otherwise

Q Q(A) is the probability an input occurs in the set A

Xj A randomly selected input condition

G(z) A cdf giving the theoretical probability an input occurs
in some subset of the input space for which 8(x) < z

k,n,N The number of input test cases, program versions, and
component versions of a system, respectively

Y1, Y2, eeey Yk Counts of the numbers of versions that fail
simultaneously on successive random inputs

Gn(z) The cdf of n-1 vj

"j P(Ys = §), §j =0,1,2,...,n

PN Failure probability of a system having N component
versions

p Failure probability of a single version

Sjn Input frequency of j failures among n versions

Sn (S1ns52ns+ ¢+ +5m)

AV

PN,P An unbiased statistic for estimating Py,p,
respectively

v
k=1/2¢ The standard deviation of Py

4. THE SAMPLING MODEL AND RELATED PARAMETERS.

We first describe the assumed sampling model. Let Q be the common input
space of the software versions and let 6(x) be the probability a vers%on fails
on inputs x in Q; 0(x) is called the failure intensity. Define a collection
of binary random variables V(x), xeQ, by V(x) = 1 if a version fails on input
x and V(x) = 0, otherwise. For a set of n versions, similarly define Vl(x),
Vo(X),eees Vp(x), xe. The assumptions concerning the process of

developing the programs and the input process are the following:

Al {Vi(x), xeQ}, {Va2(x), xeQ}, ..., {Vh(x), xeQ} are independent
collections of random variables and for each xeQ, Vi(x), Vo(X)yeen,

Vh(x) are identically distributed.
A2 An input series X1, X2,..., Xg is stationary and independent; the
probabilities Q(A) = P(XjeA) are given by a usage distribution Q.

A3 Failure counts Yi =
J

I ~>13

vj(xi), i=1,2,...,k on successive random inputs
1

are independent random variables.
A1 and A2 are the assumptions of the model we described in [2].

Although failures of the programs can be observed individually, it
suffices for much of our discussion to consider the implications of Al1-A3 for
the series of failure counts Yy, Y2, ..., Yg. From Al and A2 each Yj
is conditionally, given Xj = x, binomial with parameter (n,8(x)).
Unconditionally, Y1, Y2, ..., Yy are identically distributed and the

distribution function of n-1 Y; is

62 =1 I (D @- 0™ w6 (1)
3énz
where
G(z) = I{X:G(X)SZ}dQ (2)

For fixed z, G(z) is the probability that random inputs occur in subsets of
the input space for which 8(x) < z. (The notation Gn(z) in (1) is rather
weakly justified by thé fact that Gp converges to G as n increases (Renyi,
(51, p. 318)). By A3, Y1, Y2, ..., Y are then independent and

identically distributed with the distribution function in (1), and we refer to

this distribution as a binomial mixture sampling model.

Independence in A3 is a strong modeling assumption which can be checked
if information is available concerning the failure counts Y, Yo, ...,
Y¢. Published failure data (Knight and Leveson,'[4]) gives summary
information only in the form of grouped frequehcy counts so we proceed as if

A3 is a reasonable assumption.

To motivate the statistic considered in a later section, we now describe
a theoretical model for a system of N versions. A system having N component
versions (N = 1,3,5,...) fails if an input happens to fall in the subset of
the input space where a majority m = (N + 1)/2 of the component versions

produce incorrect output. The probability of system failure is
¥ N] N-3
Py = 2 (3) [8(x)]Y [1-8(x)1"~ dQ (3)

In the case N = 1, (3) is the failure probability p of a single version.

Integrating (3) by substitution gives the reparmeterization
NNy g N-]
Py=f1 () 2z (1-2) dG(z) (4)

where the integrand does not depend on any unknown parameters.

Dependent failures of the component versions are modeled if 8(x) varies
with different inputs x. If 6(x) is constant, i.e., 8(x) = p except on a set
A with Q(A) = 0, then G is a degenerate distribution and (4) reduces to a
model of independent failures. However, estimates of Py obtained on the
basis of the independence model differ substancially from estimates obtained
without this restriction so (4) with a general form of G provides a more

robust model.
5. A STATISTIC FOR ESTIMATING Py.

For analyzing failure data obtained by testing a set of n versions, we
consider the following statistic:
v n N . .
-1 ,n,-1 NEWLES
Py =k (WL T QG S; (5)
N N j=0 g=m 2/'N-27 “jn

where (g) =0 1if b > a and Sjn = ; I(Yi = j) is the input frequency of j

v
failures among n versions (I(E) is the indicator function of the set E). Py

was derived (Eckhardt and Lee, [6]) by considering an average of the estimated
failure probabilities of N version systems formed by selecting subsets of size

N out of the total of n available versions.

The summary frequencies Sjp = J (I(Y, = J)s J
i

0,1, ..., nare

obtained by grouping Y;, Y2, ..., Yg on the integers j =0, 1, ..., n.

The distribution function of Gp(z) of n” Y; has mass

T = | (g) w1 -)" da(u) (6)

at j/n, j =0, 1, ..., n. Note that (6) defines a mapping 7 = (my, mp,

eeey M), or w = w(G), from a family of distributions on the unit interval.

If G is a member of the class of continuous distributions on [0,1], then the
range of m(G) is limited only by requiring that the probabilities Tj sum to

one.

Let J = {i(1), 1(2), «.., 1(N)} be a subset of the indexing set

{1,2,...,n} for a set of n software versions. Define

N

N
I V., X:) = j 7
LWL Vi &) =) (7)

iy -1 ,n,-1
P, = k™* (
N N) Z§ L

id]

which, by changing the order of summing, simplifies to (5). As a consequence
of (7), Sﬁ is unbiased for Py and is a U-statistic (Serfling, [7], p. 172)

- which has the desirable property of minimum variance among unbiased statistics
that depend on Sp = (S1p, S2p, ««e» Spn)e (A U-statistic is a

statistic obtained from a function of the observable random variables having
an expected value equal to the parameter to be estimated; averaging such a

function over all subsets gives a U-statistic as in (7)).

Other unbiased statistics exist, however, which are not a function Sp.
One example is the statistic defined by grouping the software versions into N
sets and averaging over all selections, one version from each set.
n
The minimum variance property of Py is a consequence of S, being a
complete sufficient statistic for w in relation to Yy, Y2, ..., Yg;

Sp, however, is only a summary statistic in relation to the larger set

{vj(xi), j=1,2,e0.,n, 1 =1,2,...,k}. In staying with our purpose, the

Y
remainder of the discussion is limited to Py.

"
6. THE VARIANCE OF Py.

N
To express Py in a more convenient form, write

a3 I(Yy = J) (8)

where

N .
L -1 J n-j . 9
2y = W7 L) () | | (9)

Except for the constant k=1, (8) is the sum of the quantities

X
[}
-1

| any 10Y; = 3)s 1 = L2,k

Since Whi is a function only of Yj, it follows from A3 that Wpj, 1 =

1,2,...,k are independent and identically distributed random variables.
ny

Therefore, for fixed n and k tending to infinity, Py has an asymptotic

normal distribution with mean Py and standard deviation k-1/2t where

n n
= ¥ fag - (3 ay Ty (10)

k-1/2 t measures the precision obtained when testing a given set of programs
but it does not give a true reflection of variability over a population of

programmers.

10
To clarify the interpretation of t, consider the special case N = 1 of
(8). If N=1, then (8) reduces to
"

n
p=k I I (3/n) 1Y = 9) (11)

i j=0

which estimates the average failure probability p of a single version.
Suppose G is degenerate at the constant value of 8(x) = p. In this case the
parameters defined in (6) are binomial probabilities and (10) becomes 12 =
p(i—p)/n. This being the variance of a binomial random variable scaled by
n-1, the quantity t seems appropriately described as a measure of the effect
of variébility over repetitions of the process of generating different

programs.
7. ESTIMATES OF PRECISION.

The summary data in Table 1 was obtained (Knight and Leveson [4]) by
testing n=27 programs on k=106 randomly selected input conditions. There
were 2 input cases on which 8 of the versions failed together, 12 cases where

7 versions failed together, and so on.

Estimates of Py, N = 1,3 and of the standard deviation, K-1/2¢ and
T, are given in Table 2. On average, for the given set of programs, a system
of 3 versions has a much smaller (by a factor of 19) failure probability than

a single version. When considering only the uncertainty associated with

11
testing the 27 versions, the standard deviation of these estimates, as given
in the second column of Table 2, indicates that these probabilities may be
estimated with high précision. The quantities in the third column suggest
considerable variation in the estimates if the experiment were repeated for a

different set of programmers.
8. CONCLUSIONS.

The primary motivation for this paper is to give a basis for the
contention that, with muitiple program versions, small failure probabilities
might be estimated with a reasonable degree of precision. The calculations of
the previous section suggest high precision. However, we emphasize that the
precision obtained refers to predicting an average failure probability when
testing a given set of programs (i.e., the precision does not apply to making
predictions across a population of programmers) and that our modeling
assumptions may have considerable effect on estimates of precision. Because
of our indifference as to the choice of one program or set of programs, a
statistic was used which estimates an average failure probability over the

given set of programs.

1]

2]

[3]

[4]

[5]

[6]

7]

REFERENCES

A. Avizienis, "Fault Tolerance and Fault Intolerance: Complementary
Approaches to Reliable Computing," in Proc. 1975 Int. Conf. Reliable
Software, pp. 458-464.

D. E. Eckhardt, Jr. and L. D. Lee, "A Theoretical Basis for the Analysis
of Multiversion Software Subject to Coincident Errors," IEEE Trans.

B. Littlewood and D. R. Miller, "A Conceptual Model of Multi-version
Software," in FTCS-17, Pittsburgh, July 1987.

J. C. Knight and N. G. Leveson, "An Experimental Evaluation of the
Assumption of Independence in Multiversions Programming," IEEE Trans.
Software Eng., vol. SE-12, No. 1, pp. 96-109, 1986.

A. Renyi, Foundations of Probability, Holden-Day, Inc., San Francisco,
1970. .

D. E. Eckhardt, Jr. and L. D. Lee, "An Analysis of the Effects of

Coincident Errors on Multi-Version Software," in Proc. AIAA/ACM/NASA/IEEE
Computers in Aerospace V Conference, pp. 370-373, 1985.

R. J. Serfling, Approximation Theorems of Mathematical Statistics, John
Wiley & Sons, Inc., New York, 1980.

Table 1. Failure proportions for 27 programs on 106 random input cases.

Number of failed estimates of
versions
0 0.983607
1 0.015138
2 0.000551
3 0.000343
4 0.000242
5 0.000073
6 0.000032
7 0.000012
8 0.000002

Source: Knight and Leveson [4]

Table 2. Estimates of Py, k-1/2¢, and t.
N PN k=1/2¢ 1
1 0.00069978 0.00000616 0.00616
3 0.00003669 0.00000144 0.00144

