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Many of the models now used in science

and engineering are over a century old. And
most of them can be implemented on modern

digital computers only with considerable
difficulty. This paper discusses some new basic
models which are much more directly suitable

for digital computer simulation.

The ultimate purpose of most scientific

investigations is to determine how physical or
other systems will behave in particular cir-
cumstances. Over the last few years, computer

simulation has been emerging as the most
effective method in many different cases. The
basic approach is to use an algorithm which

operates on data in the computer so as to emu-
late the behaviour of the system studied (e.g.
[1]). This algorithm can be considered to pro-

vide a "computational model" for the system.

Theoretical investigations of physical sys-
tems have conventionally been based on a few
definite classes of mathenmtical models. By far

the most common are partial differential equa-
tions (e.g. [2]). These equations were designed
to describe systems such as fluids which can be
considered as continuous media. Calculus was
used as a tool to find mathematical formulae for

the solutions to these equations. This allowed
great progress to be made in the understanding

of many phenomena, Ixuaicularly those such as
electromagnetism, which are by linear partial

differential equations. Progress was also made in
studies of processes such as laminar (regular)
fluid flows, which can be approximated by

linear partial differential equations. But the stan-

dard methods of mathematical analysis made lit-
tle headway on problems such as fluid mr-
buleuce, for which non-linear partial differential
equations are essential.

When digital computers became available,

it was natural that they should be used to try
and find solutions to such partial differential

equations. But digital computers can represent
such equations only approximately. While
equations involve continuous variables, digital

computers can treat only discrete, digital, quan-
tities. The real numbers which correspond to
continuous variables in the equations must be
represented on the computer by packets of bits,
typically in the form of 32 or 64 bit numbers in

fluating-point format. In addition, the derivates

which appear in the equations must be approxi-
mated by finite differences on a discrete grid.
Much effort has been spent in numerical

analysis to show for example that with
sufficiently fine grids, exact solutions to the con-

tinuum equations can be found. Unfortunately,
such theorems have been proved almost
exclusively only in cases where exact solutions

to the continuum equations are known. For most
important non-linear equations, quite ad hoe

methods must be used to gauge the accuracy of
approximations.

Nevertheless, the thrust in scientific com-

putation has been to develop computer hardware
and algorithms which allow more and more

extensive approximations to partial differential

* Also to appear in High Speed Camputing: ScientificApplicationsand Algorithm Design, edited by Robert B.
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Figure 1: Examples of pancnrs genaated by simple onedimensional cellular automata. The cellular 
automaton consists of a TOW of about 600 sites. whose values evolve with time down the page accord- 
ing to simple logical rules. 'Ihe value 0 or 1 of each site (represented by white or black) is determined 
from its own value, and thc values of its two nearest neighborn on the step before. patterns generated 
by four different rules are shown. In each case. the pattern obtained with an initial state containing a 
single nonzero site k shown above, and a pauern generated with a random initial state is shown below. 
(In thc notation of ref. [3], the nrles are numbers 18, 45. 73 and 110.) Despite the simplicity of these 
cellular automata, the paaans genaated show considerable compl&ty. 



in this system by considering the values of bulk

quantities such as particle density or momentum
density, averaged over a large lattice regions.

Figure 2 shows some results obtained in
this way. Detailed studies have demonslrated

that many of the phenomena seen in actual fluid
experiments can accurately be reproduced by
this simple cellular automaton model. Figure 2
shows calculations of two-dimensional flow past

a cylinder. The standard transition from steady

flow to a regular vortex street is observed.
Then at higher Reynolds numbers (dimension-
less fluid flow rates) the vortex street is seen to

become aperiodic, corresponding to the onset of
turbulent behaviour.

The cellular automaton method used in

figure 2 may well be practical for many fluid
dynamics computations. Through its close
correspondence with the underlying physics of
fluids, it is straightforward to include many phy-
sical effects and constraints. Thus for example

solid objects with arbitrary shapes, and possibly,

say, flexible boundaries, can easily be treated. In
our current implementation on a Connection
Machine computer with 65536 processors, lat-

rices of size say 4096><8192 can be updated at a
rate of about 109 sites per second, allowing the

fluid flow patterns around objects to be found
interactively up to Reynolds numbers of several
hundred. The readily scalable architecture of the

Connection Machine computer makes much
larger simulations with the same method quite
feasible in the future.

At a theoretical level, cellular automaton

fluid models can be analysed by much the same
methods of statistical mechanics as have been

used in trying to derive the Navier-Stokes equa-
tions for physical fluids from the microscopic
dynamics of real molecules. One approach is to

use kinetic theory to derive transport equations

for the average densities of particles with partic-
ular positions and directions (e.g. [8]). In the
hydrodynamic limit, these microscopic average

densities can be approximated through a
Chapman-Enskog expansion in terms of macros-
copic fluid densities and velocities. The result-

ing equations for these macroscopic quantities
correspond closely with the usual Navier-Stokes

equations. Just like a real fluid, however, the
cellular automaton model contains definite

higher-order corrections, not included in the

Navier-Stokes equations. In addition, analytical
methods provide only approximate values for

parameters such as viscosity;, accm'ate values

must be obtained from explicit computer simu-
lations.

A fundamental assumption of the kinetic
theory method is that the microscopic

configurations of particles can be specified
purely in terms of probabilities, which are in
turn determined by the values of averaged quan-

tities. This is essentially equivalent to the
assumption of thermodynamic equilibrium, and
is related to the fundamental principles of ther-

modynamics.

The Second Law of thermodynamics sug-
gests tim even if the initial contiguration of par-
ticks is orderly, it will become progressively
more disordered as a result of the motion and

collisions of particles, and will show for exam-

ple an increasing coarse-grained entropy. This
phenomenon occurs if the evolution of the cellu-
lax automaton, even from "simple" initial con-

ditions, yields behaviour that is so complicated
as to seem random for practical purposes.

Very simple examples of cellular auto-
mata are known in which such apparent ran-

domness can be produced. Figure 3 shows a
one-dimensional example [9,10]. Even slatting
from an initial state containing a single nonzero

site, many features of the pattern produced, such
as the sequence of values in the center vertical

column, are sufficiently random that they pass
standard statistical tests of randomness [9]. The
cellular automaton evolution thus acts like a

pseudorandom number generator:, even though a
simple seed is given, the algorithm yields

sequences whose simple origins cannot be dis-
cemed. The evolution of the system thus
effectively "encrypts" the initial data: given

just the output sequence it is very difficult to
deduce the original seed. The cellular automaton

of figure 3 can in fact be used as an efficient
practical random sequence generator or stream

encryption algorithm [11] (it is for example the
primary pseudorandom generator used on the
Connection Machine computer).

There are many mathematical systems
which act in this way. It is for example easy to

specify _, or to generate its digits. Yet once
generated, the sequence of digits seems random

for all practical purposes. Observations of this
kind are related to the general conjecture of

computational complexity theory (e.g. [12]) that
P_NP. Computations which can be performed in
polynomial time (P) seem to have reverses
(which must be in the class NP) that require

89



Figure 2: Fluid flow pattean obtained from a simple twodimens id  cellular automaton, simulated on a 
Connection Machine computer. The cellular automaton consists of 4096x2048 site hexagonal grid. 
Each site carries up to six discrete panicles. which move and collide according to a simple discrete 
idealization of molecular dynamics. On a small scale, the particle motions appear random. But on a 
large scale, there is evidence that their average motion corresponds to that expected from a fluid which 
obeys the usual Navier-Stokes partial differential equations. In this figure, pamcles are injected on the 
lefs leading to a net fluid motion from left to right A circular obstacle is insated in the fluid, and the 
resulting fluid velocities are computed by averaging individual particle velocities over 96x96 site 
regions. The velocities in the figure are shown transformed to the frame in which the obstacle is mov- 
ing, and distant fluid is at rest. The simulation corresponds to a dimensionless Reynolds number around 
100, and shows the formation of a “vortex street” behind the cylinder. as observed in physical experi- 
ments. The computations were performed with help from Bruce Nmnich and Jim Salem, on a Connec- 
tion Machine computer with 65536 Boolean processors. The results shown w m  obtained after Id time 
steps. 

Figure 3: Pattern genmted by a one-dimensional cellular automaton with two possible values at each 
site, and rule o’i = (akl + ai + uh1 + oiui+,), starting from a single n o m  site. Despite the simplicity 
of its specification. many aspects of the pattern seem random. For example, the center column of site 
values passes all standard statistical tests of randomness. This cellular automaton illustrates the rather 
general phenomenon that simple processes can lead to complexity that is so great that many aspects of 
it seem random. 
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equations to be made. Thus, for example, the

performance of computers is often measured in
terms of the rate at which they can carry out the

floating point operations needed. In many cases,
there seem to be limitations which will prevent
rapid increases in such performance.

Significant progress may perhaps more
easily be made by somewhat shifting the

emphasis. The kinds of operations which can
efficiently be carried out by digital electronic
circuits, and thus digital computers, are quite

clear. Large numbers of simple logical opera-
tions can be performed, potentially in parallel

on many elements of a regular grid. Given the
structure, one may then ask the question of
whether accurate computational models based

on this structure can be found for physical and

other systems.

Cellular automata (e.g. [3,4]) provide one

class of examples. A cellular automaton consists
of a discrete lattice of sites. Each site carries a

discrete value, chosen from a small set of possi-
bilities. The values are updated in a sequence of

discrete time steps, according to logical rules
which depend on the valees of neighboaring
sites. Cellular automata are thus, by consa'uc-

tion, almost ideal for simulation on digital elec-
manic computers. They are particularly well

suited for the coming generation of massively-
parallel machines, such as the Connection
Machine computer [5], in which a very large

number (currently 65536) of separate processors,
each simple, act in parallel.

One of the most remarkable results of
recent studies on cellular automata is that even

with very simple rules, it is possible to obtain
behaviour of considerable complexity [3,4]. Fig-

ure 1 shows a few examples. The rules consist
of just a few simple logical operations. But
when they are applied over and over again, their

collective effect can yield very complex patterns
of behaviour. Oftea these show striking similari-

ties to forms seen in many natural systems, and
in other mathematical models for these systems.

Chaotic behaviour, corresponding to mange
attractors, is common in cellular automata. Frac-

tal patterns are also, for example, often pro-
duced.

One thus expects that very simple compu-

tational models, based say on cellular automata,
should suffice to reproduce many different

natural phenomena. The challenge is to abstract
the essential mathematical features of the

phenomena, so as to be able to capture them in
as simple a model as possible.

As one example, I shall discuss here some

recent models for fluid flow phenomena, based
on cellular automata (e.g- [6]).

Fluids are conventionally described by the

Navier-Stokes partial differential equations (e.g.
[7]). These equations can presumably in princi-
ple describe the important phenomenon of fluid
turbulence. But digital computer simulations

based on the Navier-Stokes equations are barely
able to reach the regime needed to reproduce
turbulence accurately. Of course, the Navler-

Stokes equations are themselves an apwoxima-
tion. At a fundamental level, fluids consist of

discrete particles, usually molecules. The
Navier-Stokes equations give an approximate

continuum description of the average behaviour
of large numbers of such discrete particles.
When the Navier-Stokes are simulated on digital

computers, however, discrete approximations
must again be made. These approximations,
perhaps in the form of finite differ, bear

little resemblance to the original system of
discrete particles. Yet in the limit of a large
number of discrete elements, they too should
correspond to the continuum Navier-Stokes
equations.

A wide variety of systems, with very
different microscopic dynamics, in fact appear

to follow the Navier-Stokes equations in the
large-scale limit. Thus, for example, air and
water, despite their very different molecular

constitution, can both be descnl)ed by the
Navier-Stokes equations, albeit with diffeae.nt
values of parameters such as viscosity.

In an attempt to devise the most efficient

computational models for fluids, one may try to
find the simplest microscopic dynamics which

reproduces the Navier-Stoke_ equations in the
macroscopic limit. Such models may correspond
to optimal algorithms for determining the

behaviour of a fluid using a digital computer.

One class of computational models is

based on a simple discrete idealization of
molecular dynamics [6]. Panicles move in
discrete steps along the links of a fixed lattice,

with each link supporting say at most one parti-
cle. The particles collide and scatter according

to simple logical rules. The rules are arranged
so as to conserve the total number of particles,
and the total momentum carried by these parti-

cles. Huid behaviour can potentially be obtained
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more than polynomial time, and probably often
correspond to computa6ons that are infeasible in

practice.

Many mathematical models of physical
processes probably show such behaviour [10].

Even with simple initial data, they rapidly yield
configurations which seem random for practical

purposes. Such behaviour may well be the basis
for the widespread validity of the Second Law

of thermodynamics. One of its important conse-
quences is that a prohabilistic or statistical
description should indeed be valid for many sys-
tems such as cellular automaton fluid models.

Such a description would depend only on
macroscopic average variables. This may
explain why different microscopic models often

yield the same macroscopic behaviour. It is
basic reason that simple discrete dynamics can
give essentially the same overall behaviour as

the full dynamics of physical molecules.

Statistical descriptions of cellular automa-
ton fluid models are close in form to explicit

finite difference approximations to partial
differential equations. In both cases, each site on

a grid carries a continuous variable which
describes the average density and velocity of the
fluid at that point. In practical computatiohs
with the finite difference method, this variable is

typically represented directly as a floating-point
number. In the cellular automaton method, the

variable can be viewed as represented in a pro-
babilistic or statistical fashion.

Following the usual development of sta-
tistical mechanics, a statistical description of a
cellular automaton fluid can be obtained as an

average over an ensemble of possl%le micros-

copic particle configurations. But an actual cel-
lular automaton fluid simulation involves the

evolution of just a single, specific, microscopic
configuration.Nevertheless, followinga funda-

mentalassumption of statistical mechanics, one
expects that suitable space or time averages of
this specific configuration should yield results

which are close to those obtained from averages
over the whole ensemble.

This interpretation allows a comparison
between cellular automata and discrete approxi-
mations to partial differential equations. In the

latter case, ensemble average properties are con-
siderod, and their evolution is followed pre-

cisely. In the former case, just a single instance
of the ensemble is considered, and macroscopic

quantifies are obtained as explicit averages over
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microscopic variables.If the fundamental

assumptionsof statisticalmechanics are indeed

valid,one expectsthatthe cellularautomaton

method cannotfailtobe more efficientthanthe

finitedifferenceone. For much of the informa-

tionmanipulated in the finite difference case is
undoubtedly irrelevant to the macroscopic
behaviour of interest.

Some evidence for this comes from the

fact that most fluid computations yield results

which are accurate to at most the percent leveL
Yet in the finite difference approach, fluid velo-
cities at individualgrid points are typically

stated to 16-decimal-digit accuracy. Presum-
ably it is only the most significant few digits,
and certain overall features of less significant

digits, which affect the final results. In the cellu-
lar automaton method, all bits of information

about microscopic particle configurations are

equally important. The cellular automaton
repre_ntation may thus be a more efficient
encoding of the state of the fluid.

The cellularautomaton approach to fluid

dynamics is but one example of an expanding
set of computational models which are based on
the collective properties of large numbers of

simple discrete components. Standard cellular
automata with deterministicrules have been

used as models for reaction-diffusion systems,

dendritic growth processes, dynamic spin sys-
tems, aggregation processes, and many other

phenomena (e.g. [3]). Intrinsically probabilistic
rules can also be used, and their consequences
deduced by Monte Carlo sampling. The result-

ing models have been used extensively in study-
ing quantum fields and many other systems.

In practice the probabilistic elements of
such models must be implemented on digital

computersusingpscudorandom number genera-

tionalgorithms.The resultingcompletecompu-

tationalmodel, including the pscudorandom

number generator, must thus be entirely deter-
ministic. And since even very simple deter-
minisficcellularautomata can yield a high

degreeof randomness,one expectsthatformally

probabilisticmodels can be replacedby deter-

ministicones,often involvinga smallertotal

number of steps.One example of thisoccurs

forthe Isingspin systemmodel, which iscon-

ventionally studied by updating spins probabil-
istically, hut for which a more efficient algo-
rithm based on a simple deterministic cellular
automaton is known [13].



In general, there may be many different
cellular automaton models for any particular

system. Although the microscopic rules are
different, their large-scale or continuum
behaviour may be equivalent. In seeking the
most efficient simulation algorithm for a partic-

ular system, one must find the "simplest" cellu-
lar automaton rules which yield the required

large-scale behaviour.

Most computational models are created by
explicit construction. Like most computer pro-
grams, each step or feature of their construction

is specifically designed to have particular,
known, consequences. But in most cases, this

methodology will not yield truly optimal pro-
grams. Instead, one may imagine defining par-

ticular goals or constraints, and then searching
the space of possible programs for the optimal
ones which achieve these goals (e.g. [14,15]).

This approach is particularly promising for
problems such as finding optimal cellular auto-
maton roles, in which the space of possible pro-

grams has a comparatively simple structure.
Thus for example one may consider searching
for the simplest cellular automaton rule which

has a particular form of large-scale behaviour.
Typically the space of possible rules can be
reduced by imposing certain constraints, such as

microscopic conservation laws, but the suitabil-
ity of any particular rule can usually be deter-

mined essentially only by explicit simulation.
The randomness-generating rule of figure 3 was
found by such a search-based method.

The problem of finding optimal cetlular
automaton rules is in many ways analogous to
problems such as the optimization of Boolean

logic circuits, or the layout of large-scale
Integrated circuits. The overall goal is de.fined

by the function to be implemented, but the most
efficient circuits or rules can usually not be
obtained by expficit construction. Instead one

searches a large number of candidates, typically
using a computer, and finds which of them is
best.

Rather than performing an exhaustive
search of possible circuits or rules, it is often
better to use an iterative or adaptive procedure.
One begins with a particular circuit or rule

which has been constructed to satisfy the con-
straints that have been imposed. Then one

makes a sequence of "moves" in the space of
possible roles or circuits, with each move

arranged so that the constraints are still satisfied.
In the simplest cases, each move is chosen to

yield a circuit or rule which is more optimal, or
may be considered to have a lower "cost". But
such a "gradient descent" method can find

optima only when the "landscape" associated
with the problem (whose height gives the cost
for a circuit represented by a particular poinO is

essentially a smooth bowl. For many actual
problems, the landscape seems closet to a
"mountainous" or fractal one, on which the

gradient descent method will get stuck in local
optima. Simulated annealing seems to be a more

promising general technique for optimization in
such cases [161. With this method, randomness

is introduced Into the choice of moves. Initially,
a high level of randomness is used, so that the
moves are sensitive only to the gross features of

the landscape. The randomness is progressively
decreased, so that optimization is carried out
with respect to smaller and smaller scale
features of the landscape.

As one example of such "adpative pro-
gramming", I have recently been searching for
the simplest one-dimensional cellular automaton

rule which reproduces the diffusion equation in
the large scale limit. (For another example, see
ref. [171). The rule must conserve a scalar addi-

tive quantity (analogous to particle number), but
must generate randomness on a microscopic
scale. In addition, the rules were chosen to be

microscopically reversible, so that, by analogous
with real physical systems, the evolution of the

system can be uniquely reversed. Figure 4
shows the behaviour of a rule found by a search
over a particular class of simple rules. Starting
from a simple initial state, the rule generates

progressively mote random microscopic
configurations. Although the simple initial con-

ditions can in principle be recove.r_ at any time
by reversing the evolution, it becomes progres-
sively more difficult m do so. As discussed

above, this phenomenon may well illustrate the
fundamental basis for the Second Law of ther-

modynamics. With the rule of figure 4, macros-

copic average densities should follow the
diffusion equation. As a result, slow spatial vari-
ations in density are for example damped on

average according to the diffusion equation.

This paper has discussed some new direc-
tions for computational modelling. The funda-

mental principle is that the models considered
should be as suitable as possible for implemen-
tation on digital computers. It is then a matter
of scientific analysis tode_ermine whether such

models can reproduce the behaviour seen in

93



Figure 4: P a m  genaated by a simple cellular automaton rule intended to mimic onedimensional 
diffusion. Starting from a simple initial state, the reversible cellular automaton rule yields states that 
seem progressively more random. Such behaviom corresponds to that expected from the Second Law of 
thermodynamics, and can form the hasis for simple &rete cellular automata to show macroscopic 
avaage behaviour which mimics continuum phenomena 
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3hysical and other systems. Such analysis has
aow been carried out in several cases, and the

resultsare very encouraging.
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