
CONTEXTUAL CLASSIFICATION ON THE
MASSIVELY PARALLEL PROCESSOR

N87-26551

James C. Tilton

NASA Goddard Space Flight Center

Greenbelt,MD 20771, U.S.A.

ABSTRACT

Classifiers are often used to produce

land cover maps from multispectral

earth observation imagery.

Conventionally, these classifiers have

been designed to exploit the spectral

(and, for multi-date data sets,

temporal) information contained in the

imagery. Very few classifiers exploit

the spatial information content of the

imagery, and the few that do rarely

exploit spatial information content in

conjunction with spectral and/or

temporal information. We are studying

a contextual classifier that exploits

spatial and spectral information in

combination through a general

statistical approach. Early test

results obtained from an implementation
o£ the classifier on a VAX-II/780

minicomputer were encouraging, but they

are of limited meaning because they

were produced from small (50-by-50

pixel) data sets. Here we present an

implementation of the contextual

classifier on the Massively Parallel

Processor (MPP) at the Goddard Space

Flight Center (GSFC) that for the first

time makes feasible the testing of the

classifier on large data sets.

Keywords: Image classification, image

pattern recognition, image contextual

analysis, parallel processing, earth

remote sensing.

INTRODUCTION

Algorithms that are currently used in

most multispectral classification

studies are unable to exploit the full

spatial resolution of the Thematic

Mapper (TM) data. Paradoxically, these

algorithms often produce more accurate

classifications if the spatial

resolution is degraded from 30 meters
to the 80 meter resolution of

Multispectral Scanner (MSS) data (Refs.

1,2), whereas humans can visually

identify features more accurately in TM

data at its original spatial

resolution. This paradox is explained

by noting that humans routinely use

spatial information to help identify

features in an image, while current

commonly used classification algorithms

do not use spatial information at all.
The contextual classifier discussed

here, however, does exploit spatial

information, and has the potential of

producing more accurate classifications

of TM imagery at full resolution.

This contextual classifier was

developed at Purdue University (Refs.

3,4), but it was tested only on

50-by-50 pixel data sets. The results

produced in these tests were

encouraging, but they were of limited
value because of the small size of the

test data sets. The classifier was not

tested on larger data sets because it

took too long to run on a VAX-II/780

minicomputer.

Testing the contextual classifier on

large data sets becomes feasible when

the algorithm is implemented on a

massively (or fine-grained) parallel

computer. Such a parallel computer is

the Massively Parallel Processor (MPP)

at the NASA Goddard Space Flight

Center. The MPP is a Single

Instruction, Multiple Data stream

(SIMD) computer which was built by

Goodyear Aerospace for the NASA Goddard

Space Flight Center (Refs. 5,6). It

consists of 16,384 bit serial

microprocessors connected in a
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128-by-128 mesharray with each element
have data transfer connections with its
four nearest neighbors. With this
architecture, the MPP is capable of
billions o£ operations per second.

A version of the contextual classifier
has been implemented'on the MPP,and a
test of the classifier on the MPP took
a total of 5 minutes to produce a
120-by-120 pixel classification. It
would take roughly 12 hours to perform
the sameclassification on a VAX-II/780
minicomputer. A 512-by-512 pixel
classification takes one to two hours
on the MPP (depending on parameter
settings), whereas it would take one to
two weeks to complete on a VAX-II/780
minicomputer. This more than a
lO0-fold improvement in running time
has been obtained with a program
written in a high level language on the
MPP (MPP Pascal) with no concerted
effort to optimize the program. We
anticipate an additional 5 to 10-fold
improvement in program running time
with a highly optimized version of the
program on the MPP.

We first present a derivation of the
contextual classification decision
rule, followed by a description of the
implementation of the contextual
classifier on the MPP. We close with
somepreliminary test results.

DERIVATIONOF THE CONTEXTUAL

CLASSIFICATION DECISION RULE

In the contextual approach to

classification, the probable

classifications of neighboring pixels

influence the classification of each

pixel. Classification accuracies can

be improved through this approach since

certain ground-cover classes naturally

tend to occur more frequently in some

contexts than in others. The

contextual classifier that we have

implemented on the MPP is the algorithm

formulated by Swain et al (Ref. 3) and

further developed by Tilton et al (Ref.

4). Here compound decision theory is

invoked to develop a classification

method which exploits spectral and

spatial information.

The derivation of the decision rule for

the contextual classifier assumes that

the data can be modeled as a

two-dimensional array of N = N 1 X N 2 of

picture elements (pixels). At each

pixel location (i,j) we are given an

n-dimensional observation X.. which is
IJ

assumed to be a random sample from a

distribution characteristic of the

fixed but unknown true classification

e... The observation X.. usually
13 1J

contains spectral and/or temporal

information about the pixel location

(i,j), and the classification eij can

be any one of m spectral or ground

cover classes from the set Q = {00i},
i = i, 2, ..., m.

In its most general form, the theory
allows for a decision rule that is

different for each pixel in the image,

and, for each pixel, depends on the

context of the entire image, X = {Xij I

i=I,2,...,NI;J=I,2,...,N2}. To obtain a

tractable decision rule, however, we

restrict the decision rule to be fixed

for the entire image, and the context

to be a subset of the entire image.

Define the context of the pixel at

location (i,j) as p-i observations

spatially near, but not necessarily

adjacent to, the observation Xij. These

p-1 contextual observations are taken

from the same spatial positions

relative to pixel position (i,j) for

all i and j. Call this arrangement of

pixels together with Xij the p-context

array. (A common p-context array for

p=5 would be the observation Xij at

pixel (i,j) and the observations at the

four nearest neighbor locations to

pixel (i,j).) Group the p observations

in the p-context array into a vector of

observations Xij = (XI,X2,...,Xp) T and

let O.. be the vector of true but
IJ

unknown classifications associated with
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the observation X... Let ep g _P and
13

Xp g (Rn) p stand respectively for

p-dimensional vectors of classes and

n-dimensional measurements; each

component of ep is a variable which

can take on any classification value

g = {mi} , i = I, 2, ..., m; each

component of Xp is a random

n-dimensional vector which can take on

values in the observation space.

Correspondence of the components of

Xij , eij , xp, and ep to the positions

in the p-context array is fixed but

arbitrary, except that the pth

component always corresponds to the

pixel being classified.

We can now develop a decision rule,

d(Xii), which assigns a minimum risk
,J

classification to pixel (i,j) based on
the vector of observations X... The

13

loss suffered by making the

classification decision d(Xii) for

pixel (i,j) when the true class is 8..
13

is denoted by k(eij,d(Xii))_ for some

fixed non-negative function k(',').

The expected average loss (or risk)

over the entire image is then

i x( ))]R e = E Ni_j @ij'd(Xij

1

= N._ E[k(Sij,d(Xij)) ]
1,J

1

- N [ [ E[k(ep,d i))]
epe_ p i,j with (Xi_

e..=8
13 p

1 _w !hk(ep,d(xP))f(xP[eP)dxP
--Y
ePg_P i,j i

8..=e
•3 p

= [ G(OP) I k(SP 'd(Xp))f(XplSp)dXp

=I [ G(eP)k(ep 'd(Xp))f(xp[Op)dxp (I)

where 8 is the pth component of ep,
D

and G(eP), the context function, is the

relative frequency with which ep occurs

in the array 8. For any array e, a

decision rule d(X p) minimizing Re can

be obtained by minimizing the integrand
of Equation 1 for each xP; thus for a

specific X.. (an instance of xP), an
13

optimal action is:

d(Xii ) = the action (classification) a

which minimizes

G(eP) k(Sp, cO f(Xij leP). (2)

In practice, a "O-I loss function" is

employed, giving

O, if 0 =
),(0, oO

i, if O # a.

Then Equation 2 simplifies, and the
decision rule becomes:

d(Xii) = the action (classification)

which maximizes

[ G(oP)f(Xij leP).

eP  P,

P

(3)

A further assumption we make at this

point is class-conditional independence

of the observations

•observation vector

f(xij Id') =

(pixels) for any

X... In this case,
13

P

]-[ f(Xk [Ok) (4)
k=l
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where Xk and 8k are the kth elements of
X.. and 0p, respectively. Evidence

13
that this is a reasonable assumption
for Landsat MSS data maybe found in
Ref. 7. Invoking the class-conditional
independence assumption, the decision
rule (Equation 3) becomes:

d(Xii) = the action (classification)
which maximizes

P

G(Op) _I f(X klSk )"
eP  P, k--1

P

(5)

Methods for estimating the context

function G(O p) are discussed in Ref. 4.

We use the "unbiased estimator", which
is the most flexible and successful of

these methods. Using this method, we

first generate an unbiased estimate of

a priori probabilities for each class

at each position in the context array

using the method described in Ref. 4.

The product of these a priori

probabilities is then calculated over

the context array, forming the unbiased

estimate of G(O p) based on one image

point. The final estimate of G(O p) is

made by averaging the individual point

estimates over a portion of the data.

Conventional multispectral classifiers

often classify into spectral classes

(spectrally differentiable subclasses)

rather than directly into the ground
cover classes of interest. The

spectral class classification is

normally renumbered in a

post-processing step to produce a

classification map in terms of the

ground cover classes. When the
classification is done in terms of

spectral classes, we assume that

f(Xklek) is a multivariate normal

density with mean vector and covariance

matrix determined by the class, 8k.

In the case where the classification is

done in terms of ground cover classes,

we assume that f(Xk[Sk) is a weighted

sum of multivariate normal densities,

viz.

f(Xklek) = [ r(<k]ek)g(Xk]<k) (6)
_kgO k

where _k is the k th spectral class,

r(<klOk) is the conditional probability

of spectral class _k given

ground cover class 8p and g(X_l_ _) is a
multivariate normal "'density "wi?h mean

vector and covariance matrix determined

by the spectral class, _k"

IMPLEMENTATION OF THE CONTEXTUAL

CLASSIFIER ON THE MPP

In both the parallel MPP

implementation, and the conventional

serial implementation, classification

directly into ground cover classes

generally requires significantly less

computer time than a classification

into spectral classes (Ref. 4). Let m

be the number of ground cover classes,

c be the number of spectral classes (c

m), and p be the number of pixels in

the p-context array. If, for example,

c=2m, a contextual classification into

spectral classes would have to consider

(2m) p context configurations, while a

contextual classification directly into

ground cover classes would only have to

consider mp context configurations. If

the classification is performed using

four nearest neighbor context (i.e.,

p=5), then the spectral class

classification would pass through the

main loop in the contextual

classification program a

(multiplicative) factor of 32 times the

number of passes that would be required

for a ground cover class
classification. Since the ratio of

spectral classes to ground cover

classes is often greater than 1.5 or

so, we normally classify directly into

ground cover classes with the
contextual classifier.
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Since the training classes are nearly

always given as a set of multivariate
normal distributions corresponding to

spectral classes (in this case, the

g(Xkl_k) in Equation 6), we must first

estimate the r(_klek) in Equation 6 in

order to calculate the f(Xkle k) used in

the contextual classification decision

rule, Equation 5. In our

implementation, the same unbiased
estimator used to estimate the a priori

probabilities for the context function

is used to estimate the r(_klek) by

limiting the classes _k to the spectral

classes associated with ground cover

class ek. This step can be considered

to be a preprocessing step, and is in

fact implemented as a separate MPP

program. In our implementation, we use
the MPP to calculate the average value

of g(Xkl_ k) for each _k over the entire

data set (the program cycles through as

many 128-by-128 pixel sections of data

as required to cover the entire data

set), and return to the host VAX-II/780

minicomputer to do the remaining serial

calculations required to compute the

estimate of the r(_klek).

The MPP implementation of the main

portion of the contextual classifier

has several advantages over a

conventional serial implementation.

The obvious advantage is that

calculations for 16384 pixels can be

performed in parallel. Less obviously,
there are further algorithmic

advantages to an MPP implementation.

The MPP parallel architecture makes it

possible to estimate the context

function, G(eP), and perform the

summation in the decision rule

(Equation 5) in one pass through the

data. In a serial implementation, the

context function G(e p) must be

estimated in one pass through a portion

of data, and the decision rule must

then be evaluated in a second pass.

This implementation feature gives a

clear efficiency advantage to the MPP

implementation. In addition, this

feature also gives a subtle accuracy

advantage to the MPP implementation

since now we can obtain unique

estimates of the context function for

each pixel. In fact, with the MPP

parallel architecture it actually costs

less to compute unique values of the

context function for each pixel than to

compute a block average value of the
context function. Because of

computation and core memory

limitations, a serial implementation is

forced to use one average estimate of

the context function in classifying a

block of data (in Ref. 4 the block

sizes ranged from 10-by-10 to 25-by-25

pixels).

Now we describe the MPP implementation

of the contextual classifier in more

detail. (For a detailed description of

the serial implementation see Ref. 4.)
Since the MPP consists of an array of

128-by-128 microprocessors, the
contextual classification is performed

on 128-by-128 pixel portions of

multispectral data. To classify an

entire data set, 128-by-128 pixel

portions of data must be cycled through

the program. (These portions of data

must overlap by a certain number o£

pixels determined by the area over
which the context function is estimated

-- see below.)

Before the program's main

classification loop is entered, the

class-conditional probabilities,

f(Xklek) , are calculated for each

pixel, and an unbiased estimate of the

a priori probabilities of each class is

made for each pixel. The main

classification loop consists of an

outside loop over the ground cover

classes '=' and an inside loop over all

possible classification vectors ep with

0 ='_' (see Equation 5).
P

Inside the main classification loop,

the context function is estimated for

the given combination of classes in the

context array. A unique estimate of

the context function for each pixel is

made from an N-by-N square of data

centered at each pixel (typically 9 < N
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25). The estimate for pixels on the

outer N/2 pixel edge of the array is
taken to be zero and no classification

is performed for those pixels. Then

the product is formed between the

context function value at each pixel

and the class-conditional probabilities

across the context array giving the

contribution to the discriminant

function for the given combination of

classes. The discriminant function for

ground cover class '_' is accumulated

by continuing the loop through all

possible classification vectors 8p with

8 ='_'. Once the discriminant
P

functions have been calculated for all

ground cover classes, the

classification result at each pixel is
taken to be the class with the maximum

discriminant function at that pixel.

The direct implementation of the
contextual classification decision rule

(Equation 5) on either a serial (e.g.

VAX-II/780) or parallel (e.g. MPP)

computer runs into a problem of

insufficient exponential range on most

computers. For example, and both the

MPP and VAX-II/780 computers, the

magnitude range of single precision

floating point numbers is approximately

0.29e-38 to 1.7e+38. (Due to

efficiency considerations and that fact

the MPP currently has no double

precision floating point implemented,

we do not consider double precision

floating point numbers here.) With

four- nearest-neighbor context (p=5),

we see from the previous paragraph that

the estimation of the context function,

G(sP), involves the multiplication of 5

numbers. Thus Equation 5 requires the

multiplication of a total of I0 numbers

together. Since each of these numbers

must lie in the range 0.0 < 1.0, and,

in practice, often lie in the range 0.0

< 1.0e-4, it is easy to underflow the
decision rule and be unable to

determine a classification for many

image pixels. This difficulty is dealt

with by evaluating the natural

logarithm (LN) of the decision rule

rather than the decision rule directly.

This trick effectively compresses the
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exponential range. For example, an

exponential range of 1.0e+38 to 1.0e-38

is compressed to the range of numbers

+87.5 to -87.5. (This trick does cause

a loss of precision, which, however, is

of no consequence here.)

Let

P

d(_(Xij) = [ G(Op) TT f(XklO k) (7)

oPc P, k=i
E) =oc
P

and

d_(Xij) = LN(d (Xij)). (8)

Maximization of d (Xij) in Equation 5

(and 7) based on d_(Xij ) is equivalent

to maximization based on d (Xij).

Thus, the decision rule becomes:

d(Xij) = the action (classification)

which maximizes

r p Jd_(Xij)=LN )- G(Op) TT f(XklO k) •

/sP_:_, k=l

[8p =

Let

(9)

and

M (Xij) = MAX (F(Xij,sP)). (Ii)

P

[ P /F(Xij,oP) = LN G(O p) _T f(XklOk) (i0)
k=l



Then

 epc , tF(Xij'

_Op =¢t

= LN

[ EXP )]]
ep g_p, [F(Xij 'eP)-M=(Xij )+M=(Xij

Op==

= LN

EXP [M_(Xij )] [ EXP [F(Xij, eP)-Mo_(Xij ) ]
ePc p,

ep==

(

= M=(Xij) + LNI _[ EXP[F(Xij ,ep)-M (Xij)]

e_p ,

ep=OC (12)

Calculating d_(Xii) in this way insures

that at least one term of the sum does

not cause underflow, because the

exponent of the maximum term, M (Xii),

is never taken. This procedure also

makes it less likely that other terms
in the sum will underflow since the

F(Xij,oP ) tend to be large negative

numbers.

Note that Equation lO can be rewritten

as:

F(Xij, ep) =

P

LN[G(eP)] + _ tN[f(XklOk)]

k=l

(13)

When evaluated in this way F(Xij,oP),

and thus d_(Xij), do not require any

multiplications. All multiplications

are replaced by sums of natural

logarithms of the terms.

The value of M (Xi_) is not known
J

prior to the start of the summation in

Equation 12. Theoretically we could

use the maximum value of F(Xij,eP)

found up to the current term of the

sum, and reshuffle the terms of

Equation 12 when a new maximum is

found. However, the limits of the

exponential range on the MPP (approx.

1.0E+-38) make the use of this

technique impractical (an

implementation "trick" along these

lines may still be pursued, however).

The current implementation of the

contextual classifier executes a loop

over the ePg_ p once to identify the

value of M (Xii), and actually

evaluates Equation 12 in a second

execution of the loop. We have noticed
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previously in Reference 8, however,

that the following decision function

produces classifications that closely

approximate those produced by the

decision function in Equation 12:

d(Xij) = the action _ which

maximizes M (Xij),
(14a)

or in the notation of Equation 9:

d(Xi_)J = the action _ which maximizes

for all 8P_R p with e =_
p

d_(Xij)=LN (ep) TI f(XklO k) •

k=l

(14b)

This approximate version of the
contextual classifier is also

implemented on the MPP. The advantage

of approximate version is that the the

loop over the 8P_R p need be performed

only once.

One more implementation comment is

relevant here. Running on the MPP host

VAX-II/780 minicomputer is the Land

Analysis System (LAS), a package of

numerous image analysis and

manipulation programs. The LAS is

implemented under the Transportable

Applications Executive (TAE), which is

a portable, uniform, user-friendly user

interface. Since we eventually want to
make the Contextual Classifier

available to researchers from a wide

range of earth science applications, we

have implemented the Contextual

Classifier under TAE and made all image

and data files conform to LAS

standards.

PRELIMINARY CONTEXTUAL CLASSIFICATION

RESULTS

We have thus far obtained preliminary
contextual classification results on

two data sets using the MPP
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implementation of the contextual

classifier. Other results using a

VAX-II/780 minicomputer implementation

of the contextual classifier are given

in References 3 and 4.

The first data set we will discuss is a

subset of a Landsat Thematic Mapper

image from northern Virginia near the

town of Bowling Green. The data set

was developed originally for another

study (Ref. 9). This area includes
Fort A. P. Hill for which there is

extensive ground truth data. (However,

only 271 pixels of ground truth data

have been extracted and registered for

accuracy assessment. A more complete

extraction of ground truth data from

the air photography is being

considered.) Being located only 50

miles south of Washington, D. C., the

study area was readily accessible for

field investigation to the confirm

ground truth data.

According to the investigators who

originally developed this data set,

"the topography of this part of

Virginia consists of gently rolling

hills with agricultural areas along the

flood plains, marsh and swamps in low

lying areas adjacent to rivers and

streams, and forests in the upland.

The Rappahannock River runs across the

northern portion of the study area and

there are a number of streams that

drain into it. The main types of

vegetation in the area are deciduous

and coniferous trees, marsh and pasture

grasses, and an assortment of

agricultural crops. The principal

agricultural crops grown here are corn,

soybean, and wheat" (Ref. 9).

The version of the data set used in our

study is described in the original

study as the "full resolution combined

dates (full comb.)" data set. This

data set consists of registered
multi-date 30 meter resolution Thematic

Mapper data from March 5, 1984; July

29, 1982; and November 2, 1982. Bands

3, 4 and 5 of the March and November
data sets were used and bands 3 and 4

of the July data set was used. We did

not develop our own multivariate normal



model for the ground cover classes in
the scene, but instead used the mean
vectors and covariance matrices
generated by the original study for our
class-conditional density functions.
These classes were obtained through a
supervised technique resulting in
covariance matrices with generally much
less spread than covariance matrices
obtained from the commonunsupervised
clustering technique for generating the
class-conditional density functions.

(This data set was used to shake-down
the implementation of the algorithms.
Weencountered somedifficulty in our
early implementation of the algorithms
due to the fact that the covariance
matrices had very little spread.
Because of this, the entire data set
was not truly represented by the
classes chosen and some data points
produced low values for all
class-conditional density functions.
We found that simple thresholding was
not satisfactory, and had include
normalization steps in the
implementation of the unbiased
estimator. This was all complicated by
the fact that we implemented the
algorithms on the NASA/Goddard
Massively Parallel Processor which for
a time had floating-point math without
underflow and overflow detection. We
had to wait for an implementation of
underflow detection before the
algorithm worked properly. Underflow
detection maynot have been required
for covariance matrices with wider
spreads.)

For this data set we obtained an
overall classification accuracy of
79.7% (216 correct classifications out
of 271 test pixels) for the contextual
classifier. This compares to an
overall classification accuracy of
77.5% (210 correct classifications out
of 271 test pixels) for a conventional
per-pixel uniform-priors maximum
likelihood classification. This
conventional classification was
obtained using the standard BAYES
classification program in the Goddard
Land Analysis System (LAS) software
package. Weevaluated over five ground

cover classes: wetlands (and seasonal
wetlands), water, barren land, forest
and agriculture. The full
classification contains 158,105 pixels
(roughly 512 by 309 pixels), and was
performed in less than one hour (wall
clock time) on the MPP.

As mentioned earlier, the ground truth
used for deriving the classification
accuracy results for this data set
consisted of manual ground cover class
determinations at 271 pixel locations
scattered throughout the data set (see
Ref. 9). We feel that a better
evaluation of the contextual classifier
would be obtained by evaluating the
classification results against a more
extensive ground truth map. We are
pursuing an effort to develop a more
extensive ground truth map for the area
from aerial photographs that were taken
over the same time period when the TM
data was gathered.

The next data set that we will discuss
in the Anderson River airborne
Multispectral Scanner (ABMSS)data set.
This data set is a part of a SAR/MSS
data set that was acquired,
preprocessed, and loaned to us by the
Canada Centre for Remote Sensing
(CCRS), Department of Energy, Mines,
and Resources, of the Government of
Canada. This data set covers a 2.8km
by 2.Skm area in British Columbia,
Canada near the Anderson River with
terrain elevations ranging from 330 to
ii00 meters above sea level. The data
were geometrically corrected by CCRSto
the Universal Transverse Mercator (UTM)
projection at a spatial resolution of
50 meters. A pixel-by-pixel ground
cover mapwas digitized by CCRSfrom a
detailed forest cover mapprepared by
the staff of the Pacific Forest
Research Centre of Canadafrom aerial
photography and more than 20 ground
plots (Reference I0).

For this data set we obtained an

overall classification accuracy of
81.0% for the contextual classifier.

This compares to an overall

classification accuracy of 80.5% for
the standard BAYES classification
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program. We evaluated over three

ground cover classes: clearcut,

hemlock and douglas fir mix. The full

data set is 57 pixels by 57 pixels of

which the center 49 pixels by 49 pixels

were classified by the contextual

classifier (a four pixel border was

required because of the 9-by-9 pixel
window used to estimate the context

function). Both the contextual
classifier and the BAYES classifier

were evaluated over the center 49-by-49

pixel portion of the ground truth data.

We are not happy with the class mean
vectors and covariance matrices that we

developed for this data set, especially

since the original study of this data

set obtained an overall accuracy of 88_

using per-pixel classification

techniques (Ref. i0). This result was
obtained for a more difficult

discrimination task of classifying into

eight ground cover classes: douglas

fir, douglas fir mixed with lodgepole

pine, douglas fir mixed with cedar,

douglas fir mixed with hemlock, hemlock

mixed with douglas fir, hemlock mixed

with cedar, clearcuts, and bare rock.

We have contacted the Principal

Investigator for the original study,

and have arranged for obtaining the
class mean vectors and covariance

matrices that were developed for that

study. Unfortunately, the publication

schedule precludes including results

using those class means and covariances

in this paper.

CONCLUDING REMARKS

Earlier studies (Refs. 3 and 4) using

a VAX-II/780 minicomputer

implementation of the contextual
classifier obtained classification

accuracy improvements of 2_ to nearly

6_ for small 50-by-50 pixel data sets.

These classification runs generally

took 3 to 4 hours (wall-clock) to

complete. We have implemented the

contextual classifier on NASA Goddard's

Massively Parallel Processor in order

to enable the testing of the contextual

classifier on reasonably sized data

sets (e.g. 512-by-512 pixels).
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Preliminary tests have shown that a

512-by-390 pixel data set can be

classified with the contextual

classifier in approximately one hour

(wall-clock) on the MPP. In this

implementation of the contextual

classifier on the MPP we made no

concerted effort to come up with the

most efficient implementation possible

on the MPP. Still, this relatively

inefficient implementation provides

better than a lO0-fold speed-up over a

fairly efficient VAX-I1/780

implementation of the algorithm. This

amount of speed-up is sufficient to

make it possible for the first time to

study the effectiveness of this

classifier on several different data

sets of reasonable size (e.g.

512-by-512 pixels).

The preliminary classification accuracy

results reported in this paper for the

MPP implementation of the contextual

classifier are not as impressive as
earlier results obtained from a

VAX-11/780 minicomputer implementation
of the classifier. Different data sets

were used in the earlier study. Also,

we expect that our results will improve

once certain aforementioned problems

are taken care of concerning the data

sets used, and once the contextual
classifier in run on several other well

constructed data sets.

One final note. It makes little sense

to compare the speed of the contextual

classifier as implemented on a vector

supercomputer such as a Cray to the

speed of the implementation on the MPP.

Devising an implementation on the MPP

that effectively uses the parallelism

of the MPP is very easy and natural,

whereas it would be much more difficult

to develop an implementation on a

vector supercomputer that effectively

exploits that type of parallelism.

Being such an easy and natural

implementation, the MPP implementation

lends itself much more effectively to

experimentation with the algorithm.
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