
N87-26555
EXPERIENCE IN HIGHLY PARALLEL PROCESSING USING DAP

D. Parkinson

DAP Support Unit

Queen Mary College

University of London

London, England

ABSTRACT

DAP systems have been in day to day use

for I0 years and a large amount of user

experience has been gained. The profile

of user applications is similar to that

of the MPP working gro,_.

bits per PE rising through 256K bits

per PE to a current maximum of IMbit/

PE giving a potential total of 128M

bytes of a 32x32 DAP-3 or }G bytes on

a 64x64 system.

Experience has shown that contrary to

expectations, highly parallel systems

provide excellent performance on so-

called "dirty problems" such as the

'physics' part of meteorological codes.

The reasons for this observation are

discussed. The arguments against

replacing bit processors with floating

point processors are also discussed.

Keywords: DAP, bit serial processors,

FORTRAN, balance.

INTRODUCTION

The DAP [2] is generally similar in

concept to MPP but differs in some

important ways. Probably the most ways

in which the DAP differs from MPP are:

b) Interconnection Network : The DAP

DAP has a 2D NEWS network similar to

that of the MPP but additionally has

a second layer network of row and

column highways. These highways

provide facilities to rapidly fetch

and broadcast data. The highways are

connected to edge registers in the

master control unit and permit data to

be selected from any set of processors,

one per row/column or broadcast to any

of the processors in the row/column.

As the same edge registers are used

for both row and column highways,

'corner turning' is also supported.

The highways are not 'buses' but are

essentially multi-way OR gates and so

give the DAP the properties of an

'associative processor' [3].

a) Memory size : The system view of

DAP has always been that of a memory

module with processing capability and

so emphasis has always been placed

upon having the largest memory it was

practical to use when the systems were

designed. Thus the 64x64 DAP when

delivered to QMC had 4K bits per PE,

but this was enlarged to |6K bits per

PE when the appropriate static RAMs

became available at reasonable prices.

User experience has shown that many

applications are very memory hungry

and there is little limit to the

memory which users can exploit. Plans

for DAP-3 have a minimum memory of 64K

c) Software Systems : An extended

FORTRAN dialect is the principal

programming language for DAP use [4].

This language supports array_processing

in data sets with either N or

2
N items on an N*N DAP. Reals with 3,

4, 5, 6 or 7 and 8 byte precisions are

fully supported, also available are

I-8 byte integers and bit variables

(logicals). The flexibility and

efficiency of the DAP-FORTRAN language

is such that users very rarely need to

use the assembler language APAL.

Indeed, the use of APAL is actively

discouraged and is only justified for

_A_JS_DLNG PAGE BLANK NO% _ FDLMED

205

https://ntrs.nasa.gov/search.jsp?R=19870017122 2020-03-20T09:47:32+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specialist bit manipulation algorithms

arising in such areas as low precision

image processing and customlsed-format

arithmetic routines - floating point

users never need APAL.

Above the high level system language

DAP-FORTRAN there exists a subroutine

library structured on the NAG line

containing a wide variety of useful

routines. The most widely used

routines include Random Number

generators, FFT's, tridiagonal equation

solvers, sorting routines and a number

of general utilities for data re-

arrangements. The performance of the

random number routines is particularly

spectacular [5].

USER EXPERIENCE

The DAP has been used for a wide range

of applications in the scientific

field. The range of topics is almost

identical to that covered at this

conference, so there is little point in

detailing it here. The application

area most represented is Monte Carlo

Simulations in such areas as QCD, Ising

models, molecular dynamics etc., much

to the surprise of many so-called

experts who felt that SIMD architectures

were unsuitable for Monte Carlo work.

In addition to scientific (floating

point) work, the DAP has been used for

a number of non-numeric problems

including:

- searching for large primes

- textual data abstraction

- information retrieval, and

- graphics - in particular, molecular

graphics.

The bit serial nature of the processing

elements has helped greatly in

providing the flexibility to support

more than just specialist number

crunching.

206

"DIRTY PROBLEMS ARE NICEI"

The reaction of users to the DAP has

been very favourable especially to

reprogramming exercise. The

expressive power of DAP-FORTRAN has

allowed great reductions in program

size and complexity, and much higher

performance than expected for so-called

"dirty problems", i.e. problems

requiring many data dependent decisions.

There is a natural tendency to assume

that problems with many decisions are

not optimum for the DAP/MPP type of

computers as the natural way to

implement them is by parallel

conditional expressions of the type

where (temperature<freezing point)

Heat:=heat + latent heat

In DAP-FORTRAN this would be coded as

HEAT (TEMPERATURE. LT. FREEZING POINT)

= HEAT ÷ LATENT HEAT

the array indexing type is called

MASK-INDEXING.

As only some processors will update

their local values of the variables,

the natural tendency is to assume that

such code will demonstrate a lower

speed-up over 'conventional' computers

than, say, unconditional code. Our

experience is that the reverse is the

case and tasks of the above nature

demonstrate better speed-up than the

clean unconditional code!

The somewhat paradoxical result is

explained when one realises that one

is comparing the performance of two

machines rather than measuring some

absolute computing performance, and

what one is really observing is that

arrays of bit-serial processors are

better suited to "dirty code" than

are 'conventional' word based

architectures. The explanation is

simple but difficult for many people to

grasp. Bit-serial systems are

primarily optimal for dealing with

arrays of logical operations, as these

are essential single bit operations.

Arithmetic is software produced out of

lots of logical primitives, hence the

worst performance of the system comes

from pure floating point code! The

greater the proportion of a problem

that is purely logical, the greater

the potential is for an array of bit-

serial processors to outshine

architectures based on floating point

pipelines - which try to avoid

conditionals.

SYSTEM BALANCE

Some users of DAP have argued that the

system would be improved if the bit-

serial processors were replaced by

floating point units and it is not

surprising to me to find a number of

the MPP group making the same

observation. Care should be taken in

evaluating what is really being stated.

There are three arguments which can be

made against such changes.

I) 'Dirty problems' will really

become dirty as the arguments in the

previous section become invalid.

2) The parallelism in systems of equal

cost becomes much less. The cost

2
(An say mm of silicon) of a 64 bit

floating point processor is equivalent

to the cost of more than 128 single bit

PE's, hence one should realise that the

option one is really comparing is that

of say, 16K, I bit processors and 128 -

64 bit processors.

3) The inter-processor communication

rate should be somehow in "balance"

with the processor computational

capabilities. I have attempted to put

some flesh on this concept of balance

[6], which I summarise here.

For many parallel algorithms -

especially those with results producing

global properties of arrays, the

computation is carried out in a loop

structure of the form:

K:=I;

WHILE K<N begin

move some data a "distance" K;

perform a computation;

K:=K*2

END WHILE

typical of such loops are - SUM,

Product, Maximum, Minimum, FFT,

Sorting etc.

The loop is traversed log2N times

so the cost is:

(log2N) cost of a computational step +

cost of shifts 'distance' I+2+4+8

On a mesh connected processor with edge

size n and dimensionality d and

d
N=n (for MPP n = 128, d = 2), the

cost of such shifts become d(n-1)*

cost of moving a data item from one

processor to its neighbout.

The Balance Factor can be defined by:

S

time for computational component

time for data movement component

if B = 1 the two costs are equal, i.e.

the system is in balance. If B>>I,

the computational time is dominating

and we would gain in performance if

more powerful processors were used.

If B<<I, data movement costs dominate

and little benefit would appear if the

processors were speeded up without

improving the data transmission speed.

G = 1/B could be called the Granuality

factor of the system as At gives an

idea of the minimum recommended number

of computational operations that must

be performed per data transmission

step.

Computation of balance factors for

systems such as MPP and DAP suggests

207

that for floating point operations the

systems are in approximate balance and

no benefit would be gained by using

floating point PE's unless the

Interprocessor network were improved by

multibit highways and/or higher

dimenslonallty meshes.

The bit serial processors approach seems

to be an optimal route to providing

very highly parallel systems which can

support a large range of application

areas.

Although one could try and produce the

computer with the worlds largest MFLOP

rating by building arrays of

16
2 floating point chips, there is

little evidence that such machines

would produce even 0.1% of their

theoretical performance on anything

other than highly artificial problems

such as the Mandelbrot Set.

Holland, 1985.

6. Parkinson. D, "Organisational

Aspects of Using Parallel Computers"

(International Conference on Vector

and Parallel Computing, Loen, Norway,

June 2-6, 1986). To be published.

REFERENCES

I. Flanders, P.M., Hunt, D.J.,

Reddaway, S.F. and Parkinson, D,

"Efficient High Speed Computing with the

Distributed Array Processor", (High

Speed Computer and Algorithm Organisation.)

Academic Press 1977.

2. Parkinson, D. "The Distributed Array

Processor" (Computer Physics Comm.

Voi.28, pp. 335,) 2983.

3. Foster, C.C. "Content Addressable

Parallel Processors", (Van Nostrand),

1976.

4. International Computers Ltd.,

Technical Manual TP 6918,"DAP-FORTRAN"

(see Ref. 2 for brief description)

5. Smith, K.A., Reddaway, S.F., Scott,

D.M., "Very High Performance Pseudo-

Random Number Generation on DAP",

(Vector and Parallel Processors), North

208

