View metadata, citation and similar papers at core.ac.uk

L=
>
brought to you by .i. CORE

provided by NASA Technical Reports Server

N87-26564

A GENERIC APPLICATIONS SUBROUTINE
LIBRARY FOR THE MPP

Michael L. Gough, W. David Wildenhain
Science Applications Research
Lanham, MD

ABSTRACT

A new methodology to increase the utility of the MPP has
been developed, and will be presented here as an addition
to the current methods of using the MPP. This
methodology provides for the development of an MPP-
side abstraction layer that is callable from any host-side
high level language. Routines in the abstraction layer have
the option of using a powerful software tool for accessing
the stager as "virtual memory”. An additional abstraction
layer that allows for remote access to the MPP via DECnet
will be discussed. This integrated approach to
programming the MPP is a valuable tool for the
implementation of interactive user driven systems that
require the computational capabilities of the MPP as well as
a controlled "user view". It is expected that this
methodology will be used to integrate the MPP into many
such systems, and thus promote greater use of the MPP
by scientific researchers who are accustomed to user
friendly environments.

Keywords: Software Design, Virtual Memory, Network
Communications, Interactive Systems

BACKGROUND

Although the architecture of the MPP is a departure from
the standard Von Neumann architecture, there is no
algorithm that can be implemented on the MPP that cannot
be implemented on a Von Neumann machine. The only
benefit of using the MPP for scientific applications is the
dramatic increase in execution speed that is gained for
some algorithms. Much research has gone into
transforming algorithms so that they can take advantage of
the MPP's parallel architecture. With the speed increase
that is attainable through the use of the MPP, it is possible
to perform heavy computational tasks interactively. It is
clear that the scientific community could greatly benefit
from such interactive computing power.

This effort represents the first use of the MPP as part of a
user friendly system which allows a researcher to activate
tasks on the MPP transparently. By using the MPP in this
manner, it is possible 1o provide the researcher with a set of
generic software tools which perform large computational

PRECEDING PAGE BLANK NOT FILMED

tasks within a user friendly interactive environment. The
MPP can thus provide a valuable service to the large
established group of users who are accustomed te using
pre-packaged systems for scientific investigation.

The motivation for the work which led to this methodology
was the desire to use the MPP as part of an interactive
system which produces animated graphics on a specialized
graphics device. This project involved the development of
a generic software package that would transform any
scientific data set into a uniform quadrilateral mesh. It
became apparent that it was impractical to implement such
an algorithm on the VAX, and that the MPP was well suited
for this algorithm, but it was not clear that the MPP could be
integrated into a large operational interactive system.

ENVIRONMENT

The MPP consists of a 128 x 128 array of microprocessors,
each of which is equipped with 1/8k bytes of memory, and
an MCU (Main Control Unit) which commands the
processors in the array. The MCU has access to 64k of
memory, which is used for executable code, as weil as
data. An auxilliary memory called the stager provides an
additional 2k per processor in the array. Early in this
investigation it was decided that the algorithms to be
implemented on the MPP could not be limited to the 1/8k
memory per processor and that the stager would be used,
despite the obvious performance cost.

The front end machine for the MPP is a VAX 11/780. The
VAX is well suited for user interaction, network access, and
VO to a wide variety of devices. It can aliso support large
software systems that can not be ported to the MPP.
Typical MPP applications are loaded into the MCU by the
VAX, and activated. Control is not returned to the VAX
until the completion of the application running in the MCU.
In order to support truly interactive systems, a mechanism
had to be devised to invoke various MPP primitives and
return control to the VAX for further user interaction. Atthe
discretion of the user, the MPP would be re-activated to
perform another task. The overhead for MCU activation is
40 ms. This is negligible when used to return control to the
host machine for user interaction.

271

https://core.ac.uk/display/42835724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MPP ShELL

The MPP Shell is a subroutine library of VAX callable
routines which activate Parallel Pascal subroutines that
execute in the MPP. An MPP Shell subroutine called
MPP_open is called to allocate the MPP, and perform
required buffer initialization. A subroutine called
MPP_close is used to perform all necessary termination,
including the deallocation of the MPP. The MPP_load
routine is used to load data into the array memory, and the
MPP_unload routine is used to unload data from the array
to the host memory. The remainder of the MPP Shell
subroutines perform computational tasks.

Each Parallel Pascal subroutine is called via a host side
header subroutine as pictured below, which issues a call to
CADS$START to activate the MPP-side routine.

VAX SIDE SOFTWARE SYSTEM

VAXSHELL

MPP SHELL

MPP VIRTUAL MEMORY S/W

When the Parallel Pascal subroutine has completed its
task, control is returned to the VAX via a call to a specially
written MCL routine called HALT. Once control has been
returned to the VAX, the applications program can interact
with the user so that he can select the next function to be
performed on the MPP.

When an MPP Shell subroutine is invoked, the VAX side
header routine packs any parameters that are needed by
the Parallel Pascal routine into a buffer. The header
routine then transfers control to the Parallel Pascal routine
(via CAD$START), which reads the parameters from the
host using the standard MCU Host Memory Read
subroutine. These parameters may include indicies that
point to a static Parallel Pascal array. Thus, the result of a
previous MPP Shell subroutine invocation can be
referenced, and results of the present MPP Shell routine
can be placed in the static array for use by other routines.
A mechanism to reserve static memory via the Parallel
Pascal compiler was developed but is not discussed here:
interested persons are encouraged to contact the authors.

MPP-side subroutines that are not set up as VAX callable

may be called by the Parallel Pascal portion of an MPP
Shell subroutine. Thus, the large library of existing Parallel

272

Pascal and MCL subroutines can be used, and eventually
integrated into the MPP Shell Library.

A small FORTRAN code example is shown below, which
ilustrates the simplicity with which a host side applications
program can allocate, use and deallocate the MPP.

CALL MPP_OPEN
CALL MPP_LOAD(VAX_real, R1)

CALL MPP_LOAD(VAX_imaginary, 11)
CALL FFT(R1,l1, R2, 12)

CALL MPP_UNLOAD(R2, VAX_real)
CALL MPP_UNLOAD(I2, VAX_imaginary)

CALL MPP_CLOSE

Where:

VAX_real and VAX_imaginary are 128 x 128 rea!
arrays

R1, 11, R2, and I2 are integers that point to 128 x
128 real arrays in the static Parallel Pascal
array

MPP VIRTUAL MEMORY

As mentioned previously, many applications require more
than 1/8 k bytes of memory per processor. The MPP Virtual
Memory software that was developed allows for the
straightforward use of the staging memory as an extension
to the array memory. For applications that cannot avoid the
use of the stager, the MPP Virtual Memory package
handles page swapping between the array memory and
the stager. An LRU (Least Recently Used) algorithm was
developed to control swapping of data to and from the
array.

The static array mentioned above is used as a cache for the
MPP Virtual Memory package. The MPP Virtual Memory
package allows the programmer to use the stager and the
cache memory as a single integerated memory. For the
purposes of the present application, a granularity of 32 bits
planes per page was chosen. Before an MPP Shell routine
begins performing its task, it ensures that the desired
page(s) of MPP virtual memory are "paged in" by issuing a
call to "MPPVM". MPPVM checks a list of pages that are
currently “"paged in". If the desired page is not in the

cache, MPPVM performs all necessary array-stager data
movement to put the page in memory. This may involve
"paging out” a page that has not been used recently, in
order to make room for the desired page. MPPVM returns
the physical page number into which it has placed the
desired page. !f the desired page is already in memory,
MPPVM returns immediately with the appropriate physical
page number.

MPPVM is sensitive to the access mode that is required by
the caller. Three modes are available: read, write, and
update. By specifying the access mode, MPPVM can
decide whether a given page needs to be physically
moved, and thus prevent unnecessary data movement.
The overhead incurred by MPPVM is negligible
considering the ammount of time that is required by a
single array-stager data move.

NETWORK ACCESS

Transparent network access to the MPP has been
established through the use of interprocess mailbox
communications supported by DECnet. A process on a
remote node invokes a COM file on the MPP VAX which
implicitly logs on to the MPP VAX and calls the MPP Shell.
Packets are exchanged between the two VAXes to pass
data and control information. This technique has been
used to support interactive MPP applications accross the
network.

CONCLUSION

The MPP is a valuable resource for heavy computational
tasks which is needed by the scientific community. The
tools that have been presented here promote the rapid
implementation of user friendly systems that can access
the MPP transparently. The power of the MPP can thus
become more readily available to a larger user community
as an integrated component of user friendly systems.

N
~

