
MPP PARALLEL FORTH

John E. Dorband

Image Analysis Facility/Code 635
NASA/Goddard Space Flight Center

Greenbelt, MD 20771

w

N87-26565

ABSTRACT

MPP Parallel FORTH is a derivative of FORTH-

83 and Unified Software Systems' Uni-FORTH.
We will describe in this presentation the extension
of FORTH into the realm of parallel processing on
the MPP. With few exceptions, Parallel FORTH
was made to follow the description of Uni-FORTH

as closely as possible. Likewise, the parallel
FORTH extensions were designed as
philosophically similar to serial FORTH as
possible. The Massively Parallel Processor (MPP)
hardware characteristics, as viewed by the FORTH
programmer, will be discussed. Then a description
will be presented of how parallel FORTH is
implemented on the MPP.

Keywords: FORTH, parallel languages, SIMD,
MPP.

INTRODUCTION

The MPP is primarily capable of two types of
processing, serial or scalar processing, and parallel
processing. The MPP contains an array of 16,384
processing elements(PE's), the array unit. They are
all given the same instruction at the same time;

thus computing in this array can be viewed as serial
processing on a single processor. Yet, processing
is actually happening on all 16,384 processors at
the same time. Each processor is a bit serial

processor with 1024 bits of memory. Thus, the
entire array contains 2 million bytes of memory
and can be viewed as 1024 bit planes of 128x128
bits each.

The MPP array is a square mesh of processors,
where each processor can pass data to its four
adjacent processors. The edges of the mesh can be
connected in various ways to form several other
topologies. These topologies consist of such
arrangements as a simple square, a toms, cylinders,

or a helix. This communication arrangement
allows the programmer to move, simultaneously,
as much as 16,384 bits of data 64 processors away
from their original source processor. These moves
may be in one of four directions - north, west,
south, and east.

As well as having a main control unit for scalar
processing and an array unit for processing 16,384

elements of data in parallel, the MPP has a staging
memory. This memory is the means by which data
is moved from the host computer (VAX-11/780)
into the array unit memory. The staging memory
contains 32M bytes of memory, allowing it to be
configured as 16,384 bit planes of 128x128 bits.

Therefore, the MPP, as viewed by the FORTH
user, consists of essentially three main
components: the main control unit (MCU) (the
scalar processor and controller of the array), the
array unit (ARU) (for parallel processing of data),
and the staging memory (STG) (primarily used for
I/O and as a large external bit plane memory).

If every processor had to perform every instruction
given to it, it would be of little use as a general
purpose computer. Conditional processing
alleviates this problem. Conditional processing (
such as the execution of an 'IF ... ELSE ... THEN'

statement) on the array divides the processor into
two groups of processors - those processors for
which the condition is true and those for which the

condition is false. Since processors can be
individually told not to execute the current
instruction, the processors for which the condition
is true will only execute those instructions between
the IF and the ELSE and those processors for which
the condition is false will only execute those
instructions between the ELSE and the THEN.

Thus, through prudent use of conditional
statements, the processors can be programmed to
perform a range of different functions within the

same general time span.

Parallel FORTH is implemented as simply and as
straightforward as possible. A Uni-FORTH system
is implemented on the MCU. Parallel extensions
have been added to the kernel under a new

vocabulary called PARALLEL. Context switching
has been simplified so that the FORTH word '{'
switches to the parallel vocabulary and '}' switches
back to the vocabulary that was in use before the
switch to the parallel vocabulary. This allows the
user to redefine serial words as analogous parallel
words under a parallel context, thus making it

e_'_"_"'_/_G rA_/_ BLANK NOT F/.LM.I_

275

https://ntrs.nasa.gov/search.jsp?R=19870017132 2020-03-20T09:46:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

easier for the FORTH user to remember the new

parallel words. For example, '+' normally means
to add two numbers that are on the data stack, but

in the parallel context, '{ + }', means add two
128x128 arrays of numbers on the array stack,
which is in the ARU memory.

Two new stacks have been added to parallel
FORTH that are not in serial versions of FORTH.

These two stacks are the array stack (A) and the
mask stack (M). The mask stack is not normally
used or seen by the FORTH programmer. It is
used to facilitate nested conditional statements,
such as 'IF ... ELSE ... THEN' or 'BEGIN ...

UNTIL'. The array stack is extensively used by the
FORTH programmer, since it is the parallel
equivalent of the MCU's data stack. Most
operations that can be performed on elements of the
data stack have corresponding operations that can be
performed in parallel on the array stack, such as +,
*, DUP, DROP, and ROT. There are a few other

operations that are peculiar to the array stack.

The following sections will discuss in more depth
the parallel operations that have been implemented
to extend FORTH into the realm of parallelism.

VOCABULARY AND DATA
DEFINITION

In MPP Parallel Forth there is a vocabulary called
PARALLEL. All new parallel words are in this
vocabulary except PE control unit (PECU)

primitive words and mask stack operations. As
pointed out in the introduction '{' and '}' are used

to enter and exit the parallel vocabulary. The
following is a definition that will manipulate the
MCU data stack:

: MULTADD * + ;

While the next definition manipulates the ARU
array stack:

: MULTADD { * + } ;

Parallel variables can be allocated in either the array
or the staging memory. If a user wants to allocate
a 128x128 array of 7-bit values named AR1 in the

staging memory, the following is used:

7 STG VARIABLE AR1

276

If a user wants to allocate a 128x128 array of 11-bit
values in the array memory named AR2, the
following is used:

11 ARU VARIABLE AR2

The definition of parallel constants is similar to
defining variables, except the user puts an array on
top of the array stack and then executes the
statement:

13 ARU CONSTANT CON1

to create a 128x128 array of 13-bit constants.
Likewise vectors and arrays of 128x128 arrays may
be defined with VECTOR and MATRIX,

respectively. A vector of 20 8-bit 128x128 arrays
can be defined with the following statement:

20 8 ARU VECTOR VEC1

The word ALLOT will allocate variable space in
either the stager or the array if it is preceded by the
word STG or ARU, respectively. ALLOT is used
by all the above-mentioned definition words.

PARALLEL I/O

Parallel files can be stored on the host in either

matrix or image format. Each format allows for 8-
bit, 16-bit and 32-bit values. A matrix format file

contains multiple arrays of 128x128 values. An

image format file contains multiple images of
512x512 values. The following command:

CHANA IMAGE8 OPEN WHAT.DAT

opens the file 'what.dat' as an image file of images
with 8-bit values. LOAD is then used to read the

matrix or image into a previously defined staging
memory array. An image from an image file of 8-
bit values should only be loaded into a VECTOR
or MATRIX that has at least 8x16 or 128 bits
allocated to it. The command to read a matrix into

a stager array is:

V1 3 LOAD

This loads the third matrix of the current file into

variable V1. To store an image into a file, the
word STORE is used (i.e., V1 3 STORE).

MEMORY OPERATIONS

Memory operations are used to move data between
the three MPP memories: the MCU, the ARU, and
the staging memory. The word '@' fetches arrays
from array variables in the stager and the ARU
memory and puts them on the array stack. The
word '!' stores an array from the array stack into an
array variable in the stager or ARU memory. The
word 'SCALAR' takes a value from the data stack

in the MCU memory, broadcasts it to all PE's, and
produces an array on top of the array stack that has
the same value for all elements of the array. Also,
when the context is the parallel vocabulary, any
literals are compiled into constants that will be

sent to the top of the array stack as a scalar value
during execution. Operations such as GMAX,
GMIN, and GOR can reduce an array of values into
a scalar value that can be put onto the data stack.

ARRAY STACK OPERATIONS

Most array manipulation occurs on the array stack.
The array stack consists of a stack of descriptors in
MCU memory and the actual bit plane stack in the
ARU memory. The array stack is manipulated by
operations very similar to those used on the data
stack. These operations consist of words such as
DUP, DROP, SWAP, OVER, ROT, PICK, and

ROLL. In addition to the standard stack operations
there are also operations that are peculiar to the
array stack. They consist of the following words:
-NDROP, NDROP, A@, >A, ZERO, EXTRACT,
SLIDE, EXG, CROSS, and TOPOLOGY.

NDROP drops the top n elements of the array
stack. -NDROP skips the first nl elements of the
stack and drops the next n2 elements of the array
stack. 'A@' copies the descriptor off of the MCU

array stack onto the data stack. A parallel array
descriptor consists of two values: the address of the

least significant bit plane of the array(LSB) and the
number of bit planes in the array(LEN). '>A'
creates an array of n bit planes on the array stack,

where n is taken from the top of the data stack.
ZERO is the same as '>A' except the bit planes are
initialized to zero. EXTRACT extracts a field of

bits from the second element of the array stack and
inserts it into a field of the same size in the top
element of the stack. SLIDE slides the top element
of the array stack across the array of PE's. EXG

exchanges data in the top elements of the array
stack among PE's of the ARU. CROSS exchanges
data from the top elements of the array stack with
the second elements of the array in different PE's of

the ARU. The TOPOLOGY operation changes the
topology of the ARU.

ARITHMETIC, LOGIC, AND
COMPARISON OPERATIONS

All the operations in this section deal primarily
with the elements on the top of the array stack.
Basically they are analogous to the corresponding
operations that operate on the top of the data stack.
The difference is that operations on the array stack
perform 16,384 operations at the same time instead
of one at a time and values on the array stack can
have variable numbers of bits instead of a fixed
number such as 8, 16, or 32.

Normally operations on the data stack are either
single or double precision. On the array stack,
however, operations are classified as either fixed or

variable precision. A fixed precision operation
requires that both operands have the same length
and that their result is the same length. A variable
precision operation may operate on operands whose
lengths are different. The result of such operations
has a length that is dependent on both the specific
operation and the length of the operands. All basic
operations discussed here have a fixed precision
operation. Only a few operations have both a fixed

and a variable precision form of operation. These
operations are +, -, *,/, MOD, and/MOD. Their
variable precision forms are ~+, ~-, ~*, ~/, ~MOD,
and -/MOD.

The result of a ~+ or a ~- operation has a length
equal to one plus the maximum of the two

operands. The result of a ~* operation has a length
equal to the sum of the length of the two operands.
The length of result of a -/ operation is the
difference between the length of the dividend

operand and the length of the divisor operand. Note
that the length of the dividend must be larger than
that of the divisor. The result of the -MOD

operation has a length equal to the length of the
divisor operand. Since the result of the ~/MOD
operation is the result of the ~/operation followed

by the ~MOD operation, the lengths of the results
are the same as described for ~/and -MOD.

The fixed precision only operations are MAX,
MIN, ABS, NEGATE, 1+, 1-, 2/, 2*, AND, OR,
XOR, and NOT. Three special operations find the
aggregate result and place it on the data stack.
These global operations are global
maximum(GMAX), global minimum(GMIN), and
global or(GOR).

277

Comparison operations differ slightly from the
other operations in this section in that they result
in a value of length 1. These operations are <, =,
>, 0<, 0=, and 0>.

CONTROL OPERATIONS

Control operations cause certain portions of code to
be executed on some data and not on others.

Parallel control is quite different from serial
control. In serial control, condition evaluation

determines whether or not a certain piece of code
will be executed. In parallel control, both the code
corresponding to the true condition and the false
condition may have to be executed. Some of the
processors must be turned off during the execution
of the code for the true condition, then turned on for
the execution of the code for the false condition.

This is accomplished with a mask bit. It is set to
one in processors whose data satisfy the condition,
and to zero in those whose data does not. Thus

only those processors that satisfy the condition
execute the code for the true condition. The mask

bit is then complemented and only those processors
that did not satisfy the condition will execute the
code for the false condition. As with execution of
serial conditions, parallel conditions can be nested.
Therefore, there is a mask stack. Mask stack

primitive operations are used to implement the
operations in this section.

The basic conditional structure is the IF ... ELSE

... THEN statement. The IF word duplicates the
top element on the mask stack, takes the least

significant bit of the top element of the array stack,
and ands it to the top element on the mask stack.
The ELSE word complements the top element of
the mask stack. And the THEN word drops the top
element of the mask stack.

The parallel conditional loop structure is also
somewhat unusual. It continues to execute as long
as there is a processor that has not met the

condition to terminate the loop. The two types of
loops are the BEGIN... UNTIL and the BEGIN ...

WHILE ... REPEAT. The BEGIN word duplicates
the top element of the mask stack. The REPEAT
word marks the end of the loop. The WHILE word

ands the least significant bit of the top element of
the array stack to the top element of the mask stack

and terminates the loop if no processor has the top
element of the mask stack equal to one. The

UNTIL word is the same as WHILE except the
least significant bit of the top element of the array
stack is complemented before it is anded to the top
element of the mask stack.

278

Note that only certain operations are maskable.

Therefore, one should be aware that operations may
execute when the processor was masked out because

the operation was not maskable. Generally, only
operations that do not change the number of
elements on the array stack or the order of the
elements on the array stack are maskable. Thus,
most stack manipulation operations and two
operand operations are not maskable. See the MPP

Parallel FORTH Word Reference for more specific
details.

PECU AND MASK STACK PRIMITIVES

The PECU and mask stack primitives are not
meant to be used by the general FORTH
programmer. They are used by the primary parallel
FORTH words to initiate actions to be performed
in the ARU. If it is necessary to use them, they
are described in the MPP Parallel FORTH word
reference.

MPP PARALLEL FORTH WORD
REFERENCE

Context Changing Words

PARALLEL

'PARALLEL' is the vocabulary that
contains all the words that act on data in the MPP

array unit.

{

This changes the context of word searches
to the 'PARALLEL' vocabulary.

}

This returns the context to that specified
prior to the change to the 'PARALLEL'
vocabulary.

Arithmetic Words

+ (A: al(n) a2(n) - A: a3(n))

This adds al and a2, which are the same
size and produces a3, which is that size.

(A: al(n) a2(n) -- A: a3(n))

This subtracts a2 from al, which are the
same size and produces a3, which is that size.

* (A: al(n) a2(n) -- A: a3(n))

This multiplies al by a2, which are the
same size and produces a3, which is that size.

/ (A: al(n) a2(n) -- A: a3(n))

This divides al by a2, which are the same
size and produces a3, which is that size.

MOD (A: al(n) a2(n) -- A: a3(n))

This divides al by a2, which are the same
size and produces the remainder a3, which is that
size.

/MOD (A: al(n) a2(n) -- A: a3(n) a4(n))

This divides al by a2, which are the same
size and produces a3, the remainder, and a4, the
quotient, which are of that size.

MAX (A: al(n) a2(n) -- A: a3(n))
{maskable}

This finds the maximum of al and a2,
which are the same size and produces a3, which is
that size.

GMAX (A: al(n) -- S: m) {maskable}

This finds the global maximum of the al
and places it on the data stack as a scalar value.

MIN (A: al(n) a2(n) -- A: a3(n))
{maskable}

This finds the minimum of al and a2,
which are the same size and produces a3, which is
that size.

GMIN (A: al(n) -- S: m) {maskable}

This finds the global minimum of the al
and places it on the data stack as a scalar value.

ABS (A: a(n) -- A: a(n)) {maskable}

This finds the absolute value of 'a' and
replaces 'a' on the stack.

NEGATE (A: a(n) -- A: a(n)) {maskable}

This finds the 2's complement of the value
of 'a' and replaces 'a' on the stack.

1+ (A: a(n) -- A: a(n)) {maskable}

This increments the value of 'a' and places
it back on the stack.

1- (A: a(n) -- A: a(n)) {maskable}

This decrements the value of 'a' and places
it back on the stack.

2/ (A: a(n) -- A: a(n)) {maskable}

This shifts a(n) to the right.

2* (A: a(n) -- A: a(n)) {maskable}

This shifts a(n) to the left.

~+ (A: al(n) a2(m) -- A: a3(max(n,m)+l))

This adds al to a2 and produces a result,
a3, which has a size that is the maximum of the
sizes of al and a2, plus 1.

~- (A: al(n) a2(m) -- A: a3(max(n,m)+l))

This subtracts al from a2 and produces a
result, a3, which has a size that is the maximum of
the sizes of al and a2, plus 1.

~* (A: al(n) a2(m) -- A: a3(n+m))

This multiplies al by a2 and produces a
result, a3, which has a size that is the sum of the
sizes of al and a2.

~/ (A: al(n) a2(m) -- A: a3(n-m))

This divides al by a2 and produces a
result, a3, which has a size that is the difference of
the sizes of al and a2.

~MOD (A: al(n) a2(m) -- A: a3(m))

This divides al by a2 and produces the
remainder, a3, which has a size of a2.

~/MOD (A: al(n) a2(m) -- A: a3(n-m)a4(m))

_ C{ 279

This divides al by a2 and produces a
remainder, a3, which has a size the same as a2 and
a quotient, a4,which has a size that is the difference
of the sizes of al and a2.

Logical Words

AND (A: al(n) a2(n) -- A: a3(n))

This ands al and a2, which are the same
size and produces a3, which is that size.

OR (A: al(n) a2(n) -- A: a3(n))

This ors al and a2, which are the same
size and produces a3, which is that size.

GOR (A: al(n) -- S:m) {maskable}

This finds the global 'or' of the al and
places it on the data stack as a scalar value.

XOR (A: al(n) a2(n) -- A: a3(n))

This xors al and a2, which are the same
size and produces a3, which is that size.

NOT (A: a(n) -- A: a(n)) {maskable}

This finds the complement value of 'a' and
places it back on the stack.

Comparison Words

< (A: al(n) a2(n) -- A: a3(1))

This determines if al is less than a2, and
produces a bit plane that is 1 where it is true and 0
where it is false.

= (A: al(n) a2(n) -- A: a3(1))

This determines if al is equal to a2, and
produces a bit plane that is 1 where it is true and 0
where it is false.

> (A: al(n) a2(n) -- A: a3(1))

This determines if al is greater than a2,
and produces a bit plane that is 1 where it is true
and 0 where it is false.

0< (A: al(n) -- A: a2(1))

This determines if al is less than 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.

280

0= (A: al(n) -- A: a2(1))

This determines if al is equal to 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.

0> (A: al(n) -- A: a2(1))

This determines if al is greater than 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.

Stack Operation Words

DUP (A: a(n) -- a(n)a(n))

Duplicates the top element on the array
stack.

DROP (A: a(n)--)

Drops the top element on the array stack.

NDROP (S: n A: a(m)...a(p) --- A: a(m) a(q)
)

Drops the top n elements of the array
stack.

-NDROP (S: nl n2 A: al(pl)...a2(p2)...a3(p3)
--- A: al(pl) a2(p2)...a3(p3))

Skips the first nl elements of the array
stack and drops the next n2 elements of the array
stack.

SWAP (A: al(n) a2(n) -- A: a2(n) al(n))

Swaps the top two elements on the array
stack.

OVER (A: al(n) a2(n) -- A: a!(n) a2(n) a!(.n_))

Copies the second element on the array
stack to the top of the stack.

ROT (A: al(n) a2(n) a3(n) -- A: a2(n) a3(n)
al(n))

Moves al to the top of the array stack.

PICK (S: m A: al(n) ... a2(n)
-- A: al(n) ... a2(n) al(n))

Copies the mth element of the stack to the
top of the stack. (1 PICK is the same as OVER.)

ROLL (S: m A: al(n) ... a2(n) a3(n)
-- A: ... a2(n) a3(n) al(n))

Moves the mth element of the stack to the

top of the stack. (3 ROLL is the same as ROT.)

DEPTH (-- S: n)

Returns the number of elements on the

array stack.

A@ (A:a(nl) --- S: n2nl)

Copies the first descriptor on the array
stack onto the data stack.

>A (S: n --- A: a(n))

Creates an element on top of the array
stack that has n bit planes.

ZERO (S: n --- A: a(n))

Create an element of size n that has a

value of zero onto the top of the array stack.

EXTRACT (S: ml m2 n A: al(nl) a2(n2)
--- A: al(nl) a2(n2))

Extracts a field of n bits of al(nl) starting
at ml and places it in a2(n2) starting at m2.

SLIDE (S:nd A:a(p) -- A:a(p))

Slides 'a' n PE's in the direction designated
by d. East if d=0, west if d=l, south if d=2, and
north if d=3.

EXG (S: ml m2nd A: a(n) -- A: a(n))

Exchanges elements of 'a' n PE's apart in
the direction designated by d. East/west if dr0,
south/north if d=2. The addresses of mask bit

planes are ml and m2. The mask ml determines
which PE's accept data during the east or south

portion of the move and m2 determines which PE's
accept data after the west or north portion of the
move.

CROSS (S: ml m2 n d A: al(n) a2(n)
-- A: al(n) a2(n))

Exchanges elements of al with a2 n PE's

apart in the direction designated by d. East/west if
d=0, south/north if d--2. Elements of al move to
the east or south and elements of a2 move to the

west or north. The addresses of the mask bit planes

are ml and m2. The mask ml determines which

PE's accept data during the east or south portion of
the move and m2 determines which PE's accept data
after the west or north portion of the move.

TOPOLOGY (S: n ---)

The number n designates the topology of
the array when an EXG, SLIDE, or CROSS is
performed.

To_Do1ogy]qorth/South
Connection Connection

0 None None

1 None Cylinder
2 Cylinder None
3 Cylinder Cylinder
4 Open-spiral None
5 Open-spiral Cylinder
6 Closed-spiral None
7 Closed-spiral Cylinder

Memory Operation Words

@ (S:m --- A: a(n)) {maskable}

Moves an array variable described by a
descriptor at address m onto the array stack.

I (S:n A: a(n)---) {maskable}

Moves an array from the array stack into
an array variable described by a descriptor at address
m.

SCALAR (S: <scalar value> --- A: a(n))

{maskable}

Broadcasts a scalar value into array 'a' of
all PE's.

L_R_

Compiles a constant into a word that will
be placed onto the array stack during execution, or
will immediately place it on the stack during
interpretation.

LIT

This is the execution time routine used to

place a constant, compiled into the code, onto the
array stack.

2f;l

DESC (S:n --- S:n2nl)

Fetches the descriptor at address n and
places it on the data smock. The address of the least

significant bit plane (LSB) of the variable is n2 and
nl is the size of the variable.

Control Words

IF (A:a(n) M:ml --- M:ml M:rn2)

Creates a new layer on the mask smock that
is the result of anding the least significant bit plane
of 'a' and ml.

ELSE (M:m --- M:m)

Complements the value of the top element
of the mask stack.

THEN (M: m ---)

Drops the top element of the mask stack.

BEGIN (M:ml --- M:mlml)

Duplicates the top element of the mask
stack.

WHILE (A:a(n) M:ml --- M:ml)
or(A:a(n) M:ml ---)

Ands the least significant element of 'a'
and ml. If no element of ml is equal to 1, the
loop is terminated.

REPEAT

Marks the end of

BEGIN...WHILE...REPEAT loop.

UNTIL (A: a(n) M: ml --- M: ml
)

or(A:a(n) M:ml ---)

M: m2

Ands the complement of the least
significant element of 'a' and ml. If no element of

ml is equal to 1, the loop is terminated.

I/O Words

MATRIX8
MATRIX 16
MATRIX32

File types for files that contain 128x128
arrays of 8, 16, or 32-bit values.

282

IMAGE8
IMAGE16
IMAGE32

File types for files that contain 512x512
images of 8, 16, or 32-bit values.

LOAD (S:n2nl ---)

Loads an array nl or image nl from the
currently opened file into the designated bit plane
described by the descriptor at address n2.

STORE (S:n2nl ---)

Stores the designated bit planes described
by the descriptor at address n2 into an array nl or
image nl of the currently opened file.

Defining Words

VARIABLE (S:n f ---)

Allocates an n bit plane variable array in
either the stager or the array.

CONSTANT (S: n f A: a(n) ---)

Allocates an n bit plane constant array in
either the stager or the array and loads it with the
top element of the array stack.

VECTOR (S:mnf---)

Allocates a vector of m n bit values in

either the stager or the array.

MATRIX (S:mlm2nf---)

Allocates an mlxm2 matrix of n bit

values in either the stager or the array.

Compiler Words

ALLOT (n f ---)

Allocates n bit planes in either the array
(ARU) or the stager (STG).

ARU

Indicates that the desired variable will be

allocated in the array.

STG

Indicatesthatthedesiredvariablewill be
allocatedinthestager.

PECU Primitive Words

PECU (S: <PECU address> --)

The word 'PECU' takes an address off the

MCU data stack and places it in register 'SPE',
which starts the PECU at that address.

S>C (S: <64 bit scalar> <LSB of scalar> ---)

The word 'S>C' loads the LSB of a scalar
into PE0. The 64-bit scalar value will be loaded

into the common register from the data stack.

C>S (--- S: <64 bit scalar> <LSB of scalar>)

The word 'C>S' stores the 64-bit return

register A value on the data stack followed by the
value 64.

A>PE2 (A: <descriptor> ---)
A>PE4 (A: <descriptor> ---)
A>PE6 (A: <descriptor> ---)

Takes 2 descriptors from the array stack
and places them into registers PE2-PE3, PE4-PE5,

or PE6-PE7, respectively. Each descriptor consists
of a 16-bit LSB and a 16-bit size.

S>PE2 (S:nln2 ---)
S>PE4 (S:nln2 ---)
S>PE6 (S:nln2 ---)

Takes 2 words from the data stack and

places them into registers PE2-PE3, PE4-PE5, or
PE6-PE7, respectively.

Mask Stack Operations

A>M (A: a(n) M: ml --- M: ml)

Ands the least significant bit plane of a(n)
to ml. The mask stack pointer is maintained in
PE1.

M>A (M:ml --- M:ml A:a(1))

Copies the top bit plane of themask stack
onto the top of the array stack.

MDROP (M:ml---)

Drops a mask from the mask stack.

MDUP (M:ml --- M:mlml)

Duplicates top element on mask stack.

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dick
Fahey, Ame Henden, Dan Klinglesrnith, and Archie
Wamock for their advice and consultation on the

FORTH philosophy and to Lisa Hamet for her help
in the coding and implementation of the Uni-
FORTH kernel on the MPP.

REFERENCES

° Brodie, Leo, "Starting FORTH," Prentice-
Hall, Inc., Englewood Cliffs, NJ., 1981.

2. Brodie, Leo, "Thinking FORTH,"
Prentice-Hall, Inc., Englewood Cliffs,
NJ., 1984.

. Henden, Arne, "Uni-FORTH User's

Guide," Unified Software Systems,
Columbus OH, 1985.

283

