
R 
Research Institute for Advanced Computer Science 

https://ntrs.nasa.gov/search.jsp?R=19870017134 2020-03-20T09:46:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Two Demonstrators and a 
Simulator for a Sparse, Distributed 

Memory 

Robert L. Brown 

June 1987 

Research Institute for Advanced Computer Science 
NASA Ames Research Center 

RIACS Technical Report 87.1 7 

$’ 
a 
B 



Two Demonstrators and a Simulator for a Sparse, 
Distributed Memory 

Robert L. Brown 

Research Institute for Advanced Computer Science 
NASA Ames Research Center 

RIACS Technical Report TR-87.17 
June, 1987 

This paper describes two programs demonstrating different aspects 
of Kanerva’s Sparse, Distributed Memory (SDM). These programs 
run on Sun 3 workstations, one using color, and have straightfoward 
graphically oriented user interfaces and graphical output. Presented 
herein are descriptions of the programs, how to use them, and what 
they show. Additionally, this paper descibes the software simulator 
behind each program. The author assumes the reader has a working 
knowledge of the SDM. 

~ 

Work reported herein was supported in part by Cooperative Agreement NCC 2-387 
between the National Aeronautics and Space Administration (NASA) and the 

Universities Space Research Association (US RA). 



Two Demonstrators and a Simulator for a 
Sparse, Distributed Memory 

Robert L. Brown 
Research Institute for Advanced Computer Science 

rlb@riacs. edu 

1. Introduction 

The operation of the Sparse, Distributed Memory (SDM), described by Kanerva 
[Kanerva86] and Denning [Denning88], is conceptually simple once understood, but 
reaching that point of understanding requires a moderate amount of effort. To solve 
this problem, it was decided to develop a set of graphical demonstrators for the SDM, 
each being able to show its operation at a particular level of abstraction or show a 
particular feature. To this end, two such demonstrators were developed at RIACS by 
the author. 

The first program, sdmwiew, works at a low level of abstraction, demonstrating at a 
nearly hardware level how data are stored in and retrieved from the memory. The 
second program, sdmdemo, works at a higher abstract level and shows a simple 
application for SDM, specifically, saving and retrieving simple patterns. A third 
program was desired, also, to show at a very high level of abstraction how items 
stored in the memory “flood” a region of a high-dimensional hypercube, but the 
problem of displaying, say, 1000 dimensions on a two-dimensional CRT screen has 
stalled this project. 

OS (UNIX) version 3.2. Only one program, sdmview, makes use of the color 
capabilities of the model 3/160C. The programs make extensive use of Sun’s 
SunView user interface development package [Sun86b] and thus incorporate control 
panels, display windows, and a mouse-oriented interface. 

The structure of the two programs is very similar, comprising three main 
components: user interface, graphical backend, and an SDM simulator. The 
operation of each program is described by describing its interface, and the simulator 
is discussed separately. 

Each program was developed for a Sun 3/160C workstation [Sun86a] running Sun 

2. Simulator Overview 

Behind each of the demonstrators is a minimum-function SDM simulator. Each 

TR 87.17 - 1 -  June, 1987 



SDM operation requested by the user is turned into one or more requests on the 
simulator. The SDM is divided into six major pieces for the purpose of simulation. 
These are as follows: 

Input address register 
Address bank 
Select array 
Input datum register 
Datum bank 
Output datum registers 

As in Kanerva’s descriptions of SDM, the number of dimensions is called N and 
the number of storage locations is M. Hence, the address bank is N bits wide and 
holds M randomly generated addresses. The datum bank is N counters wide and M 
locations long. The input address register holds the address being used in a select 
operation. The input datum register holds a value to be written. There are two output 
datum registers, one unthresholded and one thresholded. The select array contains 
one bit for each of the M locations such that when a read or write is performed, only 
those locations with enabled select bits are involved. 

Using this model for SDM, a write operation involves placing a value in the input 
address register, performing a select, then placing a value in the input datum register, 
and then adding that value into all selected locations. A read operation involves 
loading an address into the input address register, performing a select, then adding 
together all selected locations and placing the result in the raw output datum register. 
Optionally, a threshold may be applied to the result in order to generate a 
thresholded result in the thresholded output datum register. 

paper. The cursory description here is necessary in order to understand the 
demonstrators. 

A section on the structure and operation of the simulator appears later in this 

3. Sdmview 

The first of the two programs is entitled sdmview . Its purpose is to give the user an 
insight into the inner workings of the SDM by showing an abstract digital storage 
array representing an implementation of the memory. Figure 1 shows the layout 
presented to the user on a monochrome workstation. On a color screen, colors are 
used instead of the dithering patterns across the bottom. In the bottom window, the six 
parts of the SDM are presented. The row in the upper left is the input address register, 
the two-dimensional array on the left side is the address bank, the row in the upper 
right is the input datum register, the array on the right is the datum bank, and the two 
rows on the lower right are the raw and thresholded output datum registers 
respectively. The grid along the bottom of the display shows the patterns 
(monochrome screen) or colors (color screen) that are used to represent the counter 
values in the datum-bank part of the display. The colors range from bright blue on the 
left darkening towards the center, denoting negative values, then dark red 

TR 87.1 7 - 2 -  June, 1987 



brightening towards the right end, denoting positive values. 

The display reflects the values of the simulated registers and memory inside the 
simulator. Each time sdmviewcalls on a simulator function, it also calls a display 
function that makes the image on the screen consistent with the memory. Looking at it 
this way, sdmviewcan be thought of as an exerciser for the simulator, and the display 
merely as a visualization of the internal data structures in the simulator. 

3.1. Overview 

frame. The center one-line window is for status and error messages from sdmview, 
and the bottom subwindow shows the state of the simulated memory. 

The user operates sdmviewthrough the control panel at the top of the window 

Input 
address 
register 

Address 
bank 

Select 
bits 

Pattern5 
for datL 
values 

/ -1 5 

: SfM Dawnstrator: 32 cells, 16 dlmslons 
h l n g  Distance: [7]  

Solution Threshold: [E] 
# G r i d  EZ'Auto Select 6f IMddr->InDatun 
Camnands Flle:. 

0 - 1  17 
B 1-1 32 S r-Id: 

I 

Y 

Input datum 
register 

Datum bank 

. Raw and 
- thesholded 
output datum 
registers 

\ 
+15 

Figure 1. Sdmview window layout. 

TR 87.1 7 -3- June, 1987 



The user controls the operation of the program through commands and screen 
buttons in the control panel. Anything that can be done by a button can also be 
invoked using a typed command. This feature allows previously prepared 
demonstrations to be written as a file of commands and then fed into sdmview by 
clicking on a screen button. 

The basic usage scenario is as follows: 

set In Add r-> I n Datu m 
set Auto Select 
intialize the memory 
do several times: 

load input address register 
write 

load input address register 
read 

do several times: 

3.2. Operation 

If sdmview is started with no arguments, it creates a memory with 32 locations (M) 
and 16 dimensions (N). This can be changed by passing two arguments, the first for 
M and the second for N (memory trick: alphabetical order). Though there is no limit to 
the size of the memory that can be simulated (except for the UNlX maximum process 
size limit), the display cannot show memories of greater than M=256 and N=l28 
because the cells become too small on the screen. 

Initially, the user is presented with an empty memory; not even the random 
addresses are assigned. The first thing to do is to set the program parameters by 
adjusting the sliders and checking boxes. Sliders can be adjusted by pointing to the 
black bar inside the slider box, depressing the left mouse button, sliding the bar right 
or left, and releasing the button. The current value in the square brackets changes as 
you move the slider. The option boxes can be checked and unchecked by pointing to 
them and clicking the left mouse button. The meaning of each item in the control panel 
is as follows: 

Hamming Distance - sets the maximum Hamming radius used in select 
ope rations. 

Solution Threshold - sets the threshold used when converting a raw result of a 
read operation to a thresholded, or binary result. 

Grid - toggles the grid in the display window on and off. For large memories 
where the square cell size is small, it is easier to visualize when the grid is turned off 

Auto Select - if checked, causes a select operation to happen whenever an 
address is loaded into the input address register. 

TR 87.1 7 June, 1987 - 4 -  

~ ~~~ 



InAddr->lnDatum - if checked, causes values loaded into the input address 
register to be automatically copied into the input datum register. 

Once the operational parameters are set up, the user can start invoking 
operations on the memory. The very first should be to load the random addresses into 
the address bank with the init command. This can be shortcut by clicking (left mouse 
button) on the button labelled Init. From that point on, commands can be typed at the 
Command prompt, and each time Return is struck, the command is performed. Note 
that once a command is completed, it is not erased from the screen. The user must 
type control-U to erase the command or control-W to erase just the last word (this is 
useful if typing address commands). Some commands can take arguments formed 
like UNlX shell command arguments. The commands are documented in brief below. 

init - loads random addresses into the address bank and clears the datum bank. 
Normally this is only done once and is not done automatically at startup so that the 
user has time to explain why it must be done. The lnit screen button performs the 
same function. 

address - loads the address provided by the user as the first argument into the 
input address register. Address values may be specified in either binary (ASCII ones 
and zeros) or hexadecimal if prefixed with “Ox .” If the Inaddr->lnDatum box is 
checked, the value is also loaded into the input datum register. If Auto Select is 
checked, a select operation takes place. A sample command is “address Oxfe00.” 

select - performs a select operation, setting the select bits for all SDM locations 
within the specified (in the slider) Hamming radius. The Select button in the control 
panel performs the same function. 

The rules for parsing datum values are the same as for addresses. This command has 
an alias data. 

datum - loads the value given as the first argument into the input datum register. 

write - causes the value in the input datum register to be written into all selected 
locations. An alias for this command is store. The Write button in the control panel 
performs the same function. 

read - causes a read operation using the address in the input address register. 
When invoked as a command, reads are performed, copying the result from the 
output datum register to the input address register, until either a cycle is detected or 
the read converges. If this operation is invoked by clicking the Read screen button, 
the user can control the read repetitions by clicking on the Step button that pops up 
next to the Read button. Each time the Step button is pressed, the contents of the 
thresholded output datum register are copied to the input address register and a read 
operation is re-initiated. 

stop - stops the reading of commands and displays its first argument in the 
message window. This only makes sense if the input is a file and sdmview is being run 
in continuous mode (see below). Because only the first argument is displayed, a 

TR 87.1 7 - 5 -  June, 1987 



message containing white space must be enclosed in quotation marks. 

argument. Causes a select as a side effect. 
hamming - sets the Hamming distance slider to the value given as the first 

message - displays its first argument in the message window or clears the 

set select - sets the Auto Select feature. 

window if no argument is given. 

set load - sets the InAddr->Datum option. 

set grid - turns on the grid. 

unset - can be followed by any of the arguments to set described above and 
causes that feature or option to be turned off. 

Commands may come from either the Command prompt in the control window or 
from a file. If the user types a file name at the Commands File prompt (after selecting 
that prompt by clicking the left mouse button on it) and hits Return, sdmview opens 
that file and pops up a cycle labelled Read Mode and a button labelled Go. By 
default, the read mode is single-stepping, and each time the user clicks the Go 
button, another command is read and invoked. If the user changes the read mode to 
continuous, then clicking the Go button causes commands to be read from the file 
until either an end of file is reached or a stop command is read. 

A typical commands file might contain the following commands: 
init 
hamming 6 
set select 
set load 
address OxffOO 
write 
address Ox01 23 
write 
address Oxdead 
write 
stop "Change to Single Step and step through the read operations" 
address OxffOO 
read 
address 0x4321 
read 

This sample would load the memory with three values and then instruct the user to 
switch the operation of the program to single-step mode and manually step through 
the read operations. Figure 2 shows the state of the sdmview window after completing 
the first ot the two read operations in the sample. 

TR 87.1 7 -6- June, 1987 



4. Sdmdemo 

The second demonstrator is entitled sdmdemo. Its purpose is to show the user a 
simple application of the SDM by storing an retrieving small images. Figure 3 shows 
the layout as presented to the user. In that figure, three of the large subwindows are 
labelled with their names. Of the remaining subwindows, the upper leftmost is the 
main control panel, below it is the messages window, and in the upper right is the pad 
control panel. 

4.1. Overview 

The basic operational scenario for sdmdemo is very much like that for sdmview. 

SOM Denonstrator: 32 cells, 16 di-lons 
Ha~faIng Distance: E61 

S o l u t i m  Threshold: [el 
17 Grid @Auto Select &t'InAddr->InDatun 
Cnnnands F i l e :  Sampl% 

Read Mode C S i n g l e  Step [Go] 
h a n d :  read 

8 I-1 17 
B 1-1 32 

omeraad after 1 read to fM. 

Figure 2. State of the monochrome sdmview display after several operations. 

TR 87.1 7 -7- June, 1987 



b i :*"* . t 
t Q 1 * 

When the program starts, it creates a SDM with 2048 locations of 256 bits each. The 
number of locations can be changed by providing a single numeric argument when 
the program is invoked. Throughout the execution of the program, the 256-bit 
locations are represented as 16 by 16 bit squares with the first bit in the upper left and 
the last in the lower right. This representation allows the user to imagine each SDM 
cell as a 16-by-16 bit image. 

4.2. Operation 

Unlike sdmview, sdmdemo automatically assigns random addresses to the SDM. 
Hence, once it starts running, the user need only store and retrieve data. All 
operations are initiated from one of the two control panels; there is no command 
mode. Read and write operations use the pad as the source of the value for the input 
address and datum registers. Hence, the cycle of usage begins by creating a value 
there and then performing one of the memory operations. 

as keys for reading. Initially the pad is blank, denoting all zeros. The user can toggle 
bits by clicking on the cells in the pad. Images can be predefined and stored in files 
by using Sun's iconedit program in cursor mode. Additionally, images can be loaded 

The pad window is where the user enters images to store into the memory or to use 

mS#4 Dmonstrator: 2 W  cells. 256 d i n s s i m  

Read- results su bwi ndow 

memoy-state subwindow 

pad subwindow 

1 

Figure 3. Sdmdemo window layout 

TR 87.1 7 - 8 -  June, 1987 



into the pad from the SDM by clicking the mouse on the desired image in the memory- 
state window. The items in the pad control panel are as follows: 

Fetch/File - when the Fetch button is pressed, the contents of the file given after 
the File prompt are loaded into the pad. The given file should have been created with 
Sun’s iconedit. 

Noise - when pressed, noise is added to the value in the pad. The slider specifies 

Pad Operator - specifies the boolean operator to use when loading values into 

what percentage of bits, at random, should be inverted. 

the pad. 

Items on the main control panel are as follows: 

Solution Threshold - same as in sdmview. This is the threshold value for 
converting raw read results to thresholded results. Only the thresholded results are 
displayed in this program. 

Hamming Distance - same as in sdmview. This is used whenever a select 
operation is performed on the memory. 

Write -this button copies the image in the pad into the input address and datum 
registers, performs a select, and then performs a write operation. In other words, it 
writes the pad contents into all locations whose addresses are within the displayed 
Hamming distance of its value. This operation is more extensive than the 
corresponding operation in sdmview in that it loads the registers and performs the 
select as well as the write. Once the operation has completed, the value is added to 
the memory-state window. 

Select - loads the pad contents into the input address register and performs a 
select operation on the SDM. No other side effects take place. This is useful only for 
seeing how many locations are selected, which is displayed in the messages window. 

Read - copies the pad contents into the input address register, performs a select, 
and initiates a read operation. The thresholded result is then used as the new value of 
the input address register and the read cycle starts again. This cycle is repeated until 
either two reads in a row yield the same result (the read converges) or a cycle is 
detected, or the number of reads given in the Iterations slider is performed. 

giving up. 

and the Load button is pressed, sdmdemo reads each file matching the pattern, loads 
it into the pad, and then performs a Write operation. This is a fast way of loading 
several patterns into the memory. 

Iterations - states how many reads to perform while seeking convergence before 

Load/File Patterns - if a file pattern is entered here (using Shell metacharacters) 

Figure 4 shows the state of the display after eight previously generated images 

TR 87.1 7 - 9 -  June, 1987 



have been stored in the SDM and a query using a noisy pattern has been executed. 
Notice that the read operation converged in very few attempts. 

5. Simulator Details 

The interface to the simulator is through a library of procedures, each performing a 
specific operation. The library uses a simple design philosophy: present a simple, 
consistent interface and remain independent of the gpplication using it. Hence, once 
the pattern of procedure names is learned, the programmer can accurately guess the 
name of a procedure implementing a particular operation. Additionally, the library 
does not contain any code that is specific to any application that may use it. 

There are routines to allocate and initialize the SDM, to set and get register 
values, to set select bits, to read and write, to allocate and copy addresses and data, 
and to perform input and output conversions. Three externally visible data types are 
defined, one for holding addresses and two for holding data. These types are pointers 
to structures used to store these quantities, so that the programmer must alloc,ate 
storage for them explicitly. The types and allocation procedures are as follows: 

I 

Figure 4. Sdmdemo after loading and one read. 

June, 1987 TR 87.1 7 - 1 0 -  



add r-t *add r Ne w () ; 
datum-t *datumNew(); 
bigdatum-t 'bigdatumNew0; 

Normally, the user need not use the type bigdatum-t . It is only used for the 
unthresholded output datum register. One internal data type is defined for holding all 
the information necessary for one SDM location, as follows: 

typedef struct { 
addr-t *addr; 
datum-t *datum; 
boo1 select; 

} cell-t; 

Addresses and data may be copied from one location to another using the copy 
routines as follows: 

addrCopy(dst, src) 
addr-t *dst, *src; 

datumCopy(dst, src) 
datum-t *dst, *src; 

In implementation, SDM addresses are stored as an array of binary integers, 
currently 16 bits each (though changeable), where each bit in the integer 
corresponds to one address bit. The number of elements in the addr-t array is a 
function of.bl, the.number of dimensions in the simulated SDM. SDM data are stored 
as an array of binary integers, also, though there is one element for each of the N 
counters in each location. In the current implementation, the datum counters are 8-bit 
integers, though it is a one-line compile-time binding (we have never simulated a 
memory holding as many as 127 patterns using this simulator). 

Before using the simulator routines, the program must allocate memory for the 
SDM and load the random addresses. This is performed with two procedure calls as 
fo I lo ws : 

sdmlnit(M, N); 
sdm Load Addresses(); 

The dynamic allocation of SDM memory make writing demonstrators and 
exercisers that configure their memory sizes at runtime possible and convenient. The 
amount of virtual memory required by the simulated memory, not counting the 

TR 87.1 7 -11 - June, 1987 



registers around the memory, is roughly 

N +sizeof (addr-t)x 8 - 1 
sizeof (addr-t) x 8 

sizeof(cel1-t) + + N x sizeof (datum-t) 

For example, a memory comprising 2048 locations and 256 dimensions (this is 
the default size for the SDM in sdmdemo) requires just over 800 kilobytes of memory 
Because both demonstrators described herein use relatively small memories, 
performance degradation due to paging activity is not a problem. 

The body of the simulator is a collection of routines for copying data into and out 
of the registers, for setting select bits, and for reading and writing. Each of the 
important routines is described briefly here. In these descriptions, the abstract types 
of the arguments are given as an argument list rather than dummy parameters. 
Whenever a procedure returns a result in a location specified by a parameter, it 
assumes that the caller has previously allocated storage for the value by calling 
addrNew(), datumNew(), or bigdatumNew(). The following detailed interface 
description may be skipped with little loss for the reader. 

sdmSetlnaddr(addr-t *) - copies the given address into the input address 

sdmGetlnaddr(addr-t *) - copies the contents of the input address register into 

sdmSetlndatum(datum-t *) - copies the given datum value into the input 

sdmGetlndatum(datum-t *) - copies the contents of the input datum register 

sdmGetOutdatum(datum-t *) - copies the contents of the thresholded output 

register. No other side effects (such as setting select bits) occur. 

the (previously allocated) address variable. 

datum register. No other side effects (such as writing) occur. 

into the given datum variable. 

datum register into the named datum variable. 

sdmGetOutdatum-raw(bigdatum-t *) - copies the contents of the 
unthresholded output datum register into the named bigdatum variable. 

sdmGetAddr(addr-t *, int) - copies the address portion of the given SDM 

sdmGetDatum(datum-t *, int) - copies the datum portion of the given SDM 

boo1 sdmGetSelect(int) - returns the value of the named SDM location select bit. 

sdmSelect(int) - sets the select bits for those locations whose addresses are 

location into the given address variable. 

location into the given datum variable. 

within the given Hamming distance of the address in the input address register. 

TR 87.17 - 1 2 -  June, 1987 



sdmWrite() - writes (adds) the contents of the input datum register into all 
selected locations. 

sdmRead() - sums all the selected locations and saves the result in the 
u nt hresholded output register. 

sdmThresh(int) - applies the given threshold to the raw output datum register 
and saves the result (as ones and zeros) in the thresholded output datum register. 
Any counter whose value is greater than the threshold is assigned a one and all the 
other are assigned zeros. 

sdmAddrFromDatum(addr-t *, datum-t *) - copies and converts the given 
datum variable into the given address variable. Both arguments must have been 
previously allocated. A threshold of zero is hard-wired. 

sdmDatumFromAddr(datum-t *, addr-t *) - copies and converts the given 
address variable into the given datum variable. 

boo1 datumEqual(datum-t *, datum-t *) - returns TRUE if the two given data 
variables are precisely equal. No thresholding is applied. 

int sdmSelectedCount() - returns the number of selected locations in the 
memory. 

boo1 addrCvt(addr-t *, char *) - converts the given ASCII string into address 
format and stores the result in the given address variable. The string must be all ones 
and zeros, or it must start with “Ox” and be all hexadecimal digits. The result is padded 
on the right with zeros. If the convsion succeeds, TRUE is returned; otherwise FALSE 
is returned. 

boo1 datumCvt(datum-t *, char *) - converts the given ASCII string into datum 
format and stores the result in the given datum variable. The string must be all ones 
and zeros, or it must start with “Ox” and be all hexadecimal digits. The result is padded 
on the right with zeros. If the convsion succeeds, TRUE is returned; otherwise FALSE 
is returned. 

char *addrToHex(addr-t *) - converts the given address variable into ASCII in 
hexadecimal and returns a pointer to a statically allocated buffer. 

char *datumToHex(addr-t *) - converts the given datum variable into ASCII in 
hexadecimal and returns a pointer to a statically allocated buffer. 

5.1. Organization 

The simulator is packaged in a way that isolates the operations that work directly 
on the simulated SDM address and datum bank. This way, both serial and parallel 
versions may be built. Constructing a parallel version for the Sequent Balance 21 000 
multiprocessor of the simulator was accomplished in less than one afternoon using 
Sequent’s microtasking package [Osterhaug86]. The binding of the particular version 

TR 87.17 - 13- June, 1987 



to the application program is accomplished by linking with a library named either 
sdm seria1.a or sdm-micr0task.a. Naturally, the parallel version only makes sense 
for the Sequent multiprocessor, and so both demonstrators described in this paper 
use the serial version on a Sun Microsystems workstation. 

The parallel implementation of the library changes only those operations that 
affect the select bits, the address bank, or the datum bank. The M locations are 
divided into M/P-sized chunks, where P is the number of processors being used by 
the simulator. Each processor is then responsible for performing the operation on its 
chunk. The only complication is the read operation, which requires the summing up of 
the results. For this, a global array of P bigdatum-t objects is allocated and each 
processor writes its (partial) result in an element of that array. The partial results are 
then added serially and the overall result is placed in the raw output datum register. 

6. Conclusion and Future Work 

The two demonstrators have been used to describe the operation of the SDM to 
visitors at RIACS, and has been generally well-received. The simulator has proven 
sufficiently powerful and flexible to support these projects. The SDM research group 
at RIACS has taken the simulator and the first demonstrator, sdmview, and adapted it 
to use for a video movie describing the operation and use of SDM. This work is not 
described herein. 

An extension to the simulator is under development. It will allow the SDM 
operations to be executed on a remote machine by use of a custom remote- 
procedure-call (RPC) interface. The goal of this effort is to be able to run graphical 
displays of the SDM on a graphics workstation while managing the simulation on a 
high-speed or parallel processor. 

7. References 
[ Kanerva861 

Kanerva, Pentti, “Parallel Structures in Human and Computer Memory,” RIACS 
TR 86.2, Research Institute for Advanced Computer Science (January 1986). 

Denning, Peter J., “A View of Kanerva’s Sparse Distributed Memory,” RIACS TR 
86.1 4, Research Institute for Advanced Computer Science (June 1986). 

Sun Microsystems, “Sun System Overview,” Sun Part No. 800-1 300-02, 
Revision A (February 1986). 

Sun Microsystems, “Sun View Programmer’s Guide,”, Sun Part NO. 800-1 345- 
10, Revision A (September 1986). 

“Guide to Parallel Programming on Sequent Computer Systems,” Sequent 
Computer Systems (1 985). 

[Den ning861 

[ S u n 8 6a] 

[ S u n 86 b] 

[Osterhaug86] 

TR 87.1 7 - 1 4 -  June, 1987 


