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ICASE INTERIM REPORTS 

ICASE has introduced a new report series to be called ICASE Interim Reports. 
The series will complement the more familiar blue ICASE reports that have been 
distributed for many years. The blue reports are intended as preprints of 
research that has been submitted for publication in either rcfcrced journals or 
conference proceedings. In general, the green Interim Report will not be submit- 
ted for publication, at least not in its printed form. It will bc used for research 
that has reached a certain level of maturity but needs additional refinement, for 
technical reviews or position statements, for bibliographies, and for computer 
software. The Interim Reports will receive the same distribution as the ICASE 
Reports. They will be available upon request in the future, and they may be 
referenced in other publications. 

Robert G. Voigt 
Director 
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INTRODUCI'ION 

PISCES (Parallel Implementation of Scientific Computing Environments) is a "virtual" computer 
system intended for the solution of large scale problems in scientific and engineering computation. It is 
l.?sed on the use of MIMD parallel cornputation to achieve high computation rates. The "virtual" system 
includes a programming environment and programming language that can be implemented on a variety of 
underlying operating systems and machine architectures. Because the software provides an abstract "vir- 
tual machine" to the user, the precise details of the hardware and lower levels of operating system 
software are of concern to the user primarily when "tuning" a program to improve its performance. 

PISCES 2 
PISCES 2 is the version of the PISCES environment and language for the Flexible FLEW2 com- 

puter system. This manual describes the PISCES 2 system as it is currently implemented at NASA Lang- 
ley Research Center. The system consists of three major components: 

1. Pkces Fortran and the Preprocessor. The applications programmer writes programs in a version 
of Fortran 77 that includes extensions for parallel computation. These extensions include tasktype 
definitions, task initiation and termination, message passing among tasks, "forces" consisting of several 
parallel tasks executing the same program text, shared variables, and other constructs. 

A preprocessor converts a Pisces Fortran program into a standard Fortran 77 program. The parallel 
programming constructs of Pisces Fortran are converted into mofe complex sets of ordinary Fortran state- 
ments and declarations, together with calls on procedures in a Pisces run-time library that implement the 
run-time actions necessary for the parallel constructs. Part 1 of this manual describes the Pisces Fortran 
extensions and use of the preprocessor. 

2. The Conjiguration Environment. When the user has created and successfully compiled a Pisces 
Fortran program, the command "pisces" brings up the PISCES configuration environment. This envimn- 
ment provides a series of menus that allow the user to build or edit a configuration for a particular run. A 
menu also drives the creation of an appropriate loadfile for the run. The configuration includes an execu- 
tion time limit, trace settings for execution monitoring, and related information, in addition to a mapping 
from the virtual machine to the actual FLEX hardware. Part 2 of this manual describes the PISCES 
configuration environment. 

3. The Execution Environment. If the user requests program execution from the configuration 
environment, the loadfile is downloaded to the appropriate set of FLEX PE's, and control transfers to the 
PISCES execution environment, a program that runs on the "main" FLEX PE. This program displays a 
menu with various options for controlling and monitoring the execution of the Pisces Fortran program. 
Part 3 of this manual describes the PISCES execution environment. 
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PISCES USER'S MANUAL: PART 1 

PISCES FORTRAN AND THE PREPROCESSOR 

This part details the syntactic and semantic extensions to Fortran 77 for the "Pisces Fortran" pro- 
gramming language, as implemented on the FLEX/32. 

The Preprocessor 

A preprocessor is used to translate Pisces Fortran into standard Fortran 77, which is then compiled 
by the standard UNIX Fortran compiler (f77). A small library of additional run-time routines are needed 
to support calls inserted by the preprocessor into the Fortran code. The FLEX Concurrent Fortran (cf77) 
preprocessor is NOT used by Pisces. 

A Pisces Fortran program may be created in one or more Unix files. Standard Fortran 77 routines 
may be included along with routines that use the Pisces Fortran extensions described below. Ordinary 
Fortran routines may be compiled using the Unix Fortran compiler, ff77 (on the FLEX). Routines that 
use Pisces Fortran extensions must be preprocessed. Files containing Pisces Fortran routines, or contain- 
ing a mixture of Pisces Fortran and Fortran 77 routines, must have names that end in ".pf'. 

The preprocessor is named "pfpp" (Pisces Fortran preprocessor). To use the preprocessor to 
translate and compile a file <filename>.pf, at the Unix prompt, type: 

pfpp <filename> NOTE: Don't include the ".pf' in the name. 

The preprocessor will find the file cfilename>.pf in your local directory, preprocess it to produce a file 
named <filename>.f, and then use ff77 to compile this file to produce an object file named <filename>.o. 
All files are left in your local directory. If your program uses shared variables, there will also be a file 
named <filename>.sh.o left in your directory. 

You can look at the translation from Pisces Fortran to ordinary Fortran in the file <filename>.f. 
Pisces Fortran statements have been turned into comment lines that begin with "****" and are immedi- 
ately followed by the Fortran 77 lines generated by the preprocessor for that statement. 

If you wish to compile a Pisces Fortran program using special options on the Fortran 77 compiler 
call (such as code optimization), you can delete the <filename>.o file produced by the preprocessor and 
call ff77 with your options and the <filename>.f produced by the preprocessor. Currently the preproces- 
sor calls ff77 with the Unix command: 

ff77 -c <filename>.f 

Pisces Fortran 

The new Fortran statements and declarations for parallel processing in Pisces Fortran are described 
below, beginning with the constructs associated with tasks and message passing, and ending with the con- 
structs associated with "forces". 

2 



SYNTAX DESCRIPTIONS 

standard BNF notation are: 
The syntax of the extensions is described using a slightly modified BNF notation. The extensions to 

(1) '7 ...]*I indicates an optional element, 
(2) "( ...)" indicates repetition of an element zero or more times, and 
(3) a quoted element must appear exactly as written. 

RESTRICTIONS 

In order to avoid conflict with user chosen names, the following are resewed for use by Pisces: 
The Pisces Fortran preprocessor must generate various Fortran identifiers and statement numbers. 

1. All names that begin with "ppp ...". 
2. Statement numbers greater than 73000. 

USE OF WPER AND LOWER CASE 
Fortran is a single-case language (Le., all letters are converted to a single case on input, except in 

quoted strings). In keeping with Unix Fortran style, lower-case is standard for programming in Pisces 
Fortran. 

SIGNIFICANT SPACES 
Pisces Fortran syntax does NOT follow the Fortran convention of allowing spaces to be left out 

within statements; spaces are 'significant' in Pisces Fortran extensions. In general, the parts of a Pisces 
Fortran statement must be separated by at least one space unless the next character is a special character. 
For ewzmple: 

pfcall subl(a) -- valid 

pfcallsubl(a) -- invalid 

FORTRAN INPUT/OuTpuT 

other than the standard input and output files: 
Ordinary Fortran 77 UO statements may be used in Pisces Fortran. To READ or WRITE from a file 

1. Execute the statement: 
call setcpu (1) 

or 
call setcpu (2) 

before the file is opened. 

the full Unix path as the filename. For example: 
open (unit=9, file='/usr/u2/twp/datafile') 

-- on lrcflx (use file system attached to PE 1) 

-- on csmflx (use file system attached to PE 2) 

2. OPEN the file, using the standard Fortran OPEN statement (not the Concurrent Ftn OPEN) with 
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DATA STATEMENTS 
Due to a peculiar bug in the FLEX software, use of Fortran DATA statements to initialize variables 

in Pisces Fortran is not recommended. See the discussion of the FLEX 'static variables' problem in Part 
2 of this manual. 

OVERALL PROGRAM STRUCTURE 

A program is written as a set of program units of the following types: 
Taslctype definitions. 
PF subroutines (Ftn 77 routines that contain Pisces Fortran extensions). 
Handlers (subroutines for processing messages). 
Fortran 77 subroutines and functions. 

There is no PROGRAM unit (main program) in a Pisces Fortran program. These program units may be 
stored in Unix files in any convenient arrangement. 

PFSUB subroutines and PFCALL statements. 

Fortran 77 subroutine. Replace the word "subroutine" in the header by "pfsub: 
In general, the Pisces Fortran statements and declarations described below may be included in any 

pfsub <name> (<formal arguments>) 

and then instead of the usual Fortran "call" statement, use a "pfcall" 

pfcall <name> (<actual arguments>) 

A Fortran FUNCTION subprogram cannot use Pisces Fortran extensions (including PFCALL's). Each 
PFSUB subroutine must, of course, be preprocessed by "pfpp". 

END DECLARATIONS Statement 
Every program unit that uses Pisces Fortran extensions (TASKTYPE, PFSUB, HANDLER units) 

must have an "end declarations" statement included between the last declaration and the first executable 
statement. For example: 

pfsub sub1 (argl, arg2) 

integer a, b, c 
end declarations 
if (argl .eq. 1) then 

-- last declaration 

-- first executable statement 
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CLUSTERS, SLOTS, AND TASK CONTROLLERS 

l -  
I 

The PISCES virtual machine is organized into one or more "clusters" of processing resources. The 
precise set of resources assigned to each cluster varies from machine to machine, from cluster to cluster, 
and cn the FLEX even from run to run (because the programmer controls this assignment on the FLEX to 
soine extent, see Part 2 below.) On the FLEX, a cluster consists of one "primary" PE and a set of "secon- 
dary" PE's. 

Within a cluster, each task IUI~S in a particular numbered "slot". The slot is chosen by the system at 
the time the task is initiated. While a task is running, the pair <cluster number/slot numben uniquely 
identifies it within the system. 

The programmer chooses the number of clusters and slots to use before each run of the program, as 
part of the "configuration" chosen for that run (see Part 2 of this manual.) A maximum of 18 clusters may 
be used on the FLEX (because 18 PE's are available). A cluster may have as many slots as desired. Lim- 
iting the number of slots in a cluster limits the number of tasks that may be simultaneously competing for 
use of the FLEX PE assigned to the cluster. 

CLUSTER NUMBERS AND CLUSTER NUMBER FUNCI'IONS 
Clusters are identified by "cluster numbers", small positive integers. On the FLEX the programmer 

chooses how many clusters to use for a particular run, and assigns them numbers in the range 1-25. 
Within a Pisces Fortran program. three functions may be used to retrieve the cluster numbers being 

used for clusters in the current run of the program. These functions allow a program to be written without 
knowledge of the precise set of cluster numbers to be used: 

integer function pppcrnino: returns the smallest cluster number in the configuration being used 

integer function pppcmaxo: retums the largest cluster number in the configuration being used 

integer function pppcnxt(cc1uster-numben): returns the next larger cluster number (modulo # clusters) 
after <cluster-numben, in the configuration being used 

Functions pppcmin, pppcmax, and pppcnxt are predefined and do not need to be declared as type 
INTEGER in the user program. 

TASK CONTROLLERS 
Within each PISCES cluster, a system-defined task called a task controller is used to control and 

monitor the operation of the cluster. A task controller for each cluster is initiated automatically on system 
startup (at the beginning of a run on the FLEX). The task controller initiates each user task that runs in 
that cluster. This initiation is done in response to "initiate" messages from other user tasks or the user at 
the terminal, as explained below. 

TASK DEFINITION, INITIATION, AND TERMINATION 

At the top-level, every Pisces Fortran program is structured as a set of one or more tasks that carry 
out the computational work. The programmer defines a set of "tasktypes" in the program. A task of a 
particular tasktype may be created by executing an INITIATE statement. A task terminates by executing 
a TERMINATE statement. These tasks communicate by passing messages, as discussed in the next sec- 
tion; there are no shared variables among tasks. 



TASKTYPE Definitions 

Purpose: 
Provide a name and argument list for a tasktype definition (program Unit). 

Syntax: 
TASKTYPE-heading = "tasktype" tasktype-name ["(It argument-list ")"I 
tasktype-name = -- any valid Fortran subroutine name 

argument-list = -- see below 

Semantics: 
A task is the largest unit of program execution in Pisces Fortran. A task represents one execution of 

a particular tasktype. During execution of a Pisces Fortran program, many tasks of the same tasktype 
may be running in parallel in different clusters or in the same cluster. The INITIATE statement is used to 
initiate execution of a new task in a given cluster (see below). The programmer writes tasktype 
definitions, and then uses the INITIATE statement to control the number of tasks and their placement in 
clusters. 

A tasktype definition has the same general form as a Fortran subroutine except that "TASKTYPE" 
replaces "SUBROUTINE" in the heading. The last statement executed in a tasktype definition is a TER- 
MINATE statement (replacing the Fortran RETURN). 

The arguments for an execution of a task are taken from the message that caused the task to be ini- 
tiated (see the INITIATE statement below). The INITIATE message contains a sequence of values 
(integers, reds, characters, vectors, etc.). The list of arguments given in the TASKTYPE header specifies 
the local and COMMON variables that are to receive these values at the time the task is initiated. The 
argument-list in the TASKTYPE heading must match the argument-list in any INITIATE statement nam- 
ing that tasktype, in terms of number of values and their types. See the section on argument lists below 
for details. 

FLEX Implementation: 
The preprocessor converts a tasktype definition into a Fortran subroutine. Initiating a task of a 

given tasktype on a given cluster causes the corresponding Fortran subroutine to be executed as a "pro- 
cess" on the FLEX processor that serves as the primary processor for the cluster. Pisces maintains a block 
of data about each running task, called the "taskblock, which indicates the tasktype, inqueue. and various 
other information about the task. Process initiation is done with the FLEX CCcrp and CCrunp calls. 

Example: 
tasktype solver (a, b, c) 
integer a, b 
real c 
common /blkl/ a, c 

terminate 
end 

... 
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INITIATE Statements and Task Scheduling 

Purpose: 

tion in a particular cluster, or tk cluster may be left unspecified (and the Pisces system will schedule it). 
Initiate execution of a new task of a particular tasktype. The new task may be scheduled for execu- 

Syntax: 
INITIATE-statement = 

cluster-spec = "any" I "other" I "same" I "cluster(" cluster-number *')'' 

argument-list = -- see below 

cluster-number = -- standard Fortran integer-valued expression 

"on" cluster-spec "initiate" tasktype-name I"(" argument-list ")*'] 

Semantics: 
An INITIATE statement specifies that a task of a specified type is to be initiated on a specified clus- 

ter. The arguments to be passed to the new task are specified using the syntax described in the Argument 
Lists section below. The number and type of the arguments specified in the INITIATE statement argu- 
ment list must match the argument list specification given in the TASKTYPE heading for the tasktype 
being initiated. 

Scheduling tasks. Each task is scheduled to be run in a particular cluster when it is initiated. The 
cluster may be specified in one of several ways: 

1. CLUSTER(n). The programmer may specify the number of the cluster where the task is to be 
initiated, by an integer or integer-valued expression. 

2. ANY. Specifying the cluster as %ny" means the task may be initiated in any (system-chosen) 
cluster. 

3. OTHER. Specifying the cluster as "other" means the task may be initiated in any system-chosen 
cluster, other than the cluster running the task executing the INITIATE statement. 

4. SAME. Specifying the cluster as "same" means the task must be initiated in the same cluster as 
the task executing the INITIATE statement. 

There is no priority scheduling of tasks within a cluster. All tasks share the FLEX PE assigned to 
that cluster, using the FLEX MMOS-defined time-slicing algorithm. 

When an INITIATE statement is executed, an "initiate" message is created and forwarded to the 
task-controller of the designated cluster. If no cluster is explicitly specified, a system scheduler in the 
cluster of the initiating task determines the appropriate cluster and forwards the initiate message to the 
task-controller of that cluster. This task-controller determines when the task is actually initiated. At the 
time of initiation, the arguments designated in the INITIATE statement are passed to the new task. These 
arguments are a sequence of values, as described in the Argument Lists section below. 

FLEX Implementation: 
The FLEX implementation follows the semantics described above: execution of an INITIATE state- 

ment causes an "initt" message to be sent to the task-conmller of the designated (or system-chosen) clus- 
ter. The task-controller finds an available slot, sets up the taskblock for the task, and initiates the task as a 
FLEX process. If there is no slot available, the task controller waits until a slot is freed by the termina- 
tion of another task in the cluster. This activity is a l l  local within the PE assigned to the cluster. 
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The current scheduling algorithms for ANY or OTHER scheduling are trivial: the task is initiated in 
the 'hext" cluster in sequence, as defined by a call to pppcnxt (this cluster). No load balancing is 
attempted. 

Exumples: 
on cluster(2) initiate solver ( ~ 2 . 5 0 ,  pivot) 
on any initiate printa (vakl , vals2) 

TERMINATE Statement 

Purpose: 
Serves to terminate execution of a task. 

Syntax: 
TERMINATE-statement = "terminate" 

Semantics: 
The TERMINATE statement is the last statement executed by a task. The task terminates immedi- 

ately unless the task has split into a "force". If the task is a force, then TERMINATE terminates a secon- 
dary force member immediately when executed by the secondary force member. The primary force 
member waits to terminate until all secondary force members have terminated. 

Orphan messages. A message that remains in a task's inqueue when it terminates, or that arrives 
after a task has terminated, is called an "orphan message". Orphan messages found when a task ter- 
minates are reported to the user terminal. 

FLEX Implementation. 

heap. The FLEX process representing the task is then killed by issuing a Cckillp call. 
At termination of a task, all storage used by the task is returned to the free storage lists in the global 

TASKID'S AND TASK COMMUNICATION TOPOLOGY 

When a task is initiated, it is given a unique "taskid" of the form: 

<cluster-number, slot-number, unique-number, force-member-id> 

where the cluster-number and slot-number designate the particular cluster and slot in which the task is 
running. The unique-number differentiates the task from other tasks that have run previously or may run 
subsequently in the same slot. The force-member-id is always 0 for an ordinary task and non-zero for a 
secondary member of a task that has split into a force. 

A taskid is a datu value that can be stored in a variable, passed as an argument in a message, 
transmitted to a subroutine as an argument, printed, etc. Variables and arrays that store taskid's must be 
declared as type TASKID. 

Four functions may be applied to a taskid to retrieve its four parts: 
integer function pppgclu (taskid). Returns the cluster number part of the taskid. 
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integerfunction pppgslo (taskid). Returns the slot number part of the taskid. 
integer function pppguni (taskid). Returns the unique number part of the taskid. 
integer function pppgfor (taskid). Returns the force-member-id part of the taskid. 
These functions are predefined in Pisces Fo~tran and do not need to be declared as type INTEGER 

by the user. 

TASKID Declarations 

Purpose: 
Declare variables and arrays that are to store taskid's. 

Syntax: 
TASKID-declaration = "taskid" variable-list 

variable-list = -- list of Fortran variables and arrays, as in a REAL 
or INTEGER declaration 

Semantics: 
The declared variables and arrays may be used to store taskid's. 

FLEX Implementation: 

A TASKID declaration is translated into an INTEGER declaration in Fortran. 
A taskid is represented as a 32-bit integer, with 8 bits for each of the four components of the taskid. 

Example: 
taskid a, b, ~(10,201, d(100) 

Establishing a Communication Topology 
Taskid's are the basis for establishing the communication topology of a Pisces program (which 

tasks can send messages to which other tasks). The rule is: a task may only send a message to another 
task if it knows the taskid of the other task Alternatively a task may "broadcast" a message to all other 
tasks, or to all tasks within a particular cluster. 

When a task begins execution, it only knows its own taskid and the taskid of its parent task (the task 
that executed the INITIATE statement). Thus, without any other action by a task, the initial communica- 
tion topology is a directed me: children can send messages directly to their parent task only (but parents 
cannot send messages to their children.) 

From this initial starting point, the Pisces program generates the appropriate communication topol- 
ogy dynamically, by sending and broadcasting messages that contain taskid's, until each task knows the 
taskid's of every other task with which it must communicate. 

Example: 
Suppose task A initiates ten subtasks, each of which must communicate with all the others. To 

establish this topology each task would send a message containing it's own taskid to the parent task, A. 
Task A stores each received taskid in a TASKID vector. When all ten taskid's have been received, task A 
broadcasts the contents of the TASKID vector. Each of the child tasks accepts this message and stores 
the received taskid's in its own TASKID vector. The 11 tasks have now established a "complete connec- 
tion" topology, with each able to send messages to each of the others. 
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Predefined TASKID Variables and Functions. 
Taskid values may be obtained in several ways: 
PPPSELF variable. The TASKID variable "pppself' is predefined in every Pisces program unit. It 

contains the taskid of the task within which it is referenced. For example, executing the assignment: 

myid = pppself 

stores the taskid of the task executing the statement into variable myid (which must be declared to be of 
type TASKID). 

PPPGPAR function. The predefined TASKID function pppgpar (taskid) returns the taskid of the 
parent task of the argument task. For example: 

myparent = pppgpar (pppself) 

stores in variable "myparent" the taskid of the parent of the task executing the statement. 
PPPGJOB function. The "job" taskid is the taskid of the top-level task that was initiated directly by 

the user at the terminal. The predefined TASKID function pppgjob (taskid) returns the job taskid for the 
argument task. 

PPPGSEN function. The "sender" taskid is the taskid of the sender of the last message received by 
a task. Thus when task A accepts a message that came from task B, B's taskid is stored as the "sender" 
taskid for A until A accepts another message. The predefined TASKID function pppgsen (taskid) returns 
the sender's taskid for the argument task. 

Note: These functions may be applied by one task to a stored taskid of another task, but they will 
not return correct results if the other task has terminated at the time of the call. 

MESSAGE SEND AND ACCEPT 

Tasks, once initiated, communicate by sending and receiving messages. Sending and receiving are 
performed asynchronously. The sender does not wait for the receiver to acknowledge receipt of a mes- 
sage at the time a SEND statement is executed. Instead, the message is inserted in the receiver's 
"inqueue", where it waits until the receiver executes an appropriate ACCEPT statement to allow the mes- 
sage to be processed. If the message arrives after the receiver has already terminated, the message 
becomes an "orphan". 

The receiver can choose to treat any type of message as a SIGNAL, which means that no processing 
is done when the message is accepted, the message is simply counted and removed from the receiver's 
inqueue. Alternatively the receiver may process any type of message with a HANDLER, which is a sub- 
routine that performs the processing required at the time the message is accepted. 

The receiver of a message may never accept the message at all, in which case the message becomes 
an "orphan" when the receiving task terminates. 

SEND Statement 

Purpose: 
Send a message from one task to another. 

Syntax: 
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SEND-statement = "to" task-spec "send message-type ["(" argument-list ")"I 
task-spec = task-id-expression I "parent" I "sew 1 "sender" 

I "all" [''cluster('' integer-expression ")"I 
task-id-expression = -- a variable or function reference whose result is of type TASKID 

Semantics: 
A SEND statement specifies that a message is to be sent to a designated task or group of tasks. The 

argument-list is treated as described in the Argument Lists section below. The arguments are evaluated 
when the SEND statement is executed, a message is created containing copies of the argument values, 
and that message is forwarded to the task or task group specified in the task-spec. The message waits in 
the in-queue of the receiving task until that task executes an ACCEPT statement that allows the message 
to be pmessed. The sending task continues execution immediately after the message is created and sent; 
it does not wait for a response. 

The task-spec in the SEND statement specifies the task or group of tasks that are to receive a copy 
of the message. Ordinarily the recipient is specified directly by giving its task-id, which may be stored in 
a variable of type TASKID or be the result of a function such as pppgjob. Various special tags are used to 
specify tasks whose task-id's are known to the Pisces system: "parent" (same as the result of the function 
call pppgpar (pppself)), "self' (same as "pppself'), or "sender" (same as the xsult of the function call 

To broadcast a message to all tasks associated with the same job (excluding system-defined tasks), 
"all" is specified, or *'all clustefln)" to broadcast to all user tasks in a particular cluster. 

Messages are guaranteed to arrive reliably in the receiver's inqueue. If task A sends several mes- 
sages to the same recipient B, then A's messages will appear in B's inqueue in the order in which A exe- 
cuted the SEND statements. 

PPPgsen @PPself)). 

FLEX Implementation: 
A message is represented by a header and a linked list of packets. The header contains the sender's 

taskid, the message type, the length of the argument list, and a pointer to the list of packets. The packets 
contain the argument values. 

When task A sends a message to task B, task A allocates and fills a header and as many packets as 
are needed to contain the arguments. The header and packets are always in the FLEX common memory. 
These are linked together and then appended (linked) to the inqueue of the receiving task (also in com- 
mon memory.) 

Examples: 
to parent send tennin (myindx, emf) 
to sender send badval (x) 
to tidl send newmw (rowmax, mwidx, pppvl (b, 1,100)) 
to a l l  send converge (myid, eps) 

ACCEPT Statement 

Purpose: 
Specify that a certain number of messages of certain types are to be "accepted" and deleted from the 

task's inqueue. 

Syntax: The ACCEPT statement is multiple-line statement. Each of the lines that begin "accept", "delay", 
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and "end accept" must appear on a separate line. Also each of the message-type's must appear on a 
separate line. 

ACm-statement  = 
"accept" "all" or integer-expression "of' 

message-type 

message-type 
["delay" real-expression "then" 

[statement-sequence]] 
"end accept" 

or 
st accept" 

message-type ["all" or integer-expression] 

message-type ["all" or integer-expression] 
["delay" real-expression "then" 

"end accept" 
[ statement-sequence]] 

I 

message-type = -- as appears in a SEND statement 

statement-sequence = -- any Fortran statement sequence 

Semantics: 
An ACCEPT statement allows receipt of a specified number of messages of specified types. The 

types of messages are listed in the ACCEPT statement. 
The number of messages accepted when an ACCEPT statement is executed is specified in one of 

two ways: 
1. If an " O F  clause appears in the first line of the ACCEFT statement, then the OF clause count 

govern the number of messages accepted. The task will continue to process messages of any of the listed 
types until the OF clause count is satisfied (or until the "timeout" of the ACCEPT occurs, see below). If 
the OF clause specifies a count of "all", then all messages of the listed types that have been received are 
processed, and the task continues execution without waiting further. 

2. If no OF clause appears in the first line, then a count may be specified for each individual mes- 
sage type listed. If no message count follows a message type, then one message of that type is accepted. 
If the message count is "all", then all messages of that type in the in-queue of the task are accepted. If the 

ment, and the resulting number of messages of that type are accepted. A negative or zero count means no 
messages of that type are accepted. 

The task executing the ACCEPT declares each message-type as a SIGNAL or HANDLER. Each 
message accepted that is declared of a HANDLER type causes execution of one activation of the handler 
subroutine with that name. These activations are executed in sequence, depending on the order that the 
accepted messages appear in the task's inqueue. Each message accepted that names a SIGNAL is simply 
counted; a signal message invokes no other processing. 

1 

I 

I message count is an integer expression, then the expression is evaluated on entry to the ACCEPT state- 
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If the designated number of messages have not been received when the ACCEPT statement is exe- 
cuted, then all the received messages are accepted and processed, and the receiving task waits for the 
remaining messages to arrive. If "all" is specified for any message-type, then any messages of that type 
that axe in the inqueue when the ACCEPT is executed will be processed (messages that anive during exe- 
cution of the accept may not be processed, depending on the timing of the message anival). 

Timeout. An ACCEPT statement will always terminate, either when all the specified messages have 
been processed, or, if not all messages have anived, after a specified maximum wait for the remaining 
messages. The maximum delay is specified as a system default, or it may be given explicitly in the 
ACCEFT statement, as the value of a (real-valued) expression which gives the maximum delay in 
seconds. 

The value of this delay expression has the following meaning: all messages which have already 
arrived in the inqueue of the receiving task (and which the ACCEPT statement allows to be accepted) are 
processed. When all messages which can be accepted have been processed, the delay timing begins. If 
an acceptable message is received before the maximum delay has elapsed, this message is processed, and 
the delay timing begins anew. If the maximum delay elapses with no acceptable message received, then 
the specified "timeout" statement sequence is executed, or a system-generated timeout message is 
displayed. 

FLEX Implementation: 
The FLEX implementation of ACCEPT uses a single scan down the inqueue of the task. The type 

of each message in the inqueue is compared against each of the message types listed in the ACCEFT. If a 
match is found, the appropriate counters are decremented, and if the message-type has been declared a 
HANDLER, then the handler subroutine is called. If the end of the inqueue is reached before all the 
counts have been satisfied, the clock time is recorded and the task relinquishes the PE (a CCnextp call). 
When the task reawakens it checks the inqueue following the old end. If new messages have been 
received, it checks each new message against the ACCEFT list, and accepts any that can be accepted. If 
none are accepted, then the delay since the recorded clock time is determined, and the ACCEFT times out 
if the specified delay has been exceeded; otherwise the task again goes to sleep and the cycle repeats. 

This timeout algorithm guarantees that the task will wait for the desired messages at least as long as 
the specified delay value, but it may wait longer. 

Exumples: 
accept all of 
nextmw 

end accept 

accept 1 of 
enque 
deque 

endaccept 

accept 
tennin (all) 
converge 

delay 25.0 then 
to parent send error1 

endaccept 
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HANDLER and SIGNAL Declarations 

Purpose: 

acmpts. 

Syntax: 

Declare the type of processing required within a task for a particular message type that the task 

HANDLER-declaration = "handler" message-type, { , message-type} 

SIGNAL-declaration = "signal" message-type, { , message-type) 

Semantics: 
Each message-type that appears in an ACCEFf statement must be d e d d  as either HANDLER or 

SIGNAL in the program unit that contains the ACCEPT. Message-types declared as SIGNAL are simply 
counted and deleted fmm the inqueue of the task when they are accepted. Message-types declared as 
HANDLER are processed by calling a HANDLER subroutine of the same name as the message-type (see 
HANDLER subroutines below). 

FLEX Implementation: 
HANDLER declarations are translated into Fortran EXTERNAL declarations by the preprocessor, 

to force the necessary run-time linkages between the task and its handler subroutines. SIGNAL declara- 
tions are deleted from the Fortran code, but both declarations are used to guide correct translation of sub- 
sequent ACCEPT statements in the program unit. 

Examples: 
handler newrow, solve 
signal converge 

HANDLER Subroutines 

Purpose: 
A HANDLER is a Fortran subroutine for processing ("handling") messages of a certain type. 

Syntax: 
HANDLER-header = "handler" message-type ['I(" argument-list ")"I 
message-type = -- any Fortran name 

argument-list = -- see the Argument Lists section below 

Semantics: 
A handler is written as an ordinary Fortran subroutine, with "SUBROUTINE" replaced by 

"HANDLER in the heading. A handler is always part of some tasktype definition, in the same way that 
an ordinary subroutine is part of some main program definition in ordinary F o m .  

The name of a handler is always the same as the name of the message type that it processes. A 
handler is not CALL'ed in the usual way. It is executed when a task (of the tasktype associated with the 
handler) executes an ACCEPT statement to accept a message of the handler's type. 
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The handler does not have Fortran subroutine arguments. Instead the handler receives the argu- 
ments contained in the message that it is invoked to process. The "argument-list" in the handler heading 
lists the variables in the handler that are to receive these incoming values from the message. These 
argument-list variables may be COMMON variables or local variables in the handler. When the handler 
begins its execution, the incoming argument values have already been stored in the specified argument- 
list variables. The handler may then process these values in whatever way is appropriate. The argument- 
list in the handler heading must match the corresponding argument-list in the SEND statement that sent 
the message received by the handler, in terns of corresponding numbers and types of values transmitted. 

Often the purpose of a handler is simply to store the incoming argument values in COMMON 
blocks that are accessible to the task associated with the handler. Because the handler is not CALL'd by 
its associated task, the nonnal Fort~an subroutine argument list is not available as a means for the handler 
to send message values back to its associated task. Thus COMMON blocks must be used to store any 
values from the message that must be sent back to the handler's associated task. 

A handler may use any of the new statements and declarations defined below, except that a handler 
may not do an ACCEFT (Le., a handler may not invoke another handler to process a second message 
while it is still processing a first one). 

FLEX Implementation: 
A HANDLER definition is translated into a Fortran subroutine with two arguments, the "self' taskid 

of the invoking task and a pointer to the message to be processed. Fortran calls on handler subroutines 
are generated by the preprocessor during translation of ACCEFT statements. The "arg-list" in the handler 
heading is translated into a sequence of calls on the argument unpacking functions (see the discussion of 
arg-lists below). These calls are inserted by the preprocessor at the END DECLARATIONS position in 
the handler body, before the first executable statement of the handler body. 

E m p l e :  
handler newval (row, col, value) 

integer mw, col 
common /blk2/solution (100,200) 
end declarations 

solution (row, col) = value 
return 
end 

which stores the incoming value in the designated spot in the result matrix. An equivalent, but simpler, 
version is: 

handler newval (row, col, solution (row, col)) 
integer row, col 
common /blk2/solution (100,200) 
end declarations 

return 
end 
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ARGUMENT LISTS 

There are four different places where an argument list may appear in a Pisces Fortran program: 
SEND statements. 
INITIATE statements. 
TASKTYPE headers. 
HANDLER subroutine headers. 

The tern "argument-list" in Pisces Fortran refers to: 
1. The list of variables and arrays that contain values to be copied into a message when a SEND or 

INITIATE statement is executed (think of this list as the variables from which to gather the values to be 
sent). This list may also include literal values. 

2. The list of variables and arrays that are to receive the values contained in a SEND or INITIATE 
message when it is processed by the receiving task (think of this list as the variables into which to scatter 
the values received in the message. 

Syntax: 
The syntax for argument lists is the same in any of these four constructs. Because the Pisces Fortran 

preprocessor does not build a table.of type and dimension information for variables and arrays, the pm- 
grammer must provide this information as part of each argument list element. The specifications below 
can be combined into argument lists of any length by listing the specifications in sequence separated by 
commas. 

REAL, INTEGER, and LOGICAL Variables. A simple variable of one of these types occupies one 
word of storage. To specify in an argument list, just list the variable name. For example, to send REAL 
variables X and Y, you might write: 

to ... send unessage-type> (XI Y) 

COMPLEX and DOUBLE PRECISION Variables. A simple variable of one of these types occupies 
two words of storage. To specify in an argument list, write: 

"ppp2(" variable-name [, variable-name} '*)" 

For example, to send COMPLEX variables cmin and cmax, you might write: 

to ... send anessage-type> (ppp2 (cmin, cmax)) 

CHARACTER Variables. A simple variable of one of these types occupies one byte of storage for each 
character position in the variable. To specify in an argument list, write: 

"pppch(,, variable-name, first-char-posn, last-char-posn "Y, 

where the first and last character positions are specified by integer-valued expressions. For example, to 
send the first 10 characters of a CHARACTER variable charl, you might write: 

to ... send anessage-type> (pppch (charl, 1.10)) 
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REAL, INTEGER or LOGICAL Vectors. A vector (one-dimensional array) of one of these types 
occupies one word of storage for each element. To specify in an argument list, write: 

'*pppvl(,, variable-name, first-element, last-element [, stride] ")" 

where the subscripts of the first and last elements in the vector are specified by integer-valued expres- 
sions. The stride, if included, is an integer-valued expression that specifies the "stride" between vector 
elements to be included (the increment to be added to one subscript to get to the next subscript). If omit- 
ted the stride is assumed to be 1. For example to send the 5th through 20th elements of a REAL vector 
solnvect, you might write: 

to ... send anessage-type> (pppvl (solnvect, 5,20)) 

COMPLEX or DOUBLE PRECISION Vectors. These vector elements occupy two words of storage. 
Use the same specification as for one word vectors, but replace "pppvl" by "pppv2". For example, to 
send the 5th through 20th elements of a COMPLEX vector compvect, you might write: 

to ... send unessage-type> (pppv2 (compvect, 5.20)) 

REAL, INTEGER, or LOGICAL Matrices or Parts of Matrices. Elements of these matrices occupy 
one word of storage. You may specify an entire matrix or any rectangular subportion such as a row, 
column, or block of rows or columns. To specify a portion of a matrix, write: 

first-column-subscript, last-column-subscript ")" 
where integer-valued expressions may be used to specify each item except the matrix-name. The ##rows 
and #columns should be the declared dimensions of the matrix. The first and last TOW subscript expres- 
sions specify the range of rows to be included and the first and last column subscripts specify the range of 
columns to be included. For example, to send the 2nd row of a 10x20 matrix, tablel, you might write: 

"pppml(" matrix-name, #rows, #columns, first-row-subscript, last-row-subscript, 

Matrix values are sent and received in "column-major order" (normal Fortran order in which all values 
from the first column come first, then values from the second column, etc.) 

COMPLEX and DOUBLE PRECISION Matrices or Parts of Matrices. Use the same specification 
as for REAL matrices, but replace "pppml" by "pppmT to indicate that each matrix element occupies 
two words of storage. 

CHARACTER Vectors. To send al l  or part of a vector of character strings, write: 

where each item except the vector-name is specified by an integer-valued expression. The first and last 
element designations specify which elements to include. The declared-string-length specifies the number 
of characters declared to be in each element. For example, to send the 5th through 20th character strings 
in a vector declared as: CHARACI'ER stringtab (100)*25, you might write: 

"pppvch(" vector-name. first-element, last-element, declared-element-length ")" 

to ... send message-type> (pppvch (stringtab, 5,20,25)) 
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Semantics: 
The meaning of argument specifications depends on whether the argument list appears in a 

SENDDNITIATE statement or in a TASKTYPE/HANDLER heading. 
SENDIINITIATE. The value of each specified argument is copied into the argument list being 

formed for the message to be sent. For a SEND, the message is sent directly to the receiver. For an INI- 
TIATE, the message is sent to the task controller of the cluster, which passes the argument list on to the 
new task after its initiation. 

TASKZYPE/HMDLER. Each specified argument is assigned a new value taken from the message 
argument list. Values are copied from the message into receiving variables and arrays in the order 
specified in the argument list. 

FLEX Implementation: 
Each argument specification is translated into a sequence of calls on argument packing functions 

which fetch values from the specified argument variables and arrays and copy them into the packets of the 
message argument list. On the receiving end, the same functions copy values from the packets into the 
receiving variables and arrays. 

Only values are sent and received; no type or size information is included in the message (other than 
the overall length of the message). Thus it is the programmer's responsibility to insure that sender and 
receiver agree as to the number and type of values in the message. Note that the same SEND or INI- 
TIATE statement may generate a message of different length each time it is executed. An attempt to 
unpack more values than are received in a message, or unpacking fewer values than were received will 
generate a run-time error message. 

FORCES 

A "force" in Pisces Fortran is simply an ordinary task that has "split" into several "force members" 
that are running on different PE's and each executing the same tasktype definition. Forces are an altema- 
tive form of parallel execution, subordinate to the concept of task discussed in the preceding sections. 
Forces have several distinguishing characteristics: 

1. From the "outside", a task that has split into a force appears still to be a single task -- it has a 
unique taskid, inqueue, etc. It may send and accept messages from other tasks. There is no way that 
another task can tell whether a given task has split into a force. Thus the "force" or "not a force" distinc- 
tion is entirely an internal question about a task. 

2. Every task begins execution in the same way, as an ordinary task. A task splits into a force when 
it executes a FORCESPLIT statement (see below). After execution of a FORCESPLIT the task is com- 
posed of a set of force "members" running in parallel on separate PE's. No two members of the same 
force ever share the same PE. 

3. Members of a force are identified by a taskid with the same cluster-number, slot-number, and 
unique-number, but with a unique force-member-id. The original task continues execution after a FOR- 
CESPLIT as force-member O. The "secondary" force members that begin execution at the FORCESPLIT 
are given force-member numbers 1 -k. A force member can always obtain its force-member-id number by 
executing the predefined function pppgfor (pppself). 

4. The number (k above) of force members for a particular tasktype is not determined when the 
Pisces Fortran program is written, but when the configuration for a particular run of the program is set up 
(see Part 2 of this manual). Thus the program itself is independent of the number of force members. The 
program should run the same if a particular force has only one member or if it has 18 members (the max- 
imum size of a force on the FLEX). The size of a force affects only the speed of execution of the force, 
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not the results of that execution. 

not available to ordinary tasks. These constructs are described below. 
5. Forces may use shmd variables, baniers, parallel loops, and other program constructs that are 

FORCESPLIT Statement 

Purpose: 
Causes an ordinary task to split into a force. 

Syntax: 

A tasktype definition may contain only one FORCESPLIT statement, which cannot be part of any other 
statement (e.g., an IF or DO). The FORCESPLIT statement must appear in the main tasktype definition, 
not in a subroutine. 

FORCESPLIT-statement = " forcesplit" 

Semantics: 
When an ordinary task executes a FORCESPLIT, it "splits" into k identical copies running on 

separate FLEX PE's. Each of the copies begins execution at the point of the FORCESPLIT. These 
copies are called the force "members". 

The number k of copies is determined by the number of "secondary" PE's that have been assigned 
to the cluster within which the task is executing at the time of the FORCESPLIT. This number is deter- 
mined by the configuration chosen for a run of the program (see Part 2 of this manual), and may vary 
among clusters. Thus the number of force members depends on the cluster within which a task is ini- 
tiated. For example, if cluster 1 has been assigned 4 secondary PE's and cluster 2 has been assigned 16 
secondary PE's, then executing a task A (that executes a FORCESPLIT) in cluster 1 will cause a split into 
5 force members (primary plus 4 secondary members). If executed in cluster 2 the same task will split 
into 17 force members (primary plus 16 secondary members.) 

Each force member is assigned a force-member-id that uniquely identifies it. The original task con- 
tinues execution after the FORCESPLIT as force member 0. The other force members receive id's in 
sequence from 1-k, where k is the size of the force. Each force member can access the variable pppself to 
obtain its selfid, which contains the same cluster-number, slot-number and unique-number as other 
members of the same force, but contains the unique force-member-id of that force member. 

FLEX Implementation: 
Each force member is a separate FLEX process executing on one of the PE's assigned to the cluster. 

At the time a FORCESPLIT is executed by a task of tasktype A, a FLEX process of type A is initiated on 
each of the secondary PE's assigned to the cluster where the original task is executing. The preprocessor 
has inserted a branch at the beginning of each tasktype definition that checks the force-member-id at the 
start of execution and branches to the FORCESPLIT statement if the force-member-id is not 0. 

In the taskblock for a task, a flag is set indicating that the task has split into a force. The MMOS 
process id's assigned to each force member are retained in the taskblock while the force is executing. All 
force members share the same taskblock and inqueue. Thus force members are not treated as separate 
Pisces tasks, although they are executed as separate h4MOS processes. 

Example: 
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tasktype solver (a, b, c) 
... 

end declarations 
... 

forcesplit 
... 

terminate 

-- these statements are executed only by the primary force member 

-- these statements are executed by all force members 

end 

SHARED VARIABLES 

Members of the same force communicate with each other by using shared variables. Shared vari- 
ables are grouped into Fortran COMMON blocks and the entire COMMON block is placed in the FLEX 
common memory. Access to shared variables by separate force members must be synchronized by use of 
BARRIER or CRITICAL statements. 

SHARED Declarations Block 

Purpose: 

the FLEX common memory. 
Declare one or more Fortran COMMON blocks and related declarations that are to be placed into 

Syntax: 
SHARED-block = 

"shared" 

"end shared" 
<Fortran COMMON and other declarations> 

where the Fortran COMMON and declarations may be any declarations that may appear in a Fortran 
BLOCK DATA program unit (type declarations, PARAMETER'S, etc.). Use of DATA statements to ini- 
tialize shared variables is not recommended due to a FLEX software bug. See the discussion of the 
FLEX 'static variables' problem in Part 2 of this manual. 

Semantics: 

memory. 
The COMMON blocks that are specified in the SHARED block are allocated in the FLEX common 

FLEX Implementation: 
The entire set of declarations is translated into a Fortran BLOCK DATA unit, which is written to a 

file with the suffix ".sh.f'. This file is then compiled into a ".sh.o" file. The FLEX cf77 processor that 
builds a loadfile for a run uses this file to determine what COMMON blocks are to be allocated in the 
FLEX common memory. 

Example: 
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shared 
parameter (M=lO, N=20) 
real a1 (M, N), a2(200) 
common /blkl/al, a2, eps 
common /globaVid, next, soln 

end shared 

SYNCHRONIZATION: BARRIERS AND CRITICAL REGIONS 

Barriers and critical regions provide the means for force members to synchronize their activities, 
and, in particular, to synchronize their access to s h a d  variables. LOCK variables are used with CRITI- 
CAL statements to form critical regions. 

BARRIER Statement 

Purpose: 
Provide a banier synchronization point for all  members of a force. 

Syntax: 
BARRIER-statement = 

barrier" 
<Pisces Fortran statement sequence> 

"end barrier" 

Semantics: 
A BARRIER statement is only meaningll after a FORCESPLIT has been executed by a task. All 

force members pause and wait when they execute the BARRIER statement. When all force members 
have arrived at the banier, the primary force member (force-member-id = 0) executes the <statement 
sequence> within the barrier, and then all  force members continue their execution. For a secondary force 
member, the barrier seIves simply as a point at which execution pauses; secondary force members take no 
action during execution of a BARRIER statement. 

Deadlock or other synchronization errors may occur if BARRIER statements occur within condi- 
tional (IF) statements or other constructs that may cause some force members to skip execution of a par- 
ticular BARRIER. 

FLEX Implementation: 
Barriers are implemented using two counters, two locks, and two flags in the taskblock of the force 

task; there is no use of MMOS "events". Each force member "checks in" on amval at the barrier. When 
all members have arrived, the primary executes the <statement sequence> in the barrier. Each force 
member then "checks out" of the bamer. 

Example: 
bamer 

end barrier 
read (2,*) a, b, c -- read values into s h a d  variables 
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LOCK Declarations 

I 

Purpose: 
Declare variables and arrays to serve as "locks" for synchronizing access to shared variables. 

Syntax: 
LOCK-declaration = "lock" variable-list 

Variable-list = -- list of Fortran variables and arrays as in a REAL declaration 
The LOCK declaration may only appear within a SHARED block (Le., LOCK variables must be shared 
variables.) 

Semantics: 
Each variable and array element declared as type LOCK may be used as a lock on entry to a CRITI- 

CAL statement (see below). The program must set the initial state of each lock variable to "unlocked" by 
executing a pppunlk (<variable>) call before the lock is used. 

FLEX Implementation: 
The LOCK declaration is translated into a Fortran LOGICAL declaration. On the FLEX any vari- 

able or array element may be used as a lock. The LOCK declaration is a convenience declaration, but not 
required. For example, it is possible to use every other element of a vector as a lock for the preceding 
element. 

Example: 
lock queueptrs, solnlock 

CRITICAL Statements 

Purpose: 
Synchronize access to shared variables by force members. 

Syntax: 
CRITICAL-statement = 

"critical" lock-var 

"end critical" 
<statement sequence> 

lock-var = -- name of a LOCK variable or array element 
The <statement sequence> may include any Fortran or Pisces Fortran statements, including nested CRIT- 
ICAL statements. 

Semantics: 
When a force member arrives at a CRITICAL statement, it attempts to lock the designated lock- 

variable (ppplock function). The ppplock call does not return until the lock has been successfully locked. 
The force member then executes the <statement sequence> and the lock is unlocked. While one force 
member holds the lock, no other force member may enter the same CRITICAL statement (or any other 
CRlTICAL statement that names the same lock-variable.) 
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FLEX Implementation: 
Spinlocks art: cumntly used to implement locks. A bit within the lock variable is set to indicate 

that the lock variable is "locked". A test-and-set instruction on the FLEX PE is used to set the lock. The 
bit is set to zero to indicate the lock is "unlocked". If the bit is already set when a "lock" operation is 
attempted, the force member loops until the lock is unlocked (busy waiting). Since force members are 
guaranteed to run on different PE's, this busy waiting cannot keep another force member from unlocking 
the lock. 

Example: 
critical mylockl 

end critical 
<statements to change values in shared variables and arrays> 

PARALLEL LOOPS AND SEGMENTS 

Force members may cooperate to execute the iterations of loops in parallel. There are two basic 
ways of splitting up the iterations of a loop among force members, called "prescheduling" and "selfs- 
cheduling". The loop body is an ordinary Fortran DO loop body. 

1. Prescheduled loops. When a prescheduled loop is executed by a force of K memben, each 
member executes 1/K of the loop iterations (approximately). If the loop iterations have index values 1 to 
N, then force member 0 executes, in sequence, iterations 1, K+1,2*K+1, and so forth. Force member 1 
takes iterations 2, K+2,2*K+2, and so forth. 

2. Selfscheduled loops. When a selfscheduled loop is executed by a force of K members, each 
member executes the "next" iteration that has not been executed by some other force member, until all 
iterations have been completed. In the extreme, if one force member is running far ahead of the others, 
that force member may reach a selfscheduled loop and execute all the iterations before any other force 
members amve. In general, which iterations a particular force member executes will depend on the tim- 
ing of the arrival of that force member at the selfscheduled loop, and the speed with which it is able to 
execute each iteration assigned to it. 

PRESCHEDULED DO Loops 

Purpose: 

dividing the iterations. 
Provide parallel execution of loop iterations by a force, using the "prescheduling" technique for 

Syntax: 
PRESCHEDULED-DO-lWp = 

"presched do" <usual Fm DO loop heading> 
<loop body> 

where the end of the loop body is indicated by a statement number that appears in the loop heading, as 
with an ordinary Fortran DO loop. 

Semantics: 
The loop iterations are executed by the force members using the prescheduling method described 

above to divide the iterations. Each force member does approximately 1/K of the iterations. The pro- 
grammer is responsible to determine that the loop iterations can safely be executed in parallel. There is 
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no synchnization of force members on entry to or exit from a prescheduled loop -- one force member 
may have finished its share of the iterations and gone on before another force member arrives at the loop. 

FLEX Implementation: 
The preprocessor inserts a new initial value and stride for the loop index variable into the DO loop 

heading, based on the force-member-id of the executing force member and the size of the force. Thus 
when the loop is executed, each force member executes its iterations and skips those not assigned to it. 
There is essentially no run-time cost associated with using a prescheduled loop (over an ordinary Fortran 
DO loop). 

Example: 
presched do 10 i = 1,500 

a(i) = Mi) + 2 * c(i) 
10 continue 

If the force executing this statement has 10 members, then each member executes 50 iterations. 

SELFSCHEDULED DO Loops 

Purpose: 

iterations among force members. 
Allow force members to execute loop iterations in parallel, using "selfscheduling" to divide the 

Syntax: 
SELFSCHEDULED-DO-statement = 

"selfsched do" <Ftn DO loop heading> 

"end selfdo" 
<loop body> 

where the <Ftn DO loop heading> does not include a <statement numben for the end of the loop. 

Semantics: 
Each force member requests the next unassigned value of the loop index and then executes the loop 

body with that index value. After execution of the loop body, the force member requests the next unas- 
signed value of the loop index. Each force member continues to request loop index values until all itera- 
tions are executed. 

FLEX Implementation: 
The initial loop index value, final value, and stride are computed and stored in the taskblock of the 

task. Each force member "checks in" to the loop, and then loops, requesting an index value and executing 
an iteration, until all  iterations are complete. To get the next index value. the index is locked, incre- 
mented, and unlocked. On loop termination, each force member checks out of the loop. No force 
member can enter the next selfscheduled loop until all have left the previous one. 

Example: 
selfscheddoi= 1,100 

end selfdo 
a(i) = Mi) + 2 * c(i) 
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PARSEG Statement 

Purpose: 
Provide for parallel execution of arbitrary program segments by force members. 

Syntax: 
PARSEG-statement = 

" parseg" 
<statement-sequence- 1 > 

<statement-sequence-2> 
"nextseg 'I 

"nextseg" 

"endseg " 
... 

where as many segments as desired may be included. Each segment is a sequence of ordinary Fortran or 
Pisces Fortran statements. 

Semantics: 
Execution of the <statement-sequence>'s is divided among force members in a "prescheduled" 

manner. That is, if there are K force members, force member 0 executes, in sequence, sequence 1, 
sequence K+1, sequence 2*K+1, and so forth. Force member 1 takes sequences 2, K+2, 2*K+2, etc. 
There is no synchronization of force members on entry or exit to a PARSEG statement. The programmer 
is responsible to insure that the segments can correctly be executed in parallel. 

FLEX Implementation: 
The preprocessor generates an appropriate computed GOT0 to send each force member in turn to 

its assigned segments. There is essentially no run-time overhead associated with parallel execution of a 
PARSEG. 

Example: 

P a w 3  
i = nextmw 
call rowsolver (i, vect, 1, 100) 

call printout (matrix, eps, solnvect) 

to task27 send tryagain 

do 10 k = 1,100 

nextseg 

nextseg 

nextseg 

10 continue 
endseg 

bal(i) = 0.0 
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TABLE OF PREDEFINED VARIABLES, FUNCTIONS AND SUBROUTINES 

Serf taskid variable. 
pppself: taskid of a task, when referenced within the tasktype definition or a subroutine (pfsub). 

Cluster number functions. 
integer function pppcmin(): return the smallest cluster number in the configuration being used. 

integer function pppcmaxo: returns the largest cluster number in the configuration being used. 

integer function pppcnxt(<cluster-numben): return the next larger cluster number (modulo # clusters) 
after <cluster-numben, in the configuration being used. 

Taskid component functions. 
integer function pppgclu (taskid): returns the cluster number part of the taskid. 

integer function pppgslo (taskid): returns the slot number part of the taskid. 

integer function pppguni (taskid): returns the unique number part of the taskid. 

integer function pppgfor (taskid): retums the force-member-id part of the taskid. 

Lock and unlock subroutines. 
subroutine pppunlk (variable): set the variable to the "unlocked" state. 

subroutine ppplock (variable): wait until the variable is in the "unlocked" state 
and then set the variable to the "locked" state. 

Taskid functions. 
taskid function pppgpar (taskid): returns the taskid of the parent task of the argument taskid. 

taskid function pppgjob (taskid): returns the taskid of the 'job' task (top-level task) 

taskid function pppgsen (taskid): returns the taskid of the sender of the last message accepted 

for the argument taskid. 

by the argument taskid. 

Task termination subroutine. 
submutine pppkill (taskid): terminate execution of the specified task, including a l l  force members. 
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real v e c t l o ,  vec t20 ,  sum 
integer mw, col, length 
enddeclarations * 

* Form the inner product * 
sum = 0.0 
do 10 i = 1,length 

sum = sum + vectl(i)*v&(i) 
10 continue * 
* Send message with result to parent * 

to parent send newval (row, col, sum) 
terminate 
end 
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EXAMPLE 2: Normalize a Matrix; Using a Force. 

* 
* This program normalizes a square matrix by its largest element. 
* It represents a Pisces Fortran version of the Force demo program 
* in the FORCE USER'S MANUAL (Jordan, Benton, Arenstorf, U. Colo., 
* Oct. 1986). 
* Printing of the result matrix has been suppressed, and additional 
* intermediate printouts have been added. 
* The use of asynchronous variable ALLMAX in the original version has 
* been replaced by an equivalent shared variable 'allmax' and lock 
* variable 'maxlock' in the Pisces version. 
* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

tasktype demo * 
* Parameter N represents the matrix size. User modifiable. * 

shared 
parameter (N=lO) 
common x(N, N), allmax, maxlock 
lock maxlock 
real allmax, x 

end shared 
real pmax. tem 
end declarations * 

* Only the primary task begins execution here 
* Initialize shared variables before forcesplit 

print *, 'Begin force demo ...' 
allmax = 0 
call pppunlk (maxlock) 

fo rcespli t 

* 

* 
* 
* Force is running now; secondary force members start here * 

id = pppgfor (pppself) 
print *, 'Begin forcemember ', id * 

* Generate test matrix * 
pfcaU intmat (x, N) * 

* Search matrix for its greatest element * 
pmax = 0 * 

* Each force member finds max of its share of'& mbs;>ooi;?d in pmax * 
" 

* 
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pesched do 100 i = 1, N 
print *, 'Loop 1: Member ', id, ' takes TOW ', i 
do 200 j = 1, N 

tem = abs(x(ij)) 
if (tem .gt. pmax) pmax = tem 

200 continue 
100 continue 

* Force members communicate to place global max in allmax 
* 
* 

critical maxlock 
print *, 'In critical section, member = ', id, 

if (pmax .gt. allmax) Wax = pmax 
& ' Pmax = *, pmax, 'Allmax = ', allmax 

end critical * 
* Wait until final global maximum has been determined * 

barrier 

endbarrier 
pmax = allmax 

print *, 'Global max = ', allmax 

* 
* Normalize the matrix; each force member takes its shae of cows * 

if (pmax .gt. 0) then 
presched do 300 i = 1, N 

do 400j = 1, N 
print *, 'Loop 2: Member ', id, * takes row ', i 

x(ij) = x(iJ)/pmax 
400 continue 
300 continue 

* Wait for everyone to finish 

barrier 
endbanier 

* 
* 

endif * 
* And print the result matrix 
* A PARSEG is used to insure that only one force member prints the result * 

P-g 

endseg 
terminate 
end 

call outmat (x, N) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* Sequential subroutine to print result matrix 
* 

* 
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Subroutine outmat (x, N) 
integer N 
real x(N, N) 
write (6,*) 'printing of r e s ~ s  suppressed' 

* do 1Oi= l , N  
* do l O j  = l , N  
*10 write (6, *) i, j, x(ij) 

return 
end 

* 
* Parallel subroutine to generate test matrix * 

pfsub intmat (mat, N) 
integer N 
real mat(N,N), gen 
enddeclarations * 

* Divide the work of generating the rows among force members * 
presched do 20 i = 1, N 

do 30j = 1, N 
mat(ij) = gen(ij) 

30 continue 
20 continue 

return 
end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 
* Function to generate a test matrix value * 

real function gen(ij) 
integer i, j 
if ((i+j) .ge. 1) then 

gen = lOOO.O/(i+j) 
else 

gen= 1000.O 
endif 
return 
end 
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PISCES USER'S MANUAL: PART 2 

THE CONFIGURATIONENVIRONMENT 

The Configuration Environment is the part of the Pisces system that is used to create and edit 
configuration liles. The Configuration Environment also allows the user to load and execute a program 
on the FLEX132 -- an action that leads to the run-time environment described in Part 3. 

WHAT IS A CONFIGURATION FILE? 
A configuration file is just a file of data that describes the various options that you have chosen for a 

particular nm of a Pisces Fortran program on the FLEX. Included in a configuration file are the various 
elements described in the paragraphs below. A configuration file is created by the Configuration Envimn- 
ment, and then may be saved and reused as needed for later runs of your program on the FLEX. An exist- 
ing configuration file can be edited and saved under a new name. Thus, by editing a configuration file 
repeatedly, you can create configurations for many different runs (with different uses of the FLEX 
resources). 

You don't need to know anyhng about the structure of a configuration file -- the Configuration 
Environment reads and writes these files for you automatically, as required by your response to the vari- 
ous prompts described below. 

WHAT IS A LOADFILE? 
A loadfile is a file of executable code and data that can be downloaded to one or more of the FLEX 

PE's available for a parallel computation. A loadfile contains: 
1. The object files (".o" files) resulting from preprocessing and compiling the parts of your Pisces 

Fortran program. 
2. The Pisces run-time library routines and the Pisces execution environment routines needed to 

execute your program. 
3. Additional library routines containing the FLEX MMOS operating system that controls each PE 

during program execution. 
A major step in creating a configuration for a run is to create an appropriate loadfile for the run. 

This loadlile is created automatically by the Configuration Environment after you have specified some 
particulars (described in 3. below). You don't have to know anything about how to construct a loadfile -- 
the Configuration Environment will do this for you automatically. 

ENTERING THE CONFIGURATION ENVIRONMENT 
When running under Unix, type the command: 
Pisces 

A series of menus and prompts will appear that allow you to create and/or edit a configuration file. 
On entry to the configuration environment, you will be asked if you want to use an existing 

configuration file. If you have already created a configuration file in a previous session and simply want 
to edit it, answer "yes". You will be prompted for the configuration file name, and then the existing 
configuration will be displayed for you to check or edit. 

If you are not editing an existing configuration file, answer "no" at the prompt. You will be given 
the "default" configuration as a starting point. 
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CONFIGURATION OPTIONS 
The following paragraphs provide a detailed explanation of the various options available through 

the configuration environment menu. You are first shown the full current configuration. By choosing the 
appropriate number for the option, you may edit any of the options displayed. 

1. PROGRAM NAME/COMMENT. A comment line that can be used to identify your 
configuration file. 

2. TIME LIMXT. The time limit for execution of the run on the FLEX. The time limit is in 
minutes. Upon expiration of the time limit, you are summarily kicked off of the FLEX PE's that you are 
using for your parallel computation, and you are returned to the Pisces configuration environment. This 
time limit is converted to seconds and inserted in the "mmrun" command generated by Pisces when you 
actually execute your program. 

3. LOADFILE CREATION. The configuration display shows only the name of the loadfile, if you 
have already specified one, and the FLEX PE's that are specified for loading when the loadfile is used. If 
you have created a loadfile during a previous session, you can reuse the same loadfile in another 
configuration, provided that you have not recompiled any of your Fortran programs and have not changed 
the set of FLEX PE's that you want loaded. If you have made either of these changes, you must create a 
new loadfile. 

If you choose Option 3, you are led through a series of prompts that request the information needed 
to construct a loadfile: 
a. 

b. 

C. 

d. 

e. 

OBJECT FILE NAMES. A table is displayed that contains a l l  the names of your ".o" files that will 
be included in the loadfile when it is created. You can changes these entries as required. In 
response to the prompts, enter the names of the ".o" files that contain all of the parts of your Pisces 
Fortran program that you want included in the loadfile. 
TASKTYPE NAMES. A table is displayed that contains all the tasktype names that your program 
is known to use. During execution of your program, these are the ONLY types of tasks that your 
program can initiate or that can be initiated by you directly from the terminal. In general this table 
must contain the names of all the tasktypes defined in your program. 
FLEX PE's TO LOAD. A table of options is displayed that shows the possible choices of sets of 
FLEX PE's to be loaded with this loadfile when your program is run. Choose a subset of PE's that 
is at least as large as you will need for any run with this loadfile (you can run without actually using 
all the loaded PE's, but you cannot expand the set of PE's you use after the loadfile is created). 
LOADFILE NAME. You are asked for the Unix filename to be used for the loadfile when it is 
created. 
DO YOU WANT TO CREATE THE LOADFILE? This prompt gives you the option of stopping 
the loadfile creation process without actually generating the loadfile. If you have forgotten to 
preprocess/compile one of your Pisces Fortran files, or if for some other reason you choose not to 
create the loadfile, you can return to the main Configuration Environment menu at this point. The 
information entered in steps a-d will be retained in the configuration file for later editing. 
Loadfile creation is the longest step in creating a configuration for a run. You will see the FLEX 

"cf77" command appear that shows that loadfile creation is underway. Several minutes may elapse. m e  
FLEX cf77 processor is searching various MMOS libraries for the MMOS operating system, and then is 
making the linkages between your Fortran program, the Pisces library routines, and the MMOS routines.) 
If the loadfile is successfully created, the main Pisces configuration menu will reappear. If not, you will 
get messages from the FLEX loader about "undefined external symbols", and then the Pisces menu will 
again reappear. If an undefined external symbol is the name of an array, function, or subroutine in your 
program, you have a Fortran error. Exit the configuration environment, fix the error, and reenter to try 
loadfile creation again. 
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4. I " IAL TASWCLUSTER. You may enter a cluster number and tasktype name. A task of that 
type will be initiated on that cluster whenever you run the program with this configuration. The initial 
task is initiated automatically as m n  as the execution of your program on the FLEX PE's begins. 

If you specify no initial tasktype name, execution of your program will not begin until you expli- 
citly initiate a task of the appropriate type by using the appropriate run-time menu option (see Part 3 of 
this manual). However the Pisces clusters Will be set up as you specify in your configuration, and the task 
controllers for the clusters will be initiated as usual; it is only the initiation of your first program task that 
will be delayed until you request it through the run-time menu. 

5. TRACE OPTIONS. Pisces provides a number of options for tracing significant "events" during 
execution of your parallel program. currently the "events" include: 

Task initiation. 
Task termination. 
Message send. 
Message accept. 
Lock a lock. 
Unlock a lock. 
Entry to a barrier. 
Split of a task into a "force". 

The event type (e.g., INITIATE). 
The taskid of the task(s) involved 
The current clock time (in '%cks") of the PE running the task. 
Other information appropriate to the event type. 

Tracing one of these types of events means generating an output line that contains: 

For each type of trace "event", you can choose one of the following actions to occur each time such an 
event happens during program execution: 

Generate no trace output. 
Generate a trace line, and display it on the terminal. 
Generate a trace line, and write it to the "tracefile". 
Generate a trace line, and both display it and write it to the tracefile. 

Every task that your program initiates has its own set of trace option settings. In the configuration menu, 
you set the initial option settings for all tasks. During execution of the program, you can change the set- 
tings for a particular task, or change the initial settings for all new tasks. 

6. TRACEFILE NAME. If you choose to send trace output to a file, you can enter a file name here, 
or use the default tracefile name 'ppptrace'. Only one tracefile is used per run. After the run you can look 
at the trace output in various ways by using the UNx utility "grep", or your favorite editor, with the 
tracefile. 

7. CLUSTER CONFIGURATION. This option provides the facility for mapping the Pisces "virtual 
machine" to the actual FLEX PE's that you want to use for a run. For each Pisces cluster that your pro- 
gram uses, you specify: 
a. 
b. 

CLUSTER NUMBER. An integer in the range 1-25 currently. 
PRIMARY FLEX PE. One FLEX PE is chosen to serve as the "primary" PE for the cluster. The 
FLEX PE's are currently numbered 3-20. Any FLEX PE can be assigned to any cluster, but only to 
one cluster. This PE will be the processor that actually executes each task that is initiated within 
that cluster. 
NUMBER OF SLOTS. You choose the number of "slots" available for running your tasks in the 
cluster. The number of slots restricts the number of tasks that can be simultaneously initiated on the 
FLEX PE. Each running task takes a slot. If all slots are filled, then an attempt to initiate a new 

c. 
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task will be held by the task controller of the cluster until some task terminates and a slot is freed. 
Task controllers run in system-provided slots and are not included in this slot count. 
SECONDARY FLEX PE's. You choose a set of zero or more FLEX PE's to sefve as "secondary" 
PE's to run forces that arr: initiated within the cluster. The same numbering (3-20) of the FLEX 
PE's is used in this specification. Any PE can be a secondary PE for any cluster, regardless of 
whether it is also a primary PE for another cluster (a PE cannot be both primary and secondary for 
the same cluster, by definition). 
The secondary PE's a ~ .  used only when a task running in a cluster executes a "FORCESPLIT". At 
that time, a new task of the same type is initiated on each secondary PE assigned to that cluster, and 
each new task begins execution at the point of the FORCESPLIT. These new force members do not 
xun in slots on the secondary PE's, but they do increase the number of concumnt tasks that are shar- 
ing the PE. 
When specifying the configuration information for the clusters used by your program, you may 

specify each cluster individually, but usually it is more convenient to specify a range of cluster numbers 
that each have the same basic configuration. The Configuration Environment requests the first and last 
cluster numbers in the range. You then specify the FLEX PE to be used as the primary PE for the first 
cluster. The remaining clusters are assigned the next FLEX PE's in sequence. Each cluster gets the same 
number of slots and is assigned the same set of secondary FLEX PE's. 

d. 

NOTE: The primary and secondary PE's assigned to a Pisces cluster must be included in the set of PE's 
that will be loaded with the loadfile when your program is xun (see Option 3 above). 

TERMINATING A CONFIGURATION EDITING SESSION 
After each modification to the configuration, the new configuration is redisplayed. When you are 

satisfied with the settings for all options, you can leave the editing session by choosing the "all ok" option 
(0). You are now given a chance to save the configuration in a configuration file, either a new file or the 
same one with which you began the editing session. 

RUNNING A PISCES FORTRAN PROGRAM 

configuration. If you choose to run the program, sevenl additional steps are taken: 
a. 

You are finally asked whether you want to run the program for which you have just created the 

CONFIGURATION CHECKING. A comprehensive set of tests are applied to your configuration to 
insure that it is valid. Two kinds of emr messages art produced during this checking: 
ERROR: m e s s a g e  -- indicates that the program cannot be run using your specified configuration. 
You are returned to the configuration environment for repairs. 
WARNING: message> -- indicates that your program is executable, but the configuration may 
cause execution errors. 
WAIT QUEUE STATUS. The FLEX utility 'mmstat' is invoked to list the current queue of users 
waiting to run FLEX parallel programs. You can check the length of the queue and the time limits 
of the jobs in the queue before you decide to continue and put your job into the queue. 
If you request program execution after seeing the wait queue, your loadfile will be taken as the input 

to an "mmrun" command, which causes your job to be placed in the wait queue. When you reach the 
head of the queue, your loadfile is downloaded to all the FLEX PE's specified in your loadfile 
configuration. 

After downloading is complete, program execution begins on the FLEX PE specified as the 
system-defined main PE (usually the FLEX PE with the lowest number of those that you have loaded). 
The Pisces run-time environment plays the role of the overall main program for each run (your tasks are 
initiated as sub-tasks of the Pisces run-time environment). The Pisces run-time environment is described 

b. 
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in Part 3 of this manual. 
After you terminate execution of your program, or the specified time limit expires, you are kicked 

off of the FLEX MMOS PE's, and control return to the Pisces configuration environment. You can edit 
your configuration again, run again, or leave the Pisces configuration environment. 

THE FLEX "STATIC VARIABLES" BUG 
Configurations that use clusters with multiple slots or that use one PE as primary or secondary for 

more than one cluster will generate a WARNING message about the "FLEX Static Variables bug". The 
problem is a potential source of execution errors in Fortran and C programs. 

You can use configurations that generate this warning message, but you must be careful NOT to ini- 
tiate two tasks of the same tasktype on the same FLEX PE at the same time (either in two slots of the 
same cluster or using forces whose members use the same secondary PE's). If you use the same Fortran 
subroutine in several tasktypes, or if you use C routines with STATIC variables, your program is also 
vulnerable to emrs whenever tasks or force members run on the same PE and use these subroutines or 
static variables. 

The cause of the problem lies in the FLEX implementation of Fortran and C static variables (all 
Fortran local variables; C variables declared 'static'). The loadfile for your program contains only a sin- 
gle copy of each of these variables (one memory location reserved statically). Thus, after loading the 
FLEX PE's, each of these variables exists at a unique, statically assigned, location in the local memory of 
each FLEX PE. Each time a task or force member is initiated, it uses this same location in local memory. 
If, while one task is running on a PE, a second task begins to run on the same PE and uses the same vari- 
able, then the tasks will interfere with each other -- each will be fetching and storing from the same local 
variable location, without protection from the other. The result will be subtle, timing dependent, errors in 
program execution. 

To avoid the problem, either choose a configuration that does not generate the WARNING message 
(one slotkluster and no overlap of secondary PE sets for different clusters), or be sure your program does 
not initiate tasks or force members that run in parallel on the same PE and that might use the same static 
variables. 

DATA Statements in Fortran. The same problem will make DATA statements troublesome for ini- 
tializing local variables. The first task of a particular tasktype to be run will see the correct initial values. 
A later task of the same tasktype will see the values left by execution of the first task, rather than the 
expected initial values set by a DATA statement. RULE: Use assignment statements rather than DATA 
statements to initialize local variables in Pisces Fortran on the FLEX. 

Note that this is a FLEX bug, not a Pisces bug. Unfortunately there seems to be no reasonable way 
to correct it without major changes in the FLEX MMOS operating system. 
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PISCES USER’S MANUAL: PART 3 

THERUN-TIMEENVIRONMENT 

The Pisces Run-time Environment provides facilities for the programmer to monitor and control the 
execution of a Pisces Fortran program on the FLEX PE’s. The various commands a~ described below. 

INITIALIZATION OF A RUN 
After downloading of a loadfile to the FLEX PE’s, the Pisces run-time environment takes control of 

the system-defined main PE (usually the PE with the lowest number of those loaded). First the data struc- 
tures describing the various Pisces clusters are initialized in shared memory, using the values specified in 
the configuration file for the run. Then a task controller task is initiated on each PE that is to be the pri- 
mary PE for some cluster. 

Subsequently, the run-time environment displays a menu to the user, listing the various command 
options available. The user may choose a command, which is executed, and the menu is re-displayed. If 
the configuration file specified an initial tasktype and cluster, then the user need take IW action -- the 
specified task will be initiated automatically just before the run-time menu is displayed for the first time. 

RUN-TIME MENU OFITONS 
The current run-time menu options are: 
0. TERMINATE THE RUN. The Pisces system shuts down. AU running tasks and forces are ter- 

minated. If the user program has open files due to tasks that have not terminated correctly, then Pisces 
termination may not cause successful FLEX job termination. If the final Pisces message: 

Pisces system terminates. 

is not followed immediately by the FLEX message: 
Program execution completed. 

then it may be necessary to hit BREAK and terminate the job abnormally (answer ‘yes’ to the ’Do you 
want. .. ’ question). 

1. INITIATE A TASK. The user is asked for the tasktype and cluster number. An INITIATE mes- 
sage is sent to the task controller of that cluster, exactly as if the initiate request were generated by execu- 
tion of an INITIATE statement in the program. 

2. TERMINATE A TASK. The user is asked for the cluster and slot number of the task to be ter- 
minated. Termination is not guaranteed to be safe unless the task is not actively accepting or sending 
messages (Le., messages may be garbled). Termination frees the slot in which the task is running. 

3. SEND A MESSAGE. The message type and the receiver’s cluster number and slot are requested. 
The message cannot have arguments (Le., it looks like a SIGNAL). The message is sent to the designated 
task, exactly as if it had been sent with a SEND statement in the program. 

4. DISPLAY RUNNING TASKS. A display is produced that shows the running tasks in each clus- 
ter, including the task controllers and user initiated tasks. From this display, you can determine the clus- 
ter number and slot where each task is running (for use in other commands). 

5. DUMP SYSTEM STATE. A full dump of the entire system state is generated, including free 
space lists, the heap, the state of every cluster, each running task, etc. More information than you usually 
want to see. 
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I 6. DUMP MESSAGE QUEUE. The cluster number and slot of the task are requested. A detailed 
display of the in-queue contents of that task is generated, including message types, free space lists, etc. 

7. EDIT TRACE OPTIONS. You may choose to edit the trace settings for a particular task, or for 
all new mks initiated after the changes axe made. The options for settings and events to trace are exactly 
as in the configuration menu. 

1 ' -  
TRACE OUTPUT DISPLAY DURING EXECUTION 

If you have chosen to have trace output displayed on the terminal during program execution, you 
will find the output intennixed with the displays generated by the Pisces run-time environment. The 
result can be confusing. Try hitting RETURN repeatedly to single step through trace output without gen- 
erating any new Pisces displays. Usually it is easiest to use displayed trace output to check the progress 
of a run, but then also send the output to a tracefile for detailed analysis after the run. 

TRACE OUTPUT INTERPRETATION 

The trace file produced by a run contains timing information in each output line, in the form: 

ticks=<PE numben/<ticks count> 

Each FLEX PE has its own clock and the clocks are not synchronized. Thus timing comparisons acmss 
PE's are usually not accurate. The "tick" measured by the FLEX clocks is equal to 20 milliseconds. 

The Unix utility "grep" is a convenient way to pull only particular trace lines out of a tracefile. For 
example, to list all trace output produced on PE 9, use: 

To list all the TERMINATE lines, use: 
grep "ticks=9" <trace file> 

grep "TERMINATE" <tracefile> 

STORAGE MANAGEMENT 

Storage management for tasks and messages is handled dynamically during program execution. 
The implementation attempts to minimize hotspots and locking of shared memory. If you dump the sys- 
tem state (run-time option 5 )  during Pisces execution, you will see the major features of the storage 
management organization, including the amount of storage available on each free space list and in the 
global heap block. For this reason, it is useful to have an overview of how Pisces manages storage during 
execution. 

TYPES OF FREE SPACE 
The Pisces system uses only three types of blocks of free space: 
a. TASK BLOCKS. A task block is allocated to each running task to contain information about the 

b. MESSAGE HEADERS. Every message has a header that contains infomation about the sender 

c. MESSAGE ARGUMENT PACKETS. If a message carries argument data values, then those 

current state of that task. 

and receiver of the message, the message type, etc. 

values are stored in a linked list of 'packets'. 
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Because there are only three types of free space blocks, separate free space lists are maintained for 
each type of block. During program execution, all free blocks are recovered and reused, with a single 
exception: argument packets on broadcast messages are not recovered. Storage management requires 
relatively little run-time overhead -- management is via explicit allocation and return; there is no garbage 
collection or use of reference counts. 

LOCAL FREE SPACE LISTS 
Each task maintains two local free space lists: one for message headers and one for argument pack- 

ets. When a message is accepted, the header and any argument packets are returned to the local free 
space list of the receiving task. When a message is sent, the header and packets (if any) are taken from 
the sending task’s local free space lists. 

GLOBAL FREE SPACE LISTS 
The global ’heap’ contains three free space lists: for task blocks, for message headers, and for argu- 

ment packets. 
When a task controller initiates a task, it takes a task block from the global taskblocks list. Upon 

termination of the task, its taskblock is returned to the global list. 
When an individual task sends a message, it gets the header and argument packets from its local free 

space lists. If one of these is empty, then a group of headershackets are taken from the global list and 
made into a new local list. 

When an individual task terminates, or if its local free space lists become too long, then 
headen/packets are returned to the appropriate global free space lists. 

This organization was chosen so as to minimize contention for the global lists, which must be 
locked whenever blocks are allocated or returned. When message passing is fairly evenly distributed, 
most tasks are able to allocate message headers and packets from their local lists, without going to the 
global lists at all. When message passing is more unbalanced, tasks that collect too many headers or 
packets return the excess to the global lists periodically. 

GLOBAL FREE BLOCK 
All storage for taskblocks, headers, and packets is initially part of a large ’global free space block’ 

of FLEX common memory. This block is allocated by an AMOS ‘CCalloc’ request (the current block 
size is displayed as part of the system state dump). When storage blocks are required, and the appropriate 
global free space list is empty, then new blocks are carved out of this large block to satisfy the allocation 
request. 

When the global free block is exhausted, another CCalloc call is made to get a new one. No storage 
is ever returned to the global free block. 

READING THE SYSTEM STATE DUMP 
The system state dump (run-time option 5 )  begins with a display of infomation about the global 

free space lists and the global free block: the number of items in each list, the current size of the global 
block, and the initial size of each block when requested from CCalloc. The status of the various locks is 
also shown. 

The total common memory allocation for the entire program execution to that point is also 
displayed. This total includes the size of a small initial block allocated for the Pisces top-level system 
information, and the sum of the sizes of all the global free blocks allocated so far. It does not include 
common memory allocated for shared variables in user programs. 

The length and lock status of the local free lists of each task running in a cluster is shown as part of 
the display for each cluster. The same information is also shown for the task controllers. 
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Besides providing information about overall storage use, the dump can tell you some things about 
parallel activity during program execution. For example, the length of the global taskblocks list after a 
task completes execution tells you how many subtasks were every actually running simultaneously during 
execution of that task. In a recent run of the MATMUL demo program with large matrices (50x50) there 
were 2500 inner product tasks spawned by the main task, but after the run was complete, there wefe only 
two taskblocks in the global free list. Since the main task used one of those, no inner product tasks were 
ever running simultaneously. Conclusion: the inner product tasks were too 'lightweight' -- the execution 
time of one was shorter than the time to build and send the message to initiate the next one (so the task- 
block used by the first returned to the free space list in time to be allocated to the next task). 
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