
NASA Contractor Report 178334

ICASE INTERIM REPORT 2

PISCES 2 USER'S MANUAL

Terrence W. Pratt

NASA Contract No. NAS 1-1 8 107
July 1987

(E A S A - C B - 1 7 8 3 3 4) P I S C E S 2 UEEKS 8ANUAL ~8 7-2 6 554
(hASA) 44 p Avai l : ElIS f3f A G 3 1 B E A01

CSCL 098
Unclas

63/61 00879C6

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

Nabonal Aeronautics and
Space Admnistrafion

Ln0kY-w
Hampton, Wgnm 23665

https://ntrs.nasa.gov/search.jsp?R=19870017141 2020-03-20T09:46:49+00:00Z

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many years. The blue reports are intended as preprints of
research that has been submitted for publication in either rcfcrced journals or
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed form. It will bc used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibliographies, and for computer
software. The Interim Reports will receive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

Robert G. Voigt
Director

i

TABLE OF CONTENTS

Introduction
PISCES 2
Acknowledgements

Part I : Pisces Fortran and the Preprocessor

The Preprocessor

Pisces Fortran
Syntax descriptions
Restrictions
Use of upper and lower case
Significant spaces
Fortran inpuVoutput
DATA statements

Overall Program Structure
PFSUB subroutines and PFCALL statements
END DECLARATIONS statement

Clusters, Slots, and Task Controllers
Cluster numbers and cluster number functions
Task controllers

Task Definition, Initiation, and Termination
TASKTYPE definitions
INITIATE statements and task scheduling
TERMINATE statement

Taskid's and Task Communication Topology
TASKID declarations
Establishing a communication topology
Predefined TASKID variables and functions

Message Send and Accept
SEND statement
ACCEPT statement
HANDLER and SIGNAL declarations
HANDLER subroutines

Argument Lists

Forces
FORCESPLIT statement

Shared Variables
SHARED declarations block

2

4
4
4

5
5
5

8
9
9

10

10
10
11
14
14

16

18
19

20
20

Synchronization: Barriers and Critical Regions
BARRIER statement
LOCK declarations
CRITICAL statements

Parallel Loops and Segments
PRESCHEDULED DO loops
SELFSCHEDULED DO loops
PARSEG statement

Table of Predefined Variables, Functions and Subroutines

Example Programs
Example 1: Matrix multiply; using tasks and message passing
Example 2: Normalize a matrix; using a force

Part 2 : The Configuration Environment

What is a Configuration File?
What is a Loadfile?
Entering the Configuration Environment
Configuration Options
Terminating a Configuration Editing Session
Running a Pisces Fortran Program
The FLEX "Static Variables" Bug

Part 3: The Run-time Environment

Initialization of a Run
Run-time Menu Options
Trace Output Display during Execution
Trace Output Interpretation
Storage Management
Types of free space
Local free space lists
Global free space lists
Global free block
Reading the system state dump

21
21
22
22

23
23
24
25

26

27
27
30

33
33
33
34
36
36
37

38
38
39
39
39
39
40
40
40
40

iV

.

INTRODUCI'ION

PISCES (Parallel Implementation of Scientific Computing Environments) is a "virtual" computer
system intended for the solution of large scale problems in scientific and engineering computation. It is
l.?sed on the use of MIMD parallel cornputation to achieve high computation rates. The "virtual" system
includes a programming environment and programming language that can be implemented on a variety of
underlying operating systems and machine architectures. Because the software provides an abstract "vir-
tual machine" to the user, the precise details of the hardware and lower levels of operating system
software are of concern to the user primarily when "tuning" a program to improve its performance.

PISCES 2
PISCES 2 is the version of the PISCES environment and language for the Flexible FLEW2 com-

puter system. This manual describes the PISCES 2 system as it is currently implemented at NASA Lang-
ley Research Center. The system consists of three major components:

1. Pkces Fortran and the Preprocessor. The applications programmer writes programs in a version
of Fortran 77 that includes extensions for parallel computation. These extensions include tasktype
definitions, task initiation and termination, message passing among tasks, "forces" consisting of several
parallel tasks executing the same program text, shared variables, and other constructs.

A preprocessor converts a Pisces Fortran program into a standard Fortran 77 program. The parallel
programming constructs of Pisces Fortran are converted into mofe complex sets of ordinary Fortran state-
ments and declarations, together with calls on procedures in a Pisces run-time library that implement the
run-time actions necessary for the parallel constructs. Part 1 of this manual describes the Pisces Fortran
extensions and use of the preprocessor.

2. The Conjiguration Environment. When the user has created and successfully compiled a Pisces
Fortran program, the command "pisces" brings up the PISCES configuration environment. This envimn-
ment provides a series of menus that allow the user to build or edit a configuration for a particular run. A
menu also drives the creation of an appropriate loadfile for the run. The configuration includes an execu-
tion time limit, trace settings for execution monitoring, and related information, in addition to a mapping
from the virtual machine to the actual FLEX hardware. Part 2 of this manual describes the PISCES
configuration environment.

3. The Execution Environment. If the user requests program execution from the configuration
environment, the loadfile is downloaded to the appropriate set of FLEX PE's, and control transfers to the
PISCES execution environment, a program that runs on the "main" FLEX PE. This program displays a
menu with various options for controlling and monitoring the execution of the Pisces Fortran program.
Part 3 of this manual describes the PISCES execution environment.

Acknowledgements
Although the details of the PISCES design and implementation are entirely the author's, design

ideas have come from many souTces. Harry Jordan of the University of Colorado is responsible for the
concept of a "force" and the associated declarations and statements. Piyush Mehrotra of Purdue Univer-
sity is responsible for developing the basic concepts of "windows" as a mechanism for remote access to
data. Other staff members and visitors at ICASE, esp. Merrell Patrick, Loyce Adams, Tom Crockett, and
Bob Voigt, have contributed numerous suggestions. Nancy Fitzgerald and Jeff Taylor, together with the
author, constructed the earlier PISCES 1 implementation for an Apollo workstation network and the DEC
VAX under Unix.

This work was supported in part by NASA Grant 1467-1 and Virginia CIT Grant INF-86-01 to the University
of Virginia and in part by NASA Contract No. NASI-18107 while the author was in residence. at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23665.

PISCES USER'S MANUAL: PART 1

PISCES FORTRAN AND THE PREPROCESSOR

This part details the syntactic and semantic extensions to Fortran 77 for the "Pisces Fortran" pro-
gramming language, as implemented on the FLEX/32.

The Preprocessor

A preprocessor is used to translate Pisces Fortran into standard Fortran 77, which is then compiled
by the standard UNIX Fortran compiler (f77). A small library of additional run-time routines are needed
to support calls inserted by the preprocessor into the Fortran code. The FLEX Concurrent Fortran (cf77)
preprocessor is NOT used by Pisces.

A Pisces Fortran program may be created in one or more Unix files. Standard Fortran 77 routines
may be included along with routines that use the Pisces Fortran extensions described below. Ordinary
Fortran routines may be compiled using the Unix Fortran compiler, ff77 (on the FLEX). Routines that
use Pisces Fortran extensions must be preprocessed. Files containing Pisces Fortran routines, or contain-
ing a mixture of Pisces Fortran and Fortran 77 routines, must have names that end in ".pf'.

The preprocessor is named "pfpp" (Pisces Fortran preprocessor). To use the preprocessor to
translate and compile a file <filename>.pf, at the Unix prompt, type:

pfpp <filename> NOTE: Don't include the ".pf' in the name.

The preprocessor will find the file cfilename>.pf in your local directory, preprocess it to produce a file
named <filename>.f, and then use ff77 to compile this file to produce an object file named <filename>.o.
All files are left in your local directory. If your program uses shared variables, there will also be a file
named <filename>.sh.o left in your directory.

You can look at the translation from Pisces Fortran to ordinary Fortran in the file <filename>.f.
Pisces Fortran statements have been turned into comment lines that begin with "****" and are immedi-
ately followed by the Fortran 77 lines generated by the preprocessor for that statement.

If you wish to compile a Pisces Fortran program using special options on the Fortran 77 compiler
call (such as code optimization), you can delete the <filename>.o file produced by the preprocessor and
call ff77 with your options and the <filename>.f produced by the preprocessor. Currently the preproces-
sor calls ff77 with the Unix command:

ff77 -c <filename>.f

Pisces Fortran

The new Fortran statements and declarations for parallel processing in Pisces Fortran are described
below, beginning with the constructs associated with tasks and message passing, and ending with the con-
structs associated with "forces".

2

SYNTAX DESCRIPTIONS

standard BNF notation are:
The syntax of the extensions is described using a slightly modified BNF notation. The extensions to

(1) '7 ...]*I indicates an optional element,
(2) "(...)" indicates repetition of an element zero or more times, and
(3) a quoted element must appear exactly as written.

RESTRICTIONS

In order to avoid conflict with user chosen names, the following are resewed for use by Pisces:
The Pisces Fortran preprocessor must generate various Fortran identifiers and statement numbers.

1. All names that begin with "ppp ...".
2. Statement numbers greater than 73000.

USE OF WPER AND LOWER CASE
Fortran is a single-case language (Le., all letters are converted to a single case on input, except in

quoted strings). In keeping with Unix Fortran style, lower-case is standard for programming in Pisces
Fortran.

SIGNIFICANT SPACES
Pisces Fortran syntax does NOT follow the Fortran convention of allowing spaces to be left out

within statements; spaces are 'significant' in Pisces Fortran extensions. In general, the parts of a Pisces
Fortran statement must be separated by at least one space unless the next character is a special character.
For ewzmple:

pfcall subl(a) -- valid

pfcallsubl(a) -- invalid

FORTRAN INPUT/OuTpuT

other than the standard input and output files:
Ordinary Fortran 77 UO statements may be used in Pisces Fortran. To READ or WRITE from a file

1. Execute the statement:
call setcpu (1)

or
call setcpu (2)

before the file is opened.

the full Unix path as the filename. For example:
open (unit=9, file='/usr/u2/twp/datafile')

-- on lrcflx (use file system attached to PE 1)

-- on csmflx (use file system attached to PE 2)

2. OPEN the file, using the standard Fortran OPEN statement (not the Concurrent Ftn OPEN) with

3

DATA STATEMENTS
Due to a peculiar bug in the FLEX software, use of Fortran DATA statements to initialize variables

in Pisces Fortran is not recommended. See the discussion of the FLEX 'static variables' problem in Part
2 of this manual.

OVERALL PROGRAM STRUCTURE

A program is written as a set of program units of the following types:
Taslctype definitions.
PF subroutines (Ftn 77 routines that contain Pisces Fortran extensions).
Handlers (subroutines for processing messages).
Fortran 77 subroutines and functions.

There is no PROGRAM unit (main program) in a Pisces Fortran program. These program units may be
stored in Unix files in any convenient arrangement.

PFSUB subroutines and PFCALL statements.

Fortran 77 subroutine. Replace the word "subroutine" in the header by "pfsub:
In general, the Pisces Fortran statements and declarations described below may be included in any

pfsub <name> (<formal arguments>)

and then instead of the usual Fortran "call" statement, use a "pfcall"

pfcall <name> (<actual arguments>)

A Fortran FUNCTION subprogram cannot use Pisces Fortran extensions (including PFCALL's). Each
PFSUB subroutine must, of course, be preprocessed by "pfpp".

END DECLARATIONS Statement
Every program unit that uses Pisces Fortran extensions (TASKTYPE, PFSUB, HANDLER units)

must have an "end declarations" statement included between the last declaration and the first executable
statement. For example:

pfsub sub1 (argl, arg2)

integer a, b, c
end declarations
if (argl .eq. 1) then

-- last declaration

-- first executable statement

4

CLUSTERS, SLOTS, AND TASK CONTROLLERS

l -
I

The PISCES virtual machine is organized into one or more "clusters" of processing resources. The
precise set of resources assigned to each cluster varies from machine to machine, from cluster to cluster,
and cn the FLEX even from run to run (because the programmer controls this assignment on the FLEX to
soine extent, see Part 2 below.) On the FLEX, a cluster consists of one "primary" PE and a set of "secon-
dary" PE's.

Within a cluster, each task IUI~S in a particular numbered "slot". The slot is chosen by the system at
the time the task is initiated. While a task is running, the pair <cluster number/slot numben uniquely
identifies it within the system.

The programmer chooses the number of clusters and slots to use before each run of the program, as
part of the "configuration" chosen for that run (see Part 2 of this manual.) A maximum of 18 clusters may
be used on the FLEX (because 18 PE's are available). A cluster may have as many slots as desired. Lim-
iting the number of slots in a cluster limits the number of tasks that may be simultaneously competing for
use of the FLEX PE assigned to the cluster.

CLUSTER NUMBERS AND CLUSTER NUMBER FUNCI'IONS
Clusters are identified by "cluster numbers", small positive integers. On the FLEX the programmer

chooses how many clusters to use for a particular run, and assigns them numbers in the range 1-25.
Within a Pisces Fortran program. three functions may be used to retrieve the cluster numbers being

used for clusters in the current run of the program. These functions allow a program to be written without
knowledge of the precise set of cluster numbers to be used:

integer function pppcrnino: returns the smallest cluster number in the configuration being used

integer function pppcmaxo: retums the largest cluster number in the configuration being used

integer function pppcnxt(cc1uster-numben): returns the next larger cluster number (modulo # clusters)
after <cluster-numben, in the configuration being used

Functions pppcmin, pppcmax, and pppcnxt are predefined and do not need to be declared as type
INTEGER in the user program.

TASK CONTROLLERS
Within each PISCES cluster, a system-defined task called a task controller is used to control and

monitor the operation of the cluster. A task controller for each cluster is initiated automatically on system
startup (at the beginning of a run on the FLEX). The task controller initiates each user task that runs in
that cluster. This initiation is done in response to "initiate" messages from other user tasks or the user at
the terminal, as explained below.

TASK DEFINITION, INITIATION, AND TERMINATION

At the top-level, every Pisces Fortran program is structured as a set of one or more tasks that carry
out the computational work. The programmer defines a set of "tasktypes" in the program. A task of a
particular tasktype may be created by executing an INITIATE statement. A task terminates by executing
a TERMINATE statement. These tasks communicate by passing messages, as discussed in the next sec-
tion; there are no shared variables among tasks.

TASKTYPE Definitions

Purpose:
Provide a name and argument list for a tasktype definition (program Unit).

Syntax:
TASKTYPE-heading = "tasktype" tasktype-name ["(It argument-list ")"I
tasktype-name = -- any valid Fortran subroutine name

argument-list = -- see below

Semantics:
A task is the largest unit of program execution in Pisces Fortran. A task represents one execution of

a particular tasktype. During execution of a Pisces Fortran program, many tasks of the same tasktype
may be running in parallel in different clusters or in the same cluster. The INITIATE statement is used to
initiate execution of a new task in a given cluster (see below). The programmer writes tasktype
definitions, and then uses the INITIATE statement to control the number of tasks and their placement in
clusters.

A tasktype definition has the same general form as a Fortran subroutine except that "TASKTYPE"
replaces "SUBROUTINE" in the heading. The last statement executed in a tasktype definition is a TER-
MINATE statement (replacing the Fortran RETURN).

The arguments for an execution of a task are taken from the message that caused the task to be ini-
tiated (see the INITIATE statement below). The INITIATE message contains a sequence of values
(integers, reds, characters, vectors, etc.). The list of arguments given in the TASKTYPE header specifies
the local and COMMON variables that are to receive these values at the time the task is initiated. The
argument-list in the TASKTYPE heading must match the argument-list in any INITIATE statement nam-
ing that tasktype, in terms of number of values and their types. See the section on argument lists below
for details.

FLEX Implementation:
The preprocessor converts a tasktype definition into a Fortran subroutine. Initiating a task of a

given tasktype on a given cluster causes the corresponding Fortran subroutine to be executed as a "pro-
cess" on the FLEX processor that serves as the primary processor for the cluster. Pisces maintains a block
of data about each running task, called the "taskblock, which indicates the tasktype, inqueue. and various
other information about the task. Process initiation is done with the FLEX CCcrp and CCrunp calls.

Example:
tasktype solver (a, b, c)
integer a, b
real c
common /blkl/ a, c

terminate
end

...

6

INITIATE Statements and Task Scheduling

Purpose:

tion in a particular cluster, or tk cluster may be left unspecified (and the Pisces system will schedule it).
Initiate execution of a new task of a particular tasktype. The new task may be scheduled for execu-

Syntax:
INITIATE-statement =

cluster-spec = "any" I "other" I "same" I "cluster(" cluster-number *')''

argument-list = -- see below

cluster-number = -- standard Fortran integer-valued expression

"on" cluster-spec "initiate" tasktype-name I"(" argument-list ")*']

Semantics:
An INITIATE statement specifies that a task of a specified type is to be initiated on a specified clus-

ter. The arguments to be passed to the new task are specified using the syntax described in the Argument
Lists section below. The number and type of the arguments specified in the INITIATE statement argu-
ment list must match the argument list specification given in the TASKTYPE heading for the tasktype
being initiated.

Scheduling tasks. Each task is scheduled to be run in a particular cluster when it is initiated. The
cluster may be specified in one of several ways:

1. CLUSTER(n). The programmer may specify the number of the cluster where the task is to be
initiated, by an integer or integer-valued expression.

2. ANY. Specifying the cluster as %ny" means the task may be initiated in any (system-chosen)
cluster.

3. OTHER. Specifying the cluster as "other" means the task may be initiated in any system-chosen
cluster, other than the cluster running the task executing the INITIATE statement.

4. SAME. Specifying the cluster as "same" means the task must be initiated in the same cluster as
the task executing the INITIATE statement.

There is no priority scheduling of tasks within a cluster. All tasks share the FLEX PE assigned to
that cluster, using the FLEX MMOS-defined time-slicing algorithm.

When an INITIATE statement is executed, an "initiate" message is created and forwarded to the
task-controller of the designated cluster. If no cluster is explicitly specified, a system scheduler in the
cluster of the initiating task determines the appropriate cluster and forwards the initiate message to the
task-controller of that cluster. This task-controller determines when the task is actually initiated. At the
time of initiation, the arguments designated in the INITIATE statement are passed to the new task. These
arguments are a sequence of values, as described in the Argument Lists section below.

FLEX Implementation:
The FLEX implementation follows the semantics described above: execution of an INITIATE state-

ment causes an "initt" message to be sent to the task-conmller of the designated (or system-chosen) clus-
ter. The task-controller finds an available slot, sets up the taskblock for the task, and initiates the task as a
FLEX process. If there is no slot available, the task controller waits until a slot is freed by the termina-
tion of another task in the cluster. This activity is a l l local within the PE assigned to the cluster.

7

The current scheduling algorithms for ANY or OTHER scheduling are trivial: the task is initiated in
the 'hext" cluster in sequence, as defined by a call to pppcnxt (this cluster). No load balancing is
attempted.

Exumples:
on cluster(2) initiate solver (~ 2 . 5 0 , pivot)
on any initiate printa (vakl , vals2)

TERMINATE Statement

Purpose:
Serves to terminate execution of a task.

Syntax:
TERMINATE-statement = "terminate"

Semantics:
The TERMINATE statement is the last statement executed by a task. The task terminates immedi-

ately unless the task has split into a "force". If the task is a force, then TERMINATE terminates a secon-
dary force member immediately when executed by the secondary force member. The primary force
member waits to terminate until all secondary force members have terminated.

Orphan messages. A message that remains in a task's inqueue when it terminates, or that arrives
after a task has terminated, is called an "orphan message". Orphan messages found when a task ter-
minates are reported to the user terminal.

FLEX Implementation.

heap. The FLEX process representing the task is then killed by issuing a Cckillp call.
At termination of a task, all storage used by the task is returned to the free storage lists in the global

TASKID'S AND TASK COMMUNICATION TOPOLOGY

When a task is initiated, it is given a unique "taskid" of the form:

<cluster-number, slot-number, unique-number, force-member-id>

where the cluster-number and slot-number designate the particular cluster and slot in which the task is
running. The unique-number differentiates the task from other tasks that have run previously or may run
subsequently in the same slot. The force-member-id is always 0 for an ordinary task and non-zero for a
secondary member of a task that has split into a force.

A taskid is a datu value that can be stored in a variable, passed as an argument in a message,
transmitted to a subroutine as an argument, printed, etc. Variables and arrays that store taskid's must be
declared as type TASKID.

Four functions may be applied to a taskid to retrieve its four parts:
integer function pppgclu (taskid). Returns the cluster number part of the taskid.

8

integerfunction pppgslo (taskid). Returns the slot number part of the taskid.
integer function pppguni (taskid). Returns the unique number part of the taskid.
integer function pppgfor (taskid). Returns the force-member-id part of the taskid.
These functions are predefined in Pisces Fo~tran and do not need to be declared as type INTEGER

by the user.

TASKID Declarations

Purpose:
Declare variables and arrays that are to store taskid's.

Syntax:
TASKID-declaration = "taskid" variable-list

variable-list = -- list of Fortran variables and arrays, as in a REAL
or INTEGER declaration

Semantics:
The declared variables and arrays may be used to store taskid's.

FLEX Implementation:

A TASKID declaration is translated into an INTEGER declaration in Fortran.
A taskid is represented as a 32-bit integer, with 8 bits for each of the four components of the taskid.

Example:
taskid a, b, ~(10,201, d(100)

Establishing a Communication Topology
Taskid's are the basis for establishing the communication topology of a Pisces program (which

tasks can send messages to which other tasks). The rule is: a task may only send a message to another
task if it knows the taskid of the other task Alternatively a task may "broadcast" a message to all other
tasks, or to all tasks within a particular cluster.

When a task begins execution, it only knows its own taskid and the taskid of its parent task (the task
that executed the INITIATE statement). Thus, without any other action by a task, the initial communica-
tion topology is a directed me: children can send messages directly to their parent task only (but parents
cannot send messages to their children.)

From this initial starting point, the Pisces program generates the appropriate communication topol-
ogy dynamically, by sending and broadcasting messages that contain taskid's, until each task knows the
taskid's of every other task with which it must communicate.

Example:
Suppose task A initiates ten subtasks, each of which must communicate with all the others. To

establish this topology each task would send a message containing it's own taskid to the parent task, A.
Task A stores each received taskid in a TASKID vector. When all ten taskid's have been received, task A
broadcasts the contents of the TASKID vector. Each of the child tasks accepts this message and stores
the received taskid's in its own TASKID vector. The 11 tasks have now established a "complete connec-
tion" topology, with each able to send messages to each of the others.

9

Predefined TASKID Variables and Functions.
Taskid values may be obtained in several ways:
PPPSELF variable. The TASKID variable "pppself' is predefined in every Pisces program unit. It

contains the taskid of the task within which it is referenced. For example, executing the assignment:

myid = pppself

stores the taskid of the task executing the statement into variable myid (which must be declared to be of
type TASKID).

PPPGPAR function. The predefined TASKID function pppgpar (taskid) returns the taskid of the
parent task of the argument task. For example:

myparent = pppgpar (pppself)

stores in variable "myparent" the taskid of the parent of the task executing the statement.
PPPGJOB function. The "job" taskid is the taskid of the top-level task that was initiated directly by

the user at the terminal. The predefined TASKID function pppgjob (taskid) returns the job taskid for the
argument task.

PPPGSEN function. The "sender" taskid is the taskid of the sender of the last message received by
a task. Thus when task A accepts a message that came from task B, B's taskid is stored as the "sender"
taskid for A until A accepts another message. The predefined TASKID function pppgsen (taskid) returns
the sender's taskid for the argument task.

Note: These functions may be applied by one task to a stored taskid of another task, but they will
not return correct results if the other task has terminated at the time of the call.

MESSAGE SEND AND ACCEPT

Tasks, once initiated, communicate by sending and receiving messages. Sending and receiving are
performed asynchronously. The sender does not wait for the receiver to acknowledge receipt of a mes-
sage at the time a SEND statement is executed. Instead, the message is inserted in the receiver's
"inqueue", where it waits until the receiver executes an appropriate ACCEPT statement to allow the mes-
sage to be processed. If the message arrives after the receiver has already terminated, the message
becomes an "orphan".

The receiver can choose to treat any type of message as a SIGNAL, which means that no processing
is done when the message is accepted, the message is simply counted and removed from the receiver's
inqueue. Alternatively the receiver may process any type of message with a HANDLER, which is a sub-
routine that performs the processing required at the time the message is accepted.

The receiver of a message may never accept the message at all, in which case the message becomes
an "orphan" when the receiving task terminates.

SEND Statement

Purpose:
Send a message from one task to another.

Syntax:

10

SEND-statement = "to" task-spec "send message-type ["(" argument-list ")"I
task-spec = task-id-expression I "parent" I "sew 1 "sender"

I "all" [''cluster('' integer-expression ")"I
task-id-expression = -- a variable or function reference whose result is of type TASKID

Semantics:
A SEND statement specifies that a message is to be sent to a designated task or group of tasks. The

argument-list is treated as described in the Argument Lists section below. The arguments are evaluated
when the SEND statement is executed, a message is created containing copies of the argument values,
and that message is forwarded to the task or task group specified in the task-spec. The message waits in
the in-queue of the receiving task until that task executes an ACCEPT statement that allows the message
to be pmessed. The sending task continues execution immediately after the message is created and sent;
it does not wait for a response.

The task-spec in the SEND statement specifies the task or group of tasks that are to receive a copy
of the message. Ordinarily the recipient is specified directly by giving its task-id, which may be stored in
a variable of type TASKID or be the result of a function such as pppgjob. Various special tags are used to
specify tasks whose task-id's are known to the Pisces system: "parent" (same as the result of the function
call pppgpar (pppself)), "self' (same as "pppself'), or "sender" (same as the xsult of the function call

To broadcast a message to all tasks associated with the same job (excluding system-defined tasks),
"all" is specified, or *'all clustefln)" to broadcast to all user tasks in a particular cluster.

Messages are guaranteed to arrive reliably in the receiver's inqueue. If task A sends several mes-
sages to the same recipient B, then A's messages will appear in B's inqueue in the order in which A exe-
cuted the SEND statements.

PPPgsen @PPself)).

FLEX Implementation:
A message is represented by a header and a linked list of packets. The header contains the sender's

taskid, the message type, the length of the argument list, and a pointer to the list of packets. The packets
contain the argument values.

When task A sends a message to task B, task A allocates and fills a header and as many packets as
are needed to contain the arguments. The header and packets are always in the FLEX common memory.
These are linked together and then appended (linked) to the inqueue of the receiving task (also in com-
mon memory.)

Examples:
to parent send tennin (myindx, emf)
to sender send badval (x)
to tidl send newmw (rowmax, mwidx, pppvl (b, 1,100))
to a l l send converge (myid, eps)

ACCEPT Statement

Purpose:
Specify that a certain number of messages of certain types are to be "accepted" and deleted from the

task's inqueue.

Syntax: The ACCEPT statement is multiple-line statement. Each of the lines that begin "accept", "delay",

11

and "end accept" must appear on a separate line. Also each of the message-type's must appear on a
separate line.

ACm-statement =
"accept" "all" or integer-expression "of'

message-type

message-type
["delay" real-expression "then"

[statement-sequence]]
"end accept"

or
st accept"

message-type ["all" or integer-expression]

message-type ["all" or integer-expression]
["delay" real-expression "then"

"end accept"
[statement-sequence]]

I

message-type = -- as appears in a SEND statement

statement-sequence = -- any Fortran statement sequence

Semantics:
An ACCEPT statement allows receipt of a specified number of messages of specified types. The

types of messages are listed in the ACCEPT statement.
The number of messages accepted when an ACCEPT statement is executed is specified in one of

two ways:
1. If an " O F clause appears in the first line of the ACCEFT statement, then the OF clause count

govern the number of messages accepted. The task will continue to process messages of any of the listed
types until the OF clause count is satisfied (or until the "timeout" of the ACCEPT occurs, see below). If
the OF clause specifies a count of "all", then all messages of the listed types that have been received are
processed, and the task continues execution without waiting further.

2. If no OF clause appears in the first line, then a count may be specified for each individual mes-
sage type listed. If no message count follows a message type, then one message of that type is accepted.
If the message count is "all", then all messages of that type in the in-queue of the task are accepted. If the

ment, and the resulting number of messages of that type are accepted. A negative or zero count means no
messages of that type are accepted.

The task executing the ACCEPT declares each message-type as a SIGNAL or HANDLER. Each
message accepted that is declared of a HANDLER type causes execution of one activation of the handler
subroutine with that name. These activations are executed in sequence, depending on the order that the
accepted messages appear in the task's inqueue. Each message accepted that names a SIGNAL is simply
counted; a signal message invokes no other processing.

1

I

I message count is an integer expression, then the expression is evaluated on entry to the ACCEPT state-

12

If the designated number of messages have not been received when the ACCEPT statement is exe-
cuted, then all the received messages are accepted and processed, and the receiving task waits for the
remaining messages to arrive. If "all" is specified for any message-type, then any messages of that type
that axe in the inqueue when the ACCEPT is executed will be processed (messages that anive during exe-
cution of the accept may not be processed, depending on the timing of the message anival).

Timeout. An ACCEPT statement will always terminate, either when all the specified messages have
been processed, or, if not all messages have anived, after a specified maximum wait for the remaining
messages. The maximum delay is specified as a system default, or it may be given explicitly in the
ACCEFT statement, as the value of a (real-valued) expression which gives the maximum delay in
seconds.

The value of this delay expression has the following meaning: all messages which have already
arrived in the inqueue of the receiving task (and which the ACCEPT statement allows to be accepted) are
processed. When all messages which can be accepted have been processed, the delay timing begins. If
an acceptable message is received before the maximum delay has elapsed, this message is processed, and
the delay timing begins anew. If the maximum delay elapses with no acceptable message received, then
the specified "timeout" statement sequence is executed, or a system-generated timeout message is
displayed.

FLEX Implementation:
The FLEX implementation of ACCEPT uses a single scan down the inqueue of the task. The type

of each message in the inqueue is compared against each of the message types listed in the ACCEFT. If a
match is found, the appropriate counters are decremented, and if the message-type has been declared a
HANDLER, then the handler subroutine is called. If the end of the inqueue is reached before all the
counts have been satisfied, the clock time is recorded and the task relinquishes the PE (a CCnextp call).
When the task reawakens it checks the inqueue following the old end. If new messages have been
received, it checks each new message against the ACCEFT list, and accepts any that can be accepted. If
none are accepted, then the delay since the recorded clock time is determined, and the ACCEFT times out
if the specified delay has been exceeded; otherwise the task again goes to sleep and the cycle repeats.

This timeout algorithm guarantees that the task will wait for the desired messages at least as long as
the specified delay value, but it may wait longer.

Exumples:
accept all of
nextmw

end accept

accept 1 of
enque
deque

endaccept

accept
tennin (all)
converge

delay 25.0 then
to parent send error1

endaccept

13

HANDLER and SIGNAL Declarations

Purpose:

acmpts.

Syntax:

Declare the type of processing required within a task for a particular message type that the task

HANDLER-declaration = "handler" message-type, { , message-type}

SIGNAL-declaration = "signal" message-type, { , message-type)

Semantics:
Each message-type that appears in an ACCEFf statement must be d e d d as either HANDLER or

SIGNAL in the program unit that contains the ACCEPT. Message-types declared as SIGNAL are simply
counted and deleted fmm the inqueue of the task when they are accepted. Message-types declared as
HANDLER are processed by calling a HANDLER subroutine of the same name as the message-type (see
HANDLER subroutines below).

FLEX Implementation:
HANDLER declarations are translated into Fortran EXTERNAL declarations by the preprocessor,

to force the necessary run-time linkages between the task and its handler subroutines. SIGNAL declara-
tions are deleted from the Fortran code, but both declarations are used to guide correct translation of sub-
sequent ACCEPT statements in the program unit.

Examples:
handler newrow, solve
signal converge

HANDLER Subroutines

Purpose:
A HANDLER is a Fortran subroutine for processing ("handling") messages of a certain type.

Syntax:
HANDLER-header = "handler" message-type ['I(" argument-list ")"I
message-type = -- any Fortran name

argument-list = -- see the Argument Lists section below

Semantics:
A handler is written as an ordinary Fortran subroutine, with "SUBROUTINE" replaced by

"HANDLER in the heading. A handler is always part of some tasktype definition, in the same way that
an ordinary subroutine is part of some main program definition in ordinary F o m .

The name of a handler is always the same as the name of the message type that it processes. A
handler is not CALL'ed in the usual way. It is executed when a task (of the tasktype associated with the
handler) executes an ACCEPT statement to accept a message of the handler's type.

14

The handler does not have Fortran subroutine arguments. Instead the handler receives the argu-
ments contained in the message that it is invoked to process. The "argument-list" in the handler heading
lists the variables in the handler that are to receive these incoming values from the message. These
argument-list variables may be COMMON variables or local variables in the handler. When the handler
begins its execution, the incoming argument values have already been stored in the specified argument-
list variables. The handler may then process these values in whatever way is appropriate. The argument-
list in the handler heading must match the corresponding argument-list in the SEND statement that sent
the message received by the handler, in terns of corresponding numbers and types of values transmitted.

Often the purpose of a handler is simply to store the incoming argument values in COMMON
blocks that are accessible to the task associated with the handler. Because the handler is not CALL'd by
its associated task, the nonnal Fort~an subroutine argument list is not available as a means for the handler
to send message values back to its associated task. Thus COMMON blocks must be used to store any
values from the message that must be sent back to the handler's associated task.

A handler may use any of the new statements and declarations defined below, except that a handler
may not do an ACCEFT (Le., a handler may not invoke another handler to process a second message
while it is still processing a first one).

FLEX Implementation:
A HANDLER definition is translated into a Fortran subroutine with two arguments, the "self' taskid

of the invoking task and a pointer to the message to be processed. Fortran calls on handler subroutines
are generated by the preprocessor during translation of ACCEFT statements. The "arg-list" in the handler
heading is translated into a sequence of calls on the argument unpacking functions (see the discussion of
arg-lists below). These calls are inserted by the preprocessor at the END DECLARATIONS position in
the handler body, before the first executable statement of the handler body.

E m p l e :
handler newval (row, col, value)

integer mw, col
common /blk2/solution (100,200)
end declarations

solution (row, col) = value
return
end

which stores the incoming value in the designated spot in the result matrix. An equivalent, but simpler,
version is:

handler newval (row, col, solution (row, col))
integer row, col
common /blk2/solution (100,200)
end declarations

return
end

15

ARGUMENT LISTS

There are four different places where an argument list may appear in a Pisces Fortran program:
SEND statements.
INITIATE statements.
TASKTYPE headers.
HANDLER subroutine headers.

The tern "argument-list" in Pisces Fortran refers to:
1. The list of variables and arrays that contain values to be copied into a message when a SEND or

INITIATE statement is executed (think of this list as the variables from which to gather the values to be
sent). This list may also include literal values.

2. The list of variables and arrays that are to receive the values contained in a SEND or INITIATE
message when it is processed by the receiving task (think of this list as the variables into which to scatter
the values received in the message.

Syntax:
The syntax for argument lists is the same in any of these four constructs. Because the Pisces Fortran

preprocessor does not build a table.of type and dimension information for variables and arrays, the pm-
grammer must provide this information as part of each argument list element. The specifications below
can be combined into argument lists of any length by listing the specifications in sequence separated by
commas.

REAL, INTEGER, and LOGICAL Variables. A simple variable of one of these types occupies one
word of storage. To specify in an argument list, just list the variable name. For example, to send REAL
variables X and Y, you might write:

to ... send unessage-type> (XI Y)

COMPLEX and DOUBLE PRECISION Variables. A simple variable of one of these types occupies
two words of storage. To specify in an argument list, write:

"ppp2(" variable-name [, variable-name} '*)"

For example, to send COMPLEX variables cmin and cmax, you might write:

to ... send anessage-type> (ppp2 (cmin, cmax))

CHARACTER Variables. A simple variable of one of these types occupies one byte of storage for each
character position in the variable. To specify in an argument list, write:

"pppch(,, variable-name, first-char-posn, last-char-posn "Y,

where the first and last character positions are specified by integer-valued expressions. For example, to
send the first 10 characters of a CHARACTER variable charl, you might write:

to ... send anessage-type> (pppch (charl, 1.10))

16

REAL, INTEGER or LOGICAL Vectors. A vector (one-dimensional array) of one of these types
occupies one word of storage for each element. To specify in an argument list, write:

'*pppvl(,, variable-name, first-element, last-element [, stride] ")"

where the subscripts of the first and last elements in the vector are specified by integer-valued expres-
sions. The stride, if included, is an integer-valued expression that specifies the "stride" between vector
elements to be included (the increment to be added to one subscript to get to the next subscript). If omit-
ted the stride is assumed to be 1. For example to send the 5th through 20th elements of a REAL vector
solnvect, you might write:

to ... send anessage-type> (pppvl (solnvect, 5,20))

COMPLEX or DOUBLE PRECISION Vectors. These vector elements occupy two words of storage.
Use the same specification as for one word vectors, but replace "pppvl" by "pppv2". For example, to
send the 5th through 20th elements of a COMPLEX vector compvect, you might write:

to ... send unessage-type> (pppv2 (compvect, 5.20))

REAL, INTEGER, or LOGICAL Matrices or Parts of Matrices. Elements of these matrices occupy
one word of storage. You may specify an entire matrix or any rectangular subportion such as a row,
column, or block of rows or columns. To specify a portion of a matrix, write:

first-column-subscript, last-column-subscript ")"
where integer-valued expressions may be used to specify each item except the matrix-name. The ##rows
and #columns should be the declared dimensions of the matrix. The first and last TOW subscript expres-
sions specify the range of rows to be included and the first and last column subscripts specify the range of
columns to be included. For example, to send the 2nd row of a 10x20 matrix, tablel, you might write:

"pppml(" matrix-name, #rows, #columns, first-row-subscript, last-row-subscript,

Matrix values are sent and received in "column-major order" (normal Fortran order in which all values
from the first column come first, then values from the second column, etc.)

COMPLEX and DOUBLE PRECISION Matrices or Parts of Matrices. Use the same specification
as for REAL matrices, but replace "pppml" by "pppmT to indicate that each matrix element occupies
two words of storage.

CHARACTER Vectors. To send al l or part of a vector of character strings, write:

where each item except the vector-name is specified by an integer-valued expression. The first and last
element designations specify which elements to include. The declared-string-length specifies the number
of characters declared to be in each element. For example, to send the 5th through 20th character strings
in a vector declared as: CHARACI'ER stringtab (100)*25, you might write:

"pppvch(" vector-name. first-element, last-element, declared-element-length ")"

to ... send message-type> (pppvch (stringtab, 5,20,25))

17

Semantics:
The meaning of argument specifications depends on whether the argument list appears in a

SENDDNITIATE statement or in a TASKTYPE/HANDLER heading.
SENDIINITIATE. The value of each specified argument is copied into the argument list being

formed for the message to be sent. For a SEND, the message is sent directly to the receiver. For an INI-
TIATE, the message is sent to the task controller of the cluster, which passes the argument list on to the
new task after its initiation.

TASKZYPE/HMDLER. Each specified argument is assigned a new value taken from the message
argument list. Values are copied from the message into receiving variables and arrays in the order
specified in the argument list.

FLEX Implementation:
Each argument specification is translated into a sequence of calls on argument packing functions

which fetch values from the specified argument variables and arrays and copy them into the packets of the
message argument list. On the receiving end, the same functions copy values from the packets into the
receiving variables and arrays.

Only values are sent and received; no type or size information is included in the message (other than
the overall length of the message). Thus it is the programmer's responsibility to insure that sender and
receiver agree as to the number and type of values in the message. Note that the same SEND or INI-
TIATE statement may generate a message of different length each time it is executed. An attempt to
unpack more values than are received in a message, or unpacking fewer values than were received will
generate a run-time error message.

FORCES

A "force" in Pisces Fortran is simply an ordinary task that has "split" into several "force members"
that are running on different PE's and each executing the same tasktype definition. Forces are an altema-
tive form of parallel execution, subordinate to the concept of task discussed in the preceding sections.
Forces have several distinguishing characteristics:

1. From the "outside", a task that has split into a force appears still to be a single task -- it has a
unique taskid, inqueue, etc. It may send and accept messages from other tasks. There is no way that
another task can tell whether a given task has split into a force. Thus the "force" or "not a force" distinc-
tion is entirely an internal question about a task.

2. Every task begins execution in the same way, as an ordinary task. A task splits into a force when
it executes a FORCESPLIT statement (see below). After execution of a FORCESPLIT the task is com-
posed of a set of force "members" running in parallel on separate PE's. No two members of the same
force ever share the same PE.

3. Members of a force are identified by a taskid with the same cluster-number, slot-number, and
unique-number, but with a unique force-member-id. The original task continues execution after a FOR-
CESPLIT as force-member O. The "secondary" force members that begin execution at the FORCESPLIT
are given force-member numbers 1 -k. A force member can always obtain its force-member-id number by
executing the predefined function pppgfor (pppself).

4. The number (k above) of force members for a particular tasktype is not determined when the
Pisces Fortran program is written, but when the configuration for a particular run of the program is set up
(see Part 2 of this manual). Thus the program itself is independent of the number of force members. The
program should run the same if a particular force has only one member or if it has 18 members (the max-
imum size of a force on the FLEX). The size of a force affects only the speed of execution of the force,

18

not the results of that execution.

not available to ordinary tasks. These constructs are described below.
5. Forces may use shmd variables, baniers, parallel loops, and other program constructs that are

FORCESPLIT Statement

Purpose:
Causes an ordinary task to split into a force.

Syntax:

A tasktype definition may contain only one FORCESPLIT statement, which cannot be part of any other
statement (e.g., an IF or DO). The FORCESPLIT statement must appear in the main tasktype definition,
not in a subroutine.

FORCESPLIT-statement = " forcesplit"

Semantics:
When an ordinary task executes a FORCESPLIT, it "splits" into k identical copies running on

separate FLEX PE's. Each of the copies begins execution at the point of the FORCESPLIT. These
copies are called the force "members".

The number k of copies is determined by the number of "secondary" PE's that have been assigned
to the cluster within which the task is executing at the time of the FORCESPLIT. This number is deter-
mined by the configuration chosen for a run of the program (see Part 2 of this manual), and may vary
among clusters. Thus the number of force members depends on the cluster within which a task is ini-
tiated. For example, if cluster 1 has been assigned 4 secondary PE's and cluster 2 has been assigned 16
secondary PE's, then executing a task A (that executes a FORCESPLIT) in cluster 1 will cause a split into
5 force members (primary plus 4 secondary members). If executed in cluster 2 the same task will split
into 17 force members (primary plus 16 secondary members.)

Each force member is assigned a force-member-id that uniquely identifies it. The original task con-
tinues execution after the FORCESPLIT as force member 0. The other force members receive id's in
sequence from 1-k, where k is the size of the force. Each force member can access the variable pppself to
obtain its selfid, which contains the same cluster-number, slot-number and unique-number as other
members of the same force, but contains the unique force-member-id of that force member.

FLEX Implementation:
Each force member is a separate FLEX process executing on one of the PE's assigned to the cluster.

At the time a FORCESPLIT is executed by a task of tasktype A, a FLEX process of type A is initiated on
each of the secondary PE's assigned to the cluster where the original task is executing. The preprocessor
has inserted a branch at the beginning of each tasktype definition that checks the force-member-id at the
start of execution and branches to the FORCESPLIT statement if the force-member-id is not 0.

In the taskblock for a task, a flag is set indicating that the task has split into a force. The MMOS
process id's assigned to each force member are retained in the taskblock while the force is executing. All
force members share the same taskblock and inqueue. Thus force members are not treated as separate
Pisces tasks, although they are executed as separate h4MOS processes.

Example:

19

tasktype solver (a, b, c)
...

end declarations
...

forcesplit
...

terminate

-- these statements are executed only by the primary force member

-- these statements are executed by all force members

end

SHARED VARIABLES

Members of the same force communicate with each other by using shared variables. Shared vari-
ables are grouped into Fortran COMMON blocks and the entire COMMON block is placed in the FLEX
common memory. Access to shared variables by separate force members must be synchronized by use of
BARRIER or CRITICAL statements.

SHARED Declarations Block

Purpose:

the FLEX common memory.
Declare one or more Fortran COMMON blocks and related declarations that are to be placed into

Syntax:
SHARED-block =

"shared"

"end shared"
<Fortran COMMON and other declarations>

where the Fortran COMMON and declarations may be any declarations that may appear in a Fortran
BLOCK DATA program unit (type declarations, PARAMETER'S, etc.). Use of DATA statements to ini-
tialize shared variables is not recommended due to a FLEX software bug. See the discussion of the
FLEX 'static variables' problem in Part 2 of this manual.

Semantics:

memory.
The COMMON blocks that are specified in the SHARED block are allocated in the FLEX common

FLEX Implementation:
The entire set of declarations is translated into a Fortran BLOCK DATA unit, which is written to a

file with the suffix ".sh.f'. This file is then compiled into a ".sh.o" file. The FLEX cf77 processor that
builds a loadfile for a run uses this file to determine what COMMON blocks are to be allocated in the
FLEX common memory.

Example:

20

shared
parameter (M=lO, N=20)
real a1 (M, N), a2(200)
common /blkl/al, a2, eps
common /globaVid, next, soln

end shared

SYNCHRONIZATION: BARRIERS AND CRITICAL REGIONS

Barriers and critical regions provide the means for force members to synchronize their activities,
and, in particular, to synchronize their access to s h a d variables. LOCK variables are used with CRITI-
CAL statements to form critical regions.

BARRIER Statement

Purpose:
Provide a banier synchronization point for all members of a force.

Syntax:
BARRIER-statement =

barrier"
<Pisces Fortran statement sequence>

"end barrier"

Semantics:
A BARRIER statement is only meaningll after a FORCESPLIT has been executed by a task. All

force members pause and wait when they execute the BARRIER statement. When all force members
have arrived at the banier, the primary force member (force-member-id = 0) executes the <statement
sequence> within the barrier, and then all force members continue their execution. For a secondary force
member, the barrier seIves simply as a point at which execution pauses; secondary force members take no
action during execution of a BARRIER statement.

Deadlock or other synchronization errors may occur if BARRIER statements occur within condi-
tional (IF) statements or other constructs that may cause some force members to skip execution of a par-
ticular BARRIER.

FLEX Implementation:
Barriers are implemented using two counters, two locks, and two flags in the taskblock of the force

task; there is no use of MMOS "events". Each force member "checks in" on amval at the barrier. When
all members have arrived, the primary executes the <statement sequence> in the barrier. Each force
member then "checks out" of the bamer.

Example:
bamer

end barrier
read (2,*) a, b, c -- read values into s h a d variables

21

LOCK Declarations

I

Purpose:
Declare variables and arrays to serve as "locks" for synchronizing access to shared variables.

Syntax:
LOCK-declaration = "lock" variable-list

Variable-list = -- list of Fortran variables and arrays as in a REAL declaration
The LOCK declaration may only appear within a SHARED block (Le., LOCK variables must be shared
variables.)

Semantics:
Each variable and array element declared as type LOCK may be used as a lock on entry to a CRITI-

CAL statement (see below). The program must set the initial state of each lock variable to "unlocked" by
executing a pppunlk (<variable>) call before the lock is used.

FLEX Implementation:
The LOCK declaration is translated into a Fortran LOGICAL declaration. On the FLEX any vari-

able or array element may be used as a lock. The LOCK declaration is a convenience declaration, but not
required. For example, it is possible to use every other element of a vector as a lock for the preceding
element.

Example:
lock queueptrs, solnlock

CRITICAL Statements

Purpose:
Synchronize access to shared variables by force members.

Syntax:
CRITICAL-statement =

"critical" lock-var

"end critical"
<statement sequence>

lock-var = -- name of a LOCK variable or array element
The <statement sequence> may include any Fortran or Pisces Fortran statements, including nested CRIT-
ICAL statements.

Semantics:
When a force member arrives at a CRITICAL statement, it attempts to lock the designated lock-

variable (ppplock function). The ppplock call does not return until the lock has been successfully locked.
The force member then executes the <statement sequence> and the lock is unlocked. While one force
member holds the lock, no other force member may enter the same CRITICAL statement (or any other
CRlTICAL statement that names the same lock-variable.)

22

FLEX Implementation:
Spinlocks art: cumntly used to implement locks. A bit within the lock variable is set to indicate

that the lock variable is "locked". A test-and-set instruction on the FLEX PE is used to set the lock. The
bit is set to zero to indicate the lock is "unlocked". If the bit is already set when a "lock" operation is
attempted, the force member loops until the lock is unlocked (busy waiting). Since force members are
guaranteed to run on different PE's, this busy waiting cannot keep another force member from unlocking
the lock.

Example:
critical mylockl

end critical
<statements to change values in shared variables and arrays>

PARALLEL LOOPS AND SEGMENTS

Force members may cooperate to execute the iterations of loops in parallel. There are two basic
ways of splitting up the iterations of a loop among force members, called "prescheduling" and "selfs-
cheduling". The loop body is an ordinary Fortran DO loop body.

1. Prescheduled loops. When a prescheduled loop is executed by a force of K memben, each
member executes 1/K of the loop iterations (approximately). If the loop iterations have index values 1 to
N, then force member 0 executes, in sequence, iterations 1, K+1,2*K+1, and so forth. Force member 1
takes iterations 2, K+2,2*K+2, and so forth.

2. Selfscheduled loops. When a selfscheduled loop is executed by a force of K members, each
member executes the "next" iteration that has not been executed by some other force member, until all
iterations have been completed. In the extreme, if one force member is running far ahead of the others,
that force member may reach a selfscheduled loop and execute all the iterations before any other force
members amve. In general, which iterations a particular force member executes will depend on the tim-
ing of the arrival of that force member at the selfscheduled loop, and the speed with which it is able to
execute each iteration assigned to it.

PRESCHEDULED DO Loops

Purpose:

dividing the iterations.
Provide parallel execution of loop iterations by a force, using the "prescheduling" technique for

Syntax:
PRESCHEDULED-DO-lWp =

"presched do" <usual Fm DO loop heading>
<loop body>

where the end of the loop body is indicated by a statement number that appears in the loop heading, as
with an ordinary Fortran DO loop.

Semantics:
The loop iterations are executed by the force members using the prescheduling method described

above to divide the iterations. Each force member does approximately 1/K of the iterations. The pro-
grammer is responsible to determine that the loop iterations can safely be executed in parallel. There is

23

no synchnization of force members on entry to or exit from a prescheduled loop -- one force member
may have finished its share of the iterations and gone on before another force member arrives at the loop.

FLEX Implementation:
The preprocessor inserts a new initial value and stride for the loop index variable into the DO loop

heading, based on the force-member-id of the executing force member and the size of the force. Thus
when the loop is executed, each force member executes its iterations and skips those not assigned to it.
There is essentially no run-time cost associated with using a prescheduled loop (over an ordinary Fortran
DO loop).

Example:
presched do 10 i = 1,500

a(i) = Mi) + 2 * c(i)
10 continue

If the force executing this statement has 10 members, then each member executes 50 iterations.

SELFSCHEDULED DO Loops

Purpose:

iterations among force members.
Allow force members to execute loop iterations in parallel, using "selfscheduling" to divide the

Syntax:
SELFSCHEDULED-DO-statement =

"selfsched do" <Ftn DO loop heading>

"end selfdo"
<loop body>

where the <Ftn DO loop heading> does not include a <statement numben for the end of the loop.

Semantics:
Each force member requests the next unassigned value of the loop index and then executes the loop

body with that index value. After execution of the loop body, the force member requests the next unas-
signed value of the loop index. Each force member continues to request loop index values until all itera-
tions are executed.

FLEX Implementation:
The initial loop index value, final value, and stride are computed and stored in the taskblock of the

task. Each force member "checks in" to the loop, and then loops, requesting an index value and executing
an iteration, until all iterations are complete. To get the next index value. the index is locked, incre-
mented, and unlocked. On loop termination, each force member checks out of the loop. No force
member can enter the next selfscheduled loop until all have left the previous one.

Example:
selfscheddoi= 1,100

end selfdo
a(i) = Mi) + 2 * c(i)

24

PARSEG Statement

Purpose:
Provide for parallel execution of arbitrary program segments by force members.

Syntax:
PARSEG-statement =

" parseg"
<statement-sequence- 1 >

<statement-sequence-2>
"nextseg 'I

"nextseg"

"endseg "
...

where as many segments as desired may be included. Each segment is a sequence of ordinary Fortran or
Pisces Fortran statements.

Semantics:
Execution of the <statement-sequence>'s is divided among force members in a "prescheduled"

manner. That is, if there are K force members, force member 0 executes, in sequence, sequence 1,
sequence K+1, sequence 2*K+1, and so forth. Force member 1 takes sequences 2, K+2, 2*K+2, etc.
There is no synchronization of force members on entry or exit to a PARSEG statement. The programmer
is responsible to insure that the segments can correctly be executed in parallel.

FLEX Implementation:
The preprocessor generates an appropriate computed GOT0 to send each force member in turn to

its assigned segments. There is essentially no run-time overhead associated with parallel execution of a
PARSEG.

Example:

P a w 3
i = nextmw
call rowsolver (i, vect, 1, 100)

call printout (matrix, eps, solnvect)

to task27 send tryagain

do 10 k = 1,100

nextseg

nextseg

nextseg

10 continue
endseg

bal(i) = 0.0

25

TABLE OF PREDEFINED VARIABLES, FUNCTIONS AND SUBROUTINES

Serf taskid variable.
pppself: taskid of a task, when referenced within the tasktype definition or a subroutine (pfsub).

Cluster number functions.
integer function pppcmin(): return the smallest cluster number in the configuration being used.

integer function pppcmaxo: returns the largest cluster number in the configuration being used.

integer function pppcnxt(<cluster-numben): return the next larger cluster number (modulo # clusters)
after <cluster-numben, in the configuration being used.

Taskid component functions.
integer function pppgclu (taskid): returns the cluster number part of the taskid.

integer function pppgslo (taskid): returns the slot number part of the taskid.

integer function pppguni (taskid): returns the unique number part of the taskid.

integer function pppgfor (taskid): retums the force-member-id part of the taskid.

Lock and unlock subroutines.
subroutine pppunlk (variable): set the variable to the "unlocked" state.

subroutine ppplock (variable): wait until the variable is in the "unlocked" state
and then set the variable to the "locked" state.

Taskid functions.
taskid function pppgpar (taskid): returns the taskid of the parent task of the argument taskid.

taskid function pppgjob (taskid): returns the taskid of the 'job' task (top-level task)

taskid function pppgsen (taskid): returns the taskid of the sender of the last message accepted

for the argument taskid.

by the argument taskid.

Task termination subroutine.
submutine pppkill (taskid): terminate execution of the specified task, including a l l force members.

26

real v e c t l o , vec t20 , sum
integer mw, col, length
enddeclarations *

* Form the inner product *
sum = 0.0
do 10 i = 1,length

sum = sum + vectl(i)*v&(i)
10 continue *
* Send message with result to parent *

to parent send newval (row, col, sum)
terminate
end

29

EXAMPLE 2: Normalize a Matrix; Using a Force.

*
* This program normalizes a square matrix by its largest element.
* It represents a Pisces Fortran version of the Force demo program
* in the FORCE USER'S MANUAL (Jordan, Benton, Arenstorf, U. Colo.,
* Oct. 1986).
* Printing of the result matrix has been suppressed, and additional
* intermediate printouts have been added.
* The use of asynchronous variable ALLMAX in the original version has
* been replaced by an equivalent shared variable 'allmax' and lock
* variable 'maxlock' in the Pisces version.
*
.

tasktype demo *
* Parameter N represents the matrix size. User modifiable. *

shared
parameter (N=lO)
common x(N, N), allmax, maxlock
lock maxlock
real allmax, x

end shared
real pmax. tem
end declarations *

* Only the primary task begins execution here
* Initialize shared variables before forcesplit

print *, 'Begin force demo ...'
allmax = 0
call pppunlk (maxlock)

fo rcespli t

*

*
*
* Force is running now; secondary force members start here *

id = pppgfor (pppself)
print *, 'Begin forcemember ', id *

* Generate test matrix *
pfcaU intmat (x, N) *

* Search matrix for its greatest element *
pmax = 0 *

* Each force member finds max of its share of'& mbs;>ooi;?d in pmax *
"

*

30

pesched do 100 i = 1, N
print *, 'Loop 1: Member ', id, ' takes TOW ', i
do 200 j = 1, N

tem = abs(x(ij))
if (tem .gt. pmax) pmax = tem

200 continue
100 continue

* Force members communicate to place global max in allmax
*
*

critical maxlock
print *, 'In critical section, member = ', id,

if (pmax .gt. allmax) Wax = pmax
& ' Pmax = *, pmax, 'Allmax = ', allmax

end critical *
* Wait until final global maximum has been determined *

barrier

endbarrier
pmax = allmax

print *, 'Global max = ', allmax

*
* Normalize the matrix; each force member takes its shae of cows *

if (pmax .gt. 0) then
presched do 300 i = 1, N

do 400j = 1, N
print *, 'Loop 2: Member ', id, * takes row ', i

x(ij) = x(iJ)/pmax
400 continue
300 continue

* Wait for everyone to finish

barrier
endbanier

*
*

endif *
* And print the result matrix
* A PARSEG is used to insure that only one force member prints the result *

P-g

endseg
terminate
end

call outmat (x, N)

.

* Sequential subroutine to print result matrix
*

*

31

Subroutine outmat (x, N)
integer N
real x(N, N)
write (6,*) 'printing of r e s ~ s suppressed'

* do 1Oi= l , N
* do l O j = l , N
*10 write (6, *) i, j, x(ij)

return
end

*
* Parallel subroutine to generate test matrix *

pfsub intmat (mat, N)
integer N
real mat(N,N), gen
enddeclarations *

* Divide the work of generating the rows among force members *
presched do 20 i = 1, N

do 30j = 1, N
mat(ij) = gen(ij)

30 continue
20 continue

return
end .

*
* Function to generate a test matrix value *

real function gen(ij)
integer i, j
if ((i+j) .ge. 1) then

gen = lOOO.O/(i+j)
else

gen= 1000.O
endif
return
end

32

PISCES USER'S MANUAL: PART 2

THE CONFIGURATIONENVIRONMENT

The Configuration Environment is the part of the Pisces system that is used to create and edit
configuration liles. The Configuration Environment also allows the user to load and execute a program
on the FLEX132 -- an action that leads to the run-time environment described in Part 3.

WHAT IS A CONFIGURATION FILE?
A configuration file is just a file of data that describes the various options that you have chosen for a

particular nm of a Pisces Fortran program on the FLEX. Included in a configuration file are the various
elements described in the paragraphs below. A configuration file is created by the Configuration Envimn-
ment, and then may be saved and reused as needed for later runs of your program on the FLEX. An exist-
ing configuration file can be edited and saved under a new name. Thus, by editing a configuration file
repeatedly, you can create configurations for many different runs (with different uses of the FLEX
resources).

You don't need to know anyhng about the structure of a configuration file -- the Configuration
Environment reads and writes these files for you automatically, as required by your response to the vari-
ous prompts described below.

WHAT IS A LOADFILE?
A loadfile is a file of executable code and data that can be downloaded to one or more of the FLEX

PE's available for a parallel computation. A loadfile contains:
1. The object files (".o" files) resulting from preprocessing and compiling the parts of your Pisces

Fortran program.
2. The Pisces run-time library routines and the Pisces execution environment routines needed to

execute your program.
3. Additional library routines containing the FLEX MMOS operating system that controls each PE

during program execution.
A major step in creating a configuration for a run is to create an appropriate loadfile for the run.

This loadlile is created automatically by the Configuration Environment after you have specified some
particulars (described in 3. below). You don't have to know anything about how to construct a loadfile --
the Configuration Environment will do this for you automatically.

ENTERING THE CONFIGURATION ENVIRONMENT
When running under Unix, type the command:
Pisces

A series of menus and prompts will appear that allow you to create and/or edit a configuration file.
On entry to the configuration environment, you will be asked if you want to use an existing

configuration file. If you have already created a configuration file in a previous session and simply want
to edit it, answer "yes". You will be prompted for the configuration file name, and then the existing
configuration will be displayed for you to check or edit.

If you are not editing an existing configuration file, answer "no" at the prompt. You will be given
the "default" configuration as a starting point.

33

CONFIGURATION OPTIONS
The following paragraphs provide a detailed explanation of the various options available through

the configuration environment menu. You are first shown the full current configuration. By choosing the
appropriate number for the option, you may edit any of the options displayed.

1. PROGRAM NAME/COMMENT. A comment line that can be used to identify your
configuration file.

2. TIME LIMXT. The time limit for execution of the run on the FLEX. The time limit is in
minutes. Upon expiration of the time limit, you are summarily kicked off of the FLEX PE's that you are
using for your parallel computation, and you are returned to the Pisces configuration environment. This
time limit is converted to seconds and inserted in the "mmrun" command generated by Pisces when you
actually execute your program.

3. LOADFILE CREATION. The configuration display shows only the name of the loadfile, if you
have already specified one, and the FLEX PE's that are specified for loading when the loadfile is used. If
you have created a loadfile during a previous session, you can reuse the same loadfile in another
configuration, provided that you have not recompiled any of your Fortran programs and have not changed
the set of FLEX PE's that you want loaded. If you have made either of these changes, you must create a
new loadfile.

If you choose Option 3, you are led through a series of prompts that request the information needed
to construct a loadfile:
a.

b.

C.

d.

e.

OBJECT FILE NAMES. A table is displayed that contains a l l the names of your ".o" files that will
be included in the loadfile when it is created. You can changes these entries as required. In
response to the prompts, enter the names of the ".o" files that contain all of the parts of your Pisces
Fortran program that you want included in the loadfile.
TASKTYPE NAMES. A table is displayed that contains all the tasktype names that your program
is known to use. During execution of your program, these are the ONLY types of tasks that your
program can initiate or that can be initiated by you directly from the terminal. In general this table
must contain the names of all the tasktypes defined in your program.
FLEX PE's TO LOAD. A table of options is displayed that shows the possible choices of sets of
FLEX PE's to be loaded with this loadfile when your program is run. Choose a subset of PE's that
is at least as large as you will need for any run with this loadfile (you can run without actually using
all the loaded PE's, but you cannot expand the set of PE's you use after the loadfile is created).
LOADFILE NAME. You are asked for the Unix filename to be used for the loadfile when it is
created.
DO YOU WANT TO CREATE THE LOADFILE? This prompt gives you the option of stopping
the loadfile creation process without actually generating the loadfile. If you have forgotten to
preprocess/compile one of your Pisces Fortran files, or if for some other reason you choose not to
create the loadfile, you can return to the main Configuration Environment menu at this point. The
information entered in steps a-d will be retained in the configuration file for later editing.
Loadfile creation is the longest step in creating a configuration for a run. You will see the FLEX

"cf77" command appear that shows that loadfile creation is underway. Several minutes may elapse. m e
FLEX cf77 processor is searching various MMOS libraries for the MMOS operating system, and then is
making the linkages between your Fortran program, the Pisces library routines, and the MMOS routines.)
If the loadfile is successfully created, the main Pisces configuration menu will reappear. If not, you will
get messages from the FLEX loader about "undefined external symbols", and then the Pisces menu will
again reappear. If an undefined external symbol is the name of an array, function, or subroutine in your
program, you have a Fortran error. Exit the configuration environment, fix the error, and reenter to try
loadfile creation again.

34

.

.

4. I " IAL TASWCLUSTER. You may enter a cluster number and tasktype name. A task of that
type will be initiated on that cluster whenever you run the program with this configuration. The initial
task is initiated automatically as m n as the execution of your program on the FLEX PE's begins.

If you specify no initial tasktype name, execution of your program will not begin until you expli-
citly initiate a task of the appropriate type by using the appropriate run-time menu option (see Part 3 of
this manual). However the Pisces clusters Will be set up as you specify in your configuration, and the task
controllers for the clusters will be initiated as usual; it is only the initiation of your first program task that
will be delayed until you request it through the run-time menu.

5. TRACE OPTIONS. Pisces provides a number of options for tracing significant "events" during
execution of your parallel program. currently the "events" include:

Task initiation.
Task termination.
Message send.
Message accept.
Lock a lock.
Unlock a lock.
Entry to a barrier.
Split of a task into a "force".

The event type (e.g., INITIATE).
The taskid of the task(s) involved
The current clock time (in '%cks") of the PE running the task.
Other information appropriate to the event type.

Tracing one of these types of events means generating an output line that contains:

For each type of trace "event", you can choose one of the following actions to occur each time such an
event happens during program execution:

Generate no trace output.
Generate a trace line, and display it on the terminal.
Generate a trace line, and write it to the "tracefile".
Generate a trace line, and both display it and write it to the tracefile.

Every task that your program initiates has its own set of trace option settings. In the configuration menu,
you set the initial option settings for all tasks. During execution of the program, you can change the set-
tings for a particular task, or change the initial settings for all new tasks.

6. TRACEFILE NAME. If you choose to send trace output to a file, you can enter a file name here,
or use the default tracefile name 'ppptrace'. Only one tracefile is used per run. After the run you can look
at the trace output in various ways by using the UNx utility "grep", or your favorite editor, with the
tracefile.

7. CLUSTER CONFIGURATION. This option provides the facility for mapping the Pisces "virtual
machine" to the actual FLEX PE's that you want to use for a run. For each Pisces cluster that your pro-
gram uses, you specify:
a.
b.

CLUSTER NUMBER. An integer in the range 1-25 currently.
PRIMARY FLEX PE. One FLEX PE is chosen to serve as the "primary" PE for the cluster. The
FLEX PE's are currently numbered 3-20. Any FLEX PE can be assigned to any cluster, but only to
one cluster. This PE will be the processor that actually executes each task that is initiated within
that cluster.
NUMBER OF SLOTS. You choose the number of "slots" available for running your tasks in the
cluster. The number of slots restricts the number of tasks that can be simultaneously initiated on the
FLEX PE. Each running task takes a slot. If all slots are filled, then an attempt to initiate a new

c.

35

task will be held by the task controller of the cluster until some task terminates and a slot is freed.
Task controllers run in system-provided slots and are not included in this slot count.
SECONDARY FLEX PE's. You choose a set of zero or more FLEX PE's to sefve as "secondary"
PE's to run forces that arr: initiated within the cluster. The same numbering (3-20) of the FLEX
PE's is used in this specification. Any PE can be a secondary PE for any cluster, regardless of
whether it is also a primary PE for another cluster (a PE cannot be both primary and secondary for
the same cluster, by definition).
The secondary PE's a ~ . used only when a task running in a cluster executes a "FORCESPLIT". At
that time, a new task of the same type is initiated on each secondary PE assigned to that cluster, and
each new task begins execution at the point of the FORCESPLIT. These new force members do not
xun in slots on the secondary PE's, but they do increase the number of concumnt tasks that are shar-
ing the PE.
When specifying the configuration information for the clusters used by your program, you may

specify each cluster individually, but usually it is more convenient to specify a range of cluster numbers
that each have the same basic configuration. The Configuration Environment requests the first and last
cluster numbers in the range. You then specify the FLEX PE to be used as the primary PE for the first
cluster. The remaining clusters are assigned the next FLEX PE's in sequence. Each cluster gets the same
number of slots and is assigned the same set of secondary FLEX PE's.

d.

NOTE: The primary and secondary PE's assigned to a Pisces cluster must be included in the set of PE's
that will be loaded with the loadfile when your program is xun (see Option 3 above).

TERMINATING A CONFIGURATION EDITING SESSION
After each modification to the configuration, the new configuration is redisplayed. When you are

satisfied with the settings for all options, you can leave the editing session by choosing the "all ok" option
(0). You are now given a chance to save the configuration in a configuration file, either a new file or the
same one with which you began the editing session.

RUNNING A PISCES FORTRAN PROGRAM

configuration. If you choose to run the program, sevenl additional steps are taken:
a.

You are finally asked whether you want to run the program for which you have just created the

CONFIGURATION CHECKING. A comprehensive set of tests are applied to your configuration to
insure that it is valid. Two kinds of emr messages art produced during this checking:
ERROR: m e s s a g e -- indicates that the program cannot be run using your specified configuration.
You are returned to the configuration environment for repairs.
WARNING: message> -- indicates that your program is executable, but the configuration may
cause execution errors.
WAIT QUEUE STATUS. The FLEX utility 'mmstat' is invoked to list the current queue of users
waiting to run FLEX parallel programs. You can check the length of the queue and the time limits
of the jobs in the queue before you decide to continue and put your job into the queue.
If you request program execution after seeing the wait queue, your loadfile will be taken as the input

to an "mmrun" command, which causes your job to be placed in the wait queue. When you reach the
head of the queue, your loadfile is downloaded to all the FLEX PE's specified in your loadfile
configuration.

After downloading is complete, program execution begins on the FLEX PE specified as the
system-defined main PE (usually the FLEX PE with the lowest number of those that you have loaded).
The Pisces run-time environment plays the role of the overall main program for each run (your tasks are
initiated as sub-tasks of the Pisces run-time environment). The Pisces run-time environment is described

b.

36

in Part 3 of this manual.
After you terminate execution of your program, or the specified time limit expires, you are kicked

off of the FLEX MMOS PE's, and control return to the Pisces configuration environment. You can edit
your configuration again, run again, or leave the Pisces configuration environment.

THE FLEX "STATIC VARIABLES" BUG
Configurations that use clusters with multiple slots or that use one PE as primary or secondary for

more than one cluster will generate a WARNING message about the "FLEX Static Variables bug". The
problem is a potential source of execution errors in Fortran and C programs.

You can use configurations that generate this warning message, but you must be careful NOT to ini-
tiate two tasks of the same tasktype on the same FLEX PE at the same time (either in two slots of the
same cluster or using forces whose members use the same secondary PE's). If you use the same Fortran
subroutine in several tasktypes, or if you use C routines with STATIC variables, your program is also
vulnerable to emrs whenever tasks or force members run on the same PE and use these subroutines or
static variables.

The cause of the problem lies in the FLEX implementation of Fortran and C static variables (all
Fortran local variables; C variables declared 'static'). The loadfile for your program contains only a sin-
gle copy of each of these variables (one memory location reserved statically). Thus, after loading the
FLEX PE's, each of these variables exists at a unique, statically assigned, location in the local memory of
each FLEX PE. Each time a task or force member is initiated, it uses this same location in local memory.
If, while one task is running on a PE, a second task begins to run on the same PE and uses the same vari-
able, then the tasks will interfere with each other -- each will be fetching and storing from the same local
variable location, without protection from the other. The result will be subtle, timing dependent, errors in
program execution.

To avoid the problem, either choose a configuration that does not generate the WARNING message
(one slotkluster and no overlap of secondary PE sets for different clusters), or be sure your program does
not initiate tasks or force members that run in parallel on the same PE and that might use the same static
variables.

DATA Statements in Fortran. The same problem will make DATA statements troublesome for ini-
tializing local variables. The first task of a particular tasktype to be run will see the correct initial values.
A later task of the same tasktype will see the values left by execution of the first task, rather than the
expected initial values set by a DATA statement. RULE: Use assignment statements rather than DATA
statements to initialize local variables in Pisces Fortran on the FLEX.

Note that this is a FLEX bug, not a Pisces bug. Unfortunately there seems to be no reasonable way
to correct it without major changes in the FLEX MMOS operating system.

37

PISCES USER’S MANUAL: PART 3

THERUN-TIMEENVIRONMENT

The Pisces Run-time Environment provides facilities for the programmer to monitor and control the
execution of a Pisces Fortran program on the FLEX PE’s. The various commands a~ described below.

INITIALIZATION OF A RUN
After downloading of a loadfile to the FLEX PE’s, the Pisces run-time environment takes control of

the system-defined main PE (usually the PE with the lowest number of those loaded). First the data struc-
tures describing the various Pisces clusters are initialized in shared memory, using the values specified in
the configuration file for the run. Then a task controller task is initiated on each PE that is to be the pri-
mary PE for some cluster.

Subsequently, the run-time environment displays a menu to the user, listing the various command
options available. The user may choose a command, which is executed, and the menu is re-displayed. If
the configuration file specified an initial tasktype and cluster, then the user need take IW action -- the
specified task will be initiated automatically just before the run-time menu is displayed for the first time.

RUN-TIME MENU OFITONS
The current run-time menu options are:
0. TERMINATE THE RUN. The Pisces system shuts down. AU running tasks and forces are ter-

minated. If the user program has open files due to tasks that have not terminated correctly, then Pisces
termination may not cause successful FLEX job termination. If the final Pisces message:

Pisces system terminates.

is not followed immediately by the FLEX message:
Program execution completed.

then it may be necessary to hit BREAK and terminate the job abnormally (answer ‘yes’ to the ’Do you
want. .. ’ question).

1. INITIATE A TASK. The user is asked for the tasktype and cluster number. An INITIATE mes-
sage is sent to the task controller of that cluster, exactly as if the initiate request were generated by execu-
tion of an INITIATE statement in the program.

2. TERMINATE A TASK. The user is asked for the cluster and slot number of the task to be ter-
minated. Termination is not guaranteed to be safe unless the task is not actively accepting or sending
messages (Le., messages may be garbled). Termination frees the slot in which the task is running.

3. SEND A MESSAGE. The message type and the receiver’s cluster number and slot are requested.
The message cannot have arguments (Le., it looks like a SIGNAL). The message is sent to the designated
task, exactly as if it had been sent with a SEND statement in the program.

4. DISPLAY RUNNING TASKS. A display is produced that shows the running tasks in each clus-
ter, including the task controllers and user initiated tasks. From this display, you can determine the clus-
ter number and slot where each task is running (for use in other commands).

5. DUMP SYSTEM STATE. A full dump of the entire system state is generated, including free
space lists, the heap, the state of every cluster, each running task, etc. More information than you usually
want to see.

38

I 6. DUMP MESSAGE QUEUE. The cluster number and slot of the task are requested. A detailed
display of the in-queue contents of that task is generated, including message types, free space lists, etc.

7. EDIT TRACE OPTIONS. You may choose to edit the trace settings for a particular task, or for
all new mks initiated after the changes axe made. The options for settings and events to trace are exactly
as in the configuration menu.

1 ' -
TRACE OUTPUT DISPLAY DURING EXECUTION

If you have chosen to have trace output displayed on the terminal during program execution, you
will find the output intennixed with the displays generated by the Pisces run-time environment. The
result can be confusing. Try hitting RETURN repeatedly to single step through trace output without gen-
erating any new Pisces displays. Usually it is easiest to use displayed trace output to check the progress
of a run, but then also send the output to a tracefile for detailed analysis after the run.

TRACE OUTPUT INTERPRETATION

The trace file produced by a run contains timing information in each output line, in the form:

ticks=<PE numben/<ticks count>

Each FLEX PE has its own clock and the clocks are not synchronized. Thus timing comparisons acmss
PE's are usually not accurate. The "tick" measured by the FLEX clocks is equal to 20 milliseconds.

The Unix utility "grep" is a convenient way to pull only particular trace lines out of a tracefile. For
example, to list all trace output produced on PE 9, use:

To list all the TERMINATE lines, use:
grep "ticks=9" <trace file>

grep "TERMINATE" <tracefile>

STORAGE MANAGEMENT

Storage management for tasks and messages is handled dynamically during program execution.
The implementation attempts to minimize hotspots and locking of shared memory. If you dump the sys-
tem state (run-time option 5) during Pisces execution, you will see the major features of the storage
management organization, including the amount of storage available on each free space list and in the
global heap block. For this reason, it is useful to have an overview of how Pisces manages storage during
execution.

TYPES OF FREE SPACE
The Pisces system uses only three types of blocks of free space:
a. TASK BLOCKS. A task block is allocated to each running task to contain information about the

b. MESSAGE HEADERS. Every message has a header that contains infomation about the sender

c. MESSAGE ARGUMENT PACKETS. If a message carries argument data values, then those

current state of that task.

and receiver of the message, the message type, etc.

values are stored in a linked list of 'packets'.

39

Because there are only three types of free space blocks, separate free space lists are maintained for
each type of block. During program execution, all free blocks are recovered and reused, with a single
exception: argument packets on broadcast messages are not recovered. Storage management requires
relatively little run-time overhead -- management is via explicit allocation and return; there is no garbage
collection or use of reference counts.

LOCAL FREE SPACE LISTS
Each task maintains two local free space lists: one for message headers and one for argument pack-

ets. When a message is accepted, the header and any argument packets are returned to the local free
space list of the receiving task. When a message is sent, the header and packets (if any) are taken from
the sending task’s local free space lists.

GLOBAL FREE SPACE LISTS
The global ’heap’ contains three free space lists: for task blocks, for message headers, and for argu-

ment packets.
When a task controller initiates a task, it takes a task block from the global taskblocks list. Upon

termination of the task, its taskblock is returned to the global list.
When an individual task sends a message, it gets the header and argument packets from its local free

space lists. If one of these is empty, then a group of headershackets are taken from the global list and
made into a new local list.

When an individual task terminates, or if its local free space lists become too long, then
headen/packets are returned to the appropriate global free space lists.

This organization was chosen so as to minimize contention for the global lists, which must be
locked whenever blocks are allocated or returned. When message passing is fairly evenly distributed,
most tasks are able to allocate message headers and packets from their local lists, without going to the
global lists at all. When message passing is more unbalanced, tasks that collect too many headers or
packets return the excess to the global lists periodically.

GLOBAL FREE BLOCK
All storage for taskblocks, headers, and packets is initially part of a large ’global free space block’

of FLEX common memory. This block is allocated by an AMOS ‘CCalloc’ request (the current block
size is displayed as part of the system state dump). When storage blocks are required, and the appropriate
global free space list is empty, then new blocks are carved out of this large block to satisfy the allocation
request.

When the global free block is exhausted, another CCalloc call is made to get a new one. No storage
is ever returned to the global free block.

READING THE SYSTEM STATE DUMP
The system state dump (run-time option 5) begins with a display of infomation about the global

free space lists and the global free block: the number of items in each list, the current size of the global
block, and the initial size of each block when requested from CCalloc. The status of the various locks is
also shown.

The total common memory allocation for the entire program execution to that point is also
displayed. This total includes the size of a small initial block allocated for the Pisces top-level system
information, and the sum of the sizes of all the global free blocks allocated so far. It does not include
common memory allocated for shared variables in user programs.

The length and lock status of the local free lists of each task running in a cluster is shown as part of
the display for each cluster. The same information is also shown for the task controllers.

40

Besides providing information about overall storage use, the dump can tell you some things about
parallel activity during program execution. For example, the length of the global taskblocks list after a
task completes execution tells you how many subtasks were every actually running simultaneously during
execution of that task. In a recent run of the MATMUL demo program with large matrices (50x50) there
were 2500 inner product tasks spawned by the main task, but after the run was complete, there wefe only
two taskblocks in the global free list. Since the main task used one of those, no inner product tasks were
ever running simultaneously. Conclusion: the inner product tasks were too 'lightweight' -- the execution
time of one was shorter than the time to build and send the message to initiate the next one (so the task-
block used by the first returned to the free space list in time to be allocated to the next task).

41

Standard Bibliographic Page

1. Report No.
NASA CR-178334

2. Government Accession No.

9. Performing Organization Name and Address
Institute for Computer Applications in Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

and Engineering

12. Sponsoring Agency Name and Addreas

17. Key Words (Suggested by Authors(s))

parallel computers, parallel
programming, programming environments

National Aeronautics and Space Administration
Washington, D.C. 20546

18. Distribution Statement

61 - Computer Programming and
62 - Computer Systems
Unclassified - unlimited

Software

15. Supplementary Notes

Langley Technical Monitor:
J. C. South

Final Report

19. Security Classif.(of this report)
Unclassified

3. Recipient’s Catalog No.

20. Security Classif.(of this page) 21. No. of Pages 22. Price
IJnclassi f ied 46 A03

5. Report Date

July 1987
6. Performing Organization Code

8. Performing organization Report No.
.-I

10. Work Unit No.

505-90-21-01
11. Contract or Grant No.

NAS1-18107
13. Type of Report and Period Covered

16. -Abstract

PISCES 2 is a programming environment and set of extensions to Fortran 77 for parallel programming.
It is intended to provide a basis for writing programs for scientific and engineering applications on
parallel computers in a way that is relatively independent of the particular details of the underlying
computer architecture.

This manual provides a complete description of the PISCES 2 system as it is currently implemented on
the 20 processor Flexible FLEW32 at NASA Langley Research Center.

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1986)

