
NASA Contractor Report 178332 

ICASE REPORT NO. 87,-40~ 

ICASE 
MULTIGRID METHODS FOR BIFURCATION PROBLEMS: 

THE SELF ADJOINT CASE 

Shlomo Ta’asan 

(BASA-CR- 178332) A U L I I G R I D  LETRCDS FOR N87-26543 
€ I E U B C A T I C B  P6CELEHIS: T E E  SELE ALJOINT CASE 
F i n a l  Report ( B A s A )  36 p A t a i l :  l T I S  €IC 
AC3/BP 1 0 1  C S C L  12A Unclaz 

G3/64 0087624 

Contract No. NAS1-18107 
July 1987 

INSTITUTE FOR COMPUTER APPLICATIONS I N  SCIENCE AND ENGINEERING 
NASA L a n g l e y  R e s e a r c h  Center, Hampton, Virginia 23665 

Operated by the Universities Space Research Association 

National Aeronautics and 
Space Administration 

Hampton,Virginia 23665 
--- 

https://ntrs.nasa.gov/search.jsp?R=19870017160 2020-03-20T09:31:22+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Multigrid Methods for Bifurcation Problems: 

The Self Adjoint Case 

Shlomo Ta’asan * 

Institute for Computer Applications in Science and Engineering 

Abstract  

This paper deals with multigrid methods for computational problems that arise in the theory 

of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of 

solutions, a task that is done successfully with an arc length continuation method. Other impor- 

tant issues are, for example, detecting and locating singular points as part of the continuation 

process, switching branches a t  bifurcation points, etc. Multigrid methods have been applied to  

continuation problems [BK],[M]. These methods work well at regular points and a t  limit points, 

while they may encounter difficulties in the vicinity of bifurcation points. A new continuation 

method that is very efficient also near bifurcation points is presented here. The other issues 

mentioned above are also treated very efficiently with appropriate multigrid algorithms. For 

example, it is shown that limit points and bifurcation points can be solved for directly by a 

multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems 

in just a few work units (about 10 or less), where a work unit is the work involved in one local 

relaxation on the finest grid. 

*Supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18107 while 

the author was in residence at ICASE, NASA Langley Reeearch Center, Hampton, Va 23665. 
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I Introduction 

This paper discusses multigrid methods for computational problems that arise in the theory of 

bifurcation. Only the self adjoint case is treated here. Generally, a nonlinear equation with a 

parameter(s) is given, and the behavior of the solution as a function of the parameter(s) is required. 

This may include, for example: 

1. Continuation along solution curves (also near singular points) 

2. Detection of singularities in the marching process 

3. Locating singular points as part of the continuation 

4. Locating singular points without continuation (on fine levels) 

5 .  Switching branches at bifurcation points 

Continuation methods in which the problem is solved for one choice of the parameter and then 

changing it until a prescribed value is reached are commonly used. Such methods may encounter 

difficulties in case where the problem becomes singular for some choice of that parameter. Differ- 

ent continuation techniques have therefore been developed [K],[M]. In the arc-length continuation 

methods [K],[M], a new parameter, which represents an arc-length along a solution curve, together 

with an extra equation, is introduced. This makes the continuation process very robust at  regular 

and at  limit points (defined later). 

Detection of singularities as part of the marching process may be required. A common way 

of doing that is by  monitoring the sign of the determinant of the linearized discrete operator [K]. 

Such an approach works well if the discrete problem has a singularity whenever the continuous 

one has. However, in non trivial cases this may not be so. Bifurcation on the continuous level 

may become an imperfect bifurcation on the discrete level; that is, the different branches which 
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intersect on the continuous level do not intersect on the discrete level, while they approach each 

other, approximating better and better the continuous branches, as the discretization parameter 

goes to zero. In such cases the determinant may not change sign, and as a result some bifurcation 

points (of the continuous level) may be skipped. In this paper detection of singular points is done by 

monitoring (on the coarsest level) the eigenvalue which is the closest to zero. If a small extremum is 

detected in the behavior of the eigenvalue, further checks are done in order to ascertain the existence 

of a singular point of the continuous level in that vicinity. In case the extremum approaches zero, 

as the discretization parameter tends to zero, a singularity has been detected. The advantage of 

this method is that it can detect every singularity of the continuous system. 

Once a singularity is detected, its exact location may be required. Several approaches for 

locating singularities exist. These methods are basically root finders for the determinant of the 

linearized system and involve iterations in which at  every step the nonlinear problem has to be 

solved. Such methods require O(nS) operations for each step (in calculating determinants). The 

method suggested here uses a set of equations that defines the singular point and solves these 

equations directly, without involving iterations within iterations as other methods do. This can 

lead to algorithms that need O(n) operations in order to locate singular points. The importance of 

this becomes clear when curves (in the parameter space) of singular points ( envelope of singular 

points) are required. Such envelopes of singular points can be defined as solutions of a new system 

of equations. A continuation method can then be applied to this new system, resulting in huge 

savings in the computational work. 

I 

Having the basic tools for continuation and other objectives, a fast way of solving the resulting 

system is desired. This can be done very efficiently using multigrid methods. In [BK] a multigrid 

continuation method that uses arc-length continuation is described. It is very efficient at  regular 

and limit points, but may fail near bifurcation points. In general, the difficulty with standard 

multigrid continuation methods near singular points arises because of the eigenfunctions corre- 

sponding to nearly singular eigenvalues. The coarse levels approximate these components very 

poorly, resulting in a slow convergence rate or even divergence of the multigrid cycle. In [BT] a 

method for treating nearly singular problems has been proposed. That method treats separately 

the poorly approximated components, which turn out to be the nearly singular components. It 

begins by identifying them and then introduces a correction to the usual coarse grid equations in 
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such a way that makes them approximate all components well enough for accelerating finer grid 

convergence. The amount of work involved in computing the nearly singular components to the 

desired accuracy is very small, making the cost of the modified algorithm essentially that of the 

standard one, except in linear problems which are extremely close to singularity. In that case the 

accuracy of nearly singular components is improved as the algorithm proceeds in getting better 

and better approximations for the original function to be found. 

The paper is divided into two parts. The first, which includes sections 2-4 , discusses basic ideas 

concerning the treatment of bifurcation problems. These are arc length continuation, the detection 

and location of singularities (or envelope of singular points), and switching branches at  bifurcation 

points. This part of the paper except part of section 3.2, which is believed to be original, is given 

for completeness of the presentation of the subject . 
The second part is devoted to the description of various multigrid methods. It begins in section 

5 where standard multigrid methods are described. This includes the multigrid method for contin- 

uation problems at regular and limit points. This method is basically the frozen tau method [B]. 

This section describes also a method for locating limit points directly by an appropriate multigrid 

algorithm. 

In Section 6 a description of advanced multigrid methods designed to work efficiently near 

singularities is given. These methods involve modifications of the coarse grid equations and are ex- 

tensions of ideas developed in [BT]. Locating bifurcation points directly by an appropriate multigrid 

method is also decribed there. 

In section 7 the effectiveness of some of the algorithms presented in the paper is demonstrated. 

It is shown that limit points are located using the 1-FMG algorithm for an appropriate system 

of equations defining these points. Similar results using the 2-FMG algorithm are obtained when 

bifurcation points are to be located. Also the effectiveness of the new continuation methods near 

singular points is demonstrated and compared with a standard continuation multigrid method. 

2 Arc Length Continuation 

Consider a nonlinear problem, say, in the form 

L ( U , X )  = 0 
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where L : U x R --t ', R is the set of real numbers anc 1 is some Hilbert space and suc 

Lu(u, A) is a self adjoint operator. Smooth branches of solutions 

{rab : [ u ( s ) , X ( s ) ] ,  Sa 5 8 5 sb} 

that 

where u ( s )  E U, X(s) E R are required. Here the parameter s is arbitrary, and we refer to it later 

on as the arc-length parameter. 

The standard approach of using X as the continuation parameter is basically the following. 

Given a solution uo at Xo one seeks a solution at Xo + 6X by using Newton's iteration 

where: 

L p  3 L,(u(")(Xo t 6X), Xo + 6X) 

L(") = L(U(")(XO + 6X), A0 + SA) 

(2.4) 

(2.5) 

u(1) G (Lo (2.6) 

(2.7) u("+l) (A, + SA) = u ( ~ ) ( x ~  + 6x1 + ~u(" ) (xo  + SA), n 2 I.  

This continuation method encounters difficulties when L, becomes singular . A method that 

circumvents such difficulties to some extent is the arc length continuation. In this method (2.1) is 

replaced by 

L ( u ( s ) ,  X ( 4 )  = 0 (2.8) 

N ( u ( s ) ,  W S )  = 0 (2.9) 

where N : U x R x R + R and s E R is the independent parameter on the arc of solutions [K],[M]. 

Several choices for N are possible. Throughout this paper N is defined by 

where so and s1 are two previous points on the branch of solutions, u E U ( S ) , U O  z u ( s o ) , u l  e 

u ( s 1 ) ,  X 1  = X ( s 1 ) ,  0 5 0 5 1 and < .,. > denotes the inner product in U. This equation is an 

approximation to a choice given in [K] and does not require the computation of the tangent to the 

solution curve. 
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Given  SO), X(s0)) and (u(s1),X(s1)), a process of solving for (u(s),  X(s)) proceeds as follows: 

(2.11) 

(2.12) 

where ( 6 ~ ( " ) , 6 X ( ~ ) )  is the solution of the equation 

(2.15) 

and A?), LP), I,("), N p ) ,  Ni"), N(") are defined in a similar way as in (2.4),(2.5). A multigrid 

method for solving equations (2.8),(2.9) at  regular and at limit points is described in section (5.2). 

An extension of that multigrid algorithm for solving near bifurcation points is given in section 6. 

The role of 8 ,  in the definition of N, is to enable inexpensive marching through limit points 

where the curve has a high curvature. Note that the geometric meaning of (2.10) is that the angle 

between two successive changes in the solution, in the (.,A) plane, is less than a/2 ( assuming 

s > SO) .  In case the step size is too large, for example, in encountering an angular limit point, 

this may not be the case, and the augmented system (2.8) (2.9) may not have a solution unless s 

is close enough to so. With a proper choice of 6 (usually either 8 = 1 or 6 = 0) marching through 

such points is possible, without decreasing the step size . 
A Continuation Process 

For completeness of the presentation, a full continuation process is described here. Let 8 = 0.5. 

Step 1: 

0 Set SO = 0,X = X0,uo = 0. 

0 Solve L(u0, A) = 0, for uo , keeping X fixed. 

Step 2: 

0 Set X = X1,u1= uo . 
0 Solve L(u1, A) = 0, for u1 , keeping X fixed. 

0 Compute s1 from the equation 

(sl - so)2 = - uo))2 + (I - e ) )  x1 - x0 1 2 .  
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Further Continuation Steps 

0 Choose As (for example s1 - so ), Set s = s i+  As and 

u = ui+ sr.1- UO] 

A = A: + =pi - A01 

L(u,A) = 0 

N(u, A, s) = 0 

0 Solve the following equation for (.,A) 

0 Set so = si, si = 8 ,  uo = ui, ui = u 

3 Singularities 

3.1 Detection of singularities 

A singular point is a point (u*, A,) on a branch of solutions for which Lu(u*, A,) is singular. 

A common way for detecting singularities is to check for a sign change in the determinant of the 

linearized system [K] . This, however, cannot detect bifurcation from eigenvalues of even multiplicity. 

Also it cannot detect bifurcation of the differential equation which became imperfect bifurcation 

on the discrete level, since the determinant may not change sign along discrete solution curves in 

such cases. In fact singularities may disappear upon discretization. 

In this paper a different approach is taken. Let (u*,A*) be a singular point, and let p be a 

corresponding singular eigenfunction, i.e., 

L ” ( U * ,  A * ) p  = 0. ( 3 4  

In the vicinity of the point (u*, A,) 

is close to zero, and it vanishes a t  (u, A) = (ut, A*). Detecting singular points is done by computing 

approximately p2(s) on the coarsest level. Once an extremum has been found, and it is small 

enough, further checks are needed in order to decide whether a zero for p(s) exists on the continuous 
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level. For the continuous level the extremum of p(s)I  is zero at  singular points, while it may not be 

so on the discrete level. However, it approaches zero as the discretization parameter goes to zero. 

In detecting singular points we distinguish between limit points, bifurcation points, and imper- 

fect bifurcation points. In the last case L,  may not become singular but almost singular; that is, it 

has a very small eigenvalue. This case is very important since, as mentioned above, a bifurcation 

in a differential equation may become an imperfect bifurcation for the discrete system, and this is 

very likely to  happen (See section 7) . 

Limit Points A point ( U O ,  Xo) is called a limit point if 

dimU(Lz) = 1 (3.4) 

codimR(Lt) = 1 (3.5) 

L: R ( L t ) ,  (3.6) 

where U(L:), R ( L t )  are the null space and the range of L: = L,(uo,Xo) respectively. These 

conditions imply that 

i o  = 0. (3.7) 

Bifurcation Points 

tangential intersection. At such points 

A bifurcation point is a point where two branches of solutions have a non 

Imperfect Bifurcation Imperfect bifurcation is a situation in which a problem with a bifurca- 

tion has been perturbed and as a result the different branches do not intersect any more, but they 

come very close to one another. Two cases are possible: 

(i) The different branches consist of regular points only (in that vicinity ) 

(ii) At least one of the branches has a limit point. 

The next section describes how locating singularities is done and how a distinction is made once 

a singularity has been found. In this paper only singularities of the continuous level are of interest. 

Limit point and bifurcation points (perfect and imperfect) are showm schematically in figures 

1 and 2. 
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3.2 Locating Singularities 

Having detected a possibility of a singular point using the coarsest level, further checks (to confirm 

the existence of a singularity) and its exact location may be required. In the vicinity where ~ ( s ) ~  

has a minimum, the following minimization problem may be used to accurately locate a singularity 

min p2 subject to  
(.,bP) 

(3.10) 

L(u,X) = 0 (3.11) 

(3.12) 

(3.13) 

This minimization problem can serve for locating either limit points or bifurcation points. Together 

with p2(s) also <  LA,^ > is needed in order to  decide about the nature of the singularity located, 

i.e., whether it is a limit point, a bifurcation point, or an imperfect (discrete) bifurcation. At 

bifurcation points < LA,  p >= 0, and at limit points < LA,  p ># 0, while at both p(s)  = 0. When 

a discretization is used to approximate a singular point, the two quantities p t  and < Li, ph > are 

available. The nature of a singularity is determined as follows: 

IF p i  f ,  0, as A + 0 THEN no singularity exists 

ELSE 
IF < Lk,ph >t 0 

ELSE a limit point has been detected. 

as h t 0, a possible bifurcation point has been detected 

The location of the singular point, if detected, is obtained from the limit of the sequence (ut ,  A!) 

which minimizes the discrete analogue of (3.10)-(3.13). Note that the decision about the existence 

of a singular point can be made in general only by solving a sequence of discrete problems, since a 

perfect bifurcation may become an imperfect one upon discretization. 

Sometimes it is known in advance that only limit points are involved. In such cases they can 

be located using the following system of equations, once the vicinity of the limit point is reached. 

(3.14) 

(3.15) 

(3.16) 
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In a vicinity of a limit point the above system is regular. To see this differentiate the equation 

L(u,X) = 0 twice with respect to  the arclength parameter s, getting 

L,U + [LUUUU + 2L,xUi + Lxxi i ]  + Lxi  = 0. (3.17) 

At a limit point LA $! R ( L , ) , i  = 0, hence it follows that Luuuu # 0. Since u = a p  for some 

real a, i t  follows that L,,,pp # 0. This implies that the linearized equations of (3.14)-(3.16) are 

not singular. A Newton iteration therefore may be used for solving these equations. A different 

method, that combines multigrid ideas, for solving the above system is described in section 5.3. 

3.3 Locating Envelopes of Singular Points 

When nonlinear equations are given in terms of more than one parameter, say for example, X and 

p,  a curve of singular points (for example limit points), in the ( X , p )  plane may be required. A set 

of equations that define such curves is given by 

min p2 subject to 
( % P A P )  

(3.18) 

llPl12 = 1. (3.21) 

These equations are solved once the vicinity of a singularity is reached. One possibility in solving 

these equations is to find for each p a X for which a singularity exists. This however may fail 

near limit points in the ( X , p )  plane. To circumvent this difficulty an equation like the arc length 

equation is added, but  this time in the (A, p )  plane. That is, an envelope of singular points is found 

by solving (3.18)- (3.21) together with 

where s is the arclength parameter, and ( A l ,  pl), (A2, p2) are two successive points on the curve 

that have been computed previously. The first two points on such a curve are found, for example, 
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by fixing p and trying to  find a singular point in A. This is done using methods described in 

the beginning of the section. Other points are solved for using (3.18)-(3.22). The nature of the 

singularity is found by computing < LA,  q5 >. A simplification occurs when only limit points are 

involved; then the equations are 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

4 Switching Branches 

Once a possibility of having a singular point has been detected, a search for new solution branches 

may be required. Several methods for doing this are possible [K]. Two of these are described 

here. The first is useful only when the discrete equations have a bifurcation point whenever the 

continuous problem does. The second can be applied in more general cases. 

4.1 Method I (perfect bifurcation) 

In this method switching branches at bifurcation points starts by finding directions for the new 

branches. Given the singular eigenfunctions ((01,. . . , (Om} at a bifurcation point (u* ,  A,), the solu- 

tion for any of the branches going through the bifurcation point is approximately of the form 

m 

j = O  

in the vicinity of that point, where PO is the solution of the system 

The superscript O on operators indicates here that they are evaluated at  the bifurcation point.The 

m + 1 scalars {ao,. . . , a,} are a solution of the quadratic system of equations [K] 
m m  m 
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where 

and e is sufficiently small. 

Having a solution to (4.3)-(4.4), a new point (.,A) on the new branch can be found by solving 

the system 

L(u,X) = 0 
m 

j = O  

starting with the initial approximation 

(4.10) 
j = O  

x = A* + CYO. (4.11) 

When this has been done a continuation that uses arclength for marching on the new branch of 

solution can be started. 

4.2 Method II (perfect or imperfect bifurcation) 

In this method solutions are required on some plane ”parallel” to  the tangent but displaced from the 

bifurcation point (either a perfect or an imperfect) in a direction ”normal” to the tangent. Let ($, 8) 
be a normal to the tangent ( h ( s ) ,  i (s) ) .  Starting from the initial approximation (UO + e$, A0 + e$) ,  

we look for a solution of the system 

L(u,X) = 0 (4.12) 

< t.4 - uo,$ > +(A - xo)8 = € [ l l $ l 1 2  + (8)”, (4.13) 

where E is chosen to be not too small in order to avoid going back to the previous branch. In fact, 

e can be estimated from information obtained during the computation for locating the singular 
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point. Let (.!,A?) be the solution of the discrete version of (3.10)-(3.13). Let Q and c be constants 

such that IIIihu(: - U : ~ I ~ ' +  I A t  - A:h 1'5 ch'. Then e = 4c& should be large enough (it is about 

4 times the distance from (u t ,  A t )  to the differential singular point). For simple bifurcation cases $ 
can be approximated from differences of ut  on successive levels. The multiple bifurcation case will 

require the computation of the nearly singular subspace in order to define more than one direction 

for a new branch to  bifurcate. 

5 Standard Multigrid Methods 

In this and the next section we describe multigrid methods for the problems mentioned in the previ- 

ous sections. These include path following a t  regular and singular points, detection of singularities 

as part of the continuation procedure, locating accurately singular points, and switching branches 

a t  such points. Continuation procedures in the formulation of this paper require the solutions for 

two different values of A's . These are obtained using a basic multigrid method. 

5.1 Basic Multigrid Method 

Local relaxation and a coarse grid correction form the basis of a multigrid cycle. 

5.1.1 Local Relaxation 

The main element of a multigrid method is a relaxation method, usually a local one, which has good 

smoothing properties. For linear scalar problems Gauss-Seidel is the first candidate (for systems 

a Distributed Gauss-Siedel or Collective-Gauss-Seidel may be the analogue). When non-linear 

equations are involved, a Newton-Gauss-Seidel relaxation is used. In this relaxation the equations 

are scanned in some order where for each equation one variable is changed using one Newton step 

for the nonlinear equation that this variable satisfies (keeping all the rest fixed). The use of only 

one Newton iteration is usually enough to guarantee good smoothing. 

Gauss-Seidel relaxation does not converge for indefinite problems, though it may have very 

good smoothing properties. It should be used, therefore, on fine levels, as long as the divergence 

of the smooth components is slow enough . On coarse levels a different relaxation is needed. 

Kaczmarz relaxation for linear problems and a Newton-Kaczmarz for nonlinear problems are used 
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in the indefinite case on coarse levels. In the Kaczmarz relaxation each variable gets a correction 

proportional to its coefficient in the equation such that the equation is satisfied. In a Newton- 

Kaczmarz relaxation each variable gets a correction proportional to its coefficient in the linearized 

equation such that this (linearized equation) holds. 

The problems considered in this paper are nonlinear; therefore, the multigrid method described 

is the Full Approximation Scheme which is suited for such problems. Here the coarse grids approx- 

imate the full solution rather than corrections as in the Correction Scheme (CS). See [B] for more 

details. 

5.1.2 Multigrid Cycle. Full Approximation Scheme (FAS) 

Consider a sequence of grids n k ( k  5 M )  with mesh sizes hk satisfying 2hk+l = hk . Suppose on 

each grid an operator Lk is given in such a way that Lk(k  < M )  is an approximation to  Lk+' and 

the !& grid equations are 

LkUk = F k .  (5.1) 

Assume also that interpolation operators I:-', from coarse to fine grids , and restriction operators 

Ikk-', - k - 3  I k  , from fine to coarse grids, are given. 

Given an approximate solution uk to equation (5.1), the multigrid cycle for improving it is 

denoted by 

uk t MG(k,uk,Fk) ( 5 4  

and is defined recursively as follows: 

IF k=l THEN solve (5.1) by enough relaxations (to achieve a desired accuracy) 

ELSE 

0 Perform v1 relaxation sweeps on (5.1), starting with uk and resulting in a new 

approximation ck. 
0 Starting with uk-' = 7:-'iik make y successive cycles of the type 



0 Perform u2 relaxation sweeps on (5.1) starting with Gk and yielding uk, the 

final result of (5.2). 

The cycle with 7 = 1 is called V cycle or V ( u 1 , y )  and the one with 7 = 2 is called W cy 

W ( V l , V 2 ) .  

le r 

I 5.1.3 Full MultiGrid (FMG) Algorithm 
I 

In order to obtain full efficiency, the first approximation on a given level is obtained from a solution 

of the same problem on the next coarser level, which itself has been calculated in a similar way. 

The resulting algorithm is called Full MultiGrid (FMG) and is described next. 

Let n,k-, be an interpolation operator (usually of higher order than I,- ,) .  Given the problem 

LMUM = F M ,  the N-FMG solution of that problem is: 

Initial setup: 

Set uM = 0. 

F O R k = M - l ,  ..., 1 DO: 

O F k  = I,+,Fk+' 

ouk = 0. 

N-FMG Algorithm 

Calculate u1 the solution of (5.1) for k = l  by several relaxations. 

FOR k = 2 , .  . . , M  

0 Calculate uk 

0 Perform the cycle uk t MG(k ,uk ,  F k )  N times. 

DO: 

t uk + n,k-,uk-l. 

5.2 MultiGrid Continuation Method (regular points) 

In this section the multigrid solution of the following equations is described 

L(u,X) = F 

N(u ,  A, s) = f, 



1 6  

where N is given by (2.10). 

Having solved L(u,X) = F for two different values of A, Xo and XI, using the method of section 

(5.1), the actual continuation method, also using equation (5.4) can be done. A relaxation scheme 

that will also treat equation (5.4) is needed. 

5.2.1 Relaxation for  Continuation Problems (regular points) 

The relaxation of a system like (5.3)-(5.4), which includes global parameters as unknowns, is done 

in two steps. The first step is the relaxation of equation (5.3) for u only keeping X fixed, designed 

to have good smoothing properties. The second step changes X and u. This will be referred to as 

the global step since it involves changing the global quantity X and a global component of u, namely 

4 = ul - uo. Away from singularities the local relaxation process converges reasonably well on 

coarse grids for all components involved. The global step in this case is designed such that equation 

(5.4) holds. This could be done by changing X only; however, this might have a bad effect on the 

other equation (5.3). A change that satisfies (5.4) and also takes into account equation (5.3) must 

allow for the change of a quantity other than A. This quantity is the 4 component of u. Using the 

above 4 the global step is given by 

where /3,6 is the solution for the following equations 

L(u+@,X+S),4>=< F,4>  (5.7) 

(5.8) N(" + p4, X + 6, s) = f. 

Note that the global step is designed such that the residuals of (5.3) are zero in the 4 direction. 

The solution of the above system is approximated by the solution of the linearized equations, i.e., 

p < 4, til - uo > +6(X1- A,) = f - N(u,X,s) .  (5.10) 
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Furthermore, < Lu(u, X)# ,4  > and < L x ( u , X ) , q 5  > are approximated using differences, 

1 
< L ( . , A ) 4 , 4  >= - € < L ( U + € $ h , X )  - L ( u , X ) , $ h  > 

1 c L , , ( U , X ) , #  >= - < L ( U , X + € )  - L(u,X) , f j  > . 
€ 

Both approximation steps are justified since regular points are considered here. 

Let kl be the finest level on which the global step is used; (usually kl = 1 or 2), the relaxation 

of (5.3)-(5.4) is then 

IF k 5 kl THEN Perform local relaxation for u in equation (5.3) 

ELSE Perform a local relaxation for u in equation (5.3) followed by a global step. 

5.2.2 Standard Full-MultiGrid-Continuation (FMGC) Method 

Given a sequence of problems 

L k ( U k ,  A) = Fk 

N k k  ( u  ,X ,s )  = G k 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

defined on a sequence of grids nk with mesh sizes hk(k 5 M) and such that coarse grid operators 

are approximations to finer ones as before. We describe now the continuation multigrid method. 

Step 1: 

0 Set so = 0,X = X O , u M  = 0. 

0 FOR k = 1 ,  ..., M - 1  DO: 
F k  = ~ k  F k S 1  

k + l  

uk = 0. 

0 Perform N-FMG algorithm for equations (5.11) with k = M, having X fixed. 

Call the resulting approximation on level M uf. 

Step 2: 

0 Set X = X 1 , u M  = u f  . 
OFOR k = M -  1, ..., 1 DO: 

uk = I k  U k + l  

F k  = I;+1Fk+' + L k ( U k ,  A) - Ik+l k Lk+1 ( & + l , X  
k + l  0 

1 
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0 Perform N-FMG algorithm for equations (5.11), having A fixed . 
Call the resulting approximation uy. 

FOR k=M-1, . . . , 1 DO: 
uk - T k  k t l  1 - k + l U l  

Fk = I;+,F"' + Lk(uk,A) - Ik+l k Lk+l ( uk+l , A ) 

Gk = 0 

0 Compute s1 from the equation 

N1(u:,A1,sl) = 0. where N1 is defined by (2.10) replacing k by 1. 

N-FMGC Algorithm 

0 Choose As (for example s1 - so ), Set s = SI+ As 

0 Perform N-FMG cycle for (uk, A') in equations (5.13)-(5.14) having s fixed, where the 

relaxation used is now the one of sec (5.2.1). 

Call the resulting approximation on level M (uM, A). 

0 F O R  k=M-l , . . . ,1 DO: 
k - I k  Uk+l 

k+ 1 u -  

F k  = Ii+lFk+l + Lk(uk, A) - IL+lLk+l(~k+l ,  A) 

Gk = I;+,Gk+' + N k ( u k ,  A, S) - Nk+l (uk+l ,  A, S) 

0 Set so = s1,sl = s. 

0 FOR k=l,  . . . ,A4 DO : 
,k - k U k  - k o - % ,  1 - a .  

Observe that the right hand side of the coarse grid equation when solving first for such levels is 

not just the restriction of the finest level right hand side. There is an additional term. This term 

is called in [B] the T term, and it represents the relative truncation error of the two grids involved, 

a fine and a coarse grid. The method of using this term from a previous step in a continuation 

process is called frozen-tau method. It has been introduced in [B] and has been used in [BK]. The 

main idea is as follows. After the solution has converged for some A, the right hand sides of coarse 

grids are no more the restriction of the right hand side of the finest grid. Also since the quantities 

change continuously, the additional term on coarse levels changes continuously. If T of the new 
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point on the solution branch was given on the coarse level, the accuracy of the fine grid solution, 

on the coarse grid, could be obtained. By using the previous r term a good approximation to the 

final one is used , yielding a very efficient process. 

Another way of looking at introducing this term is by attempting to solve at the new A for the 

increment in the solution. Using FAS this results in the same equation as we have. 

An algorithm that is very similar to the N-FMGC has been described in [BK]. The main 

difference between that algorithm and the one here is that the arc-length equations are assumed 

given on the finest grid in our case while it was used only on the coarsest level in [BK]. Another 

difference involves the method of solving the coarsest grid equations. In [BK] a Newton iteration 

for the augmented system has been used. 

5.3 Multigrid Method for Locating Limit Points 

Once a limit point has been detected by observing the behavior of A(s), for example, it may be 

required to actually locate it. This is done by applying an FMG algorithm to a discrete version of 

(3.14)-(3.16) once the continuation process has reached the neighborhood of the limit point. The 

relaxation process is basically what needs to be described. The rest is a standard FMG method for 

equations (3.14)-(3.16) using the FAS formulation, where Uk in (5.1) stands here for (uk, &,A).  

Relaxat ion 

A local process is used to smooth the error in both u and 4 by relaxing the discrete version of 

(3.14) for u and (3.15) for + (keeping (u, A) fixed). This local step is employed on all levels. On the 

coarsest level also a global step is employed. It begins by updating the norm of + by multiplying 

it by a proper constant, to satisfy the norm condition on this level, followed by 

u + u + p + ,  X + A + S  (5.15) 

such that (p, 6) satisfies 

Here F and G are the right hand sides for the corresponding coarsest grid equations, respectively. 

These equations are obtained as in section (5.2.1) upon linearization in (p, 6). Such a linearization 
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is justified since the system (3.14)-(3.16) is not singular in a vicinity of a limit point as shown in 

section 3.2. Note that since the operator L, is singular at  a limit point a local relaxation will be 

slowly converging for the q5 component in u. This, however, is taken care of by the global step 

which changes u exactly in the direction of slow convergence. 

When the envelope of limit points is required, the above procedure is combined into an FMGC 

algorithm, where here the global step has to update also the parameter p. 

The effectiveness of the multigrid algorithm for locating limit points is demonstrated in section 

7.1, where limit point for the Bratu problem is computed to the level of discretization errors using 

1-FMG algorithm. 

6 Advanced Multigrid Methods 

6.1 Difficulties Near Singularities 

The methods described in the previous section are very efficient away from singular points. Note 

that a limit point is not a singular point for the augmented system of equations; hence no diffi- 

culty is encountered there. In the neighborhood of singular points of the inflated system, such as 

bifurcation points, difficulties with the standard methods may occur. In [BT] a detailed discussion 

of the difficulty together with an algorithm for overcoming it is presented. For completeness the 

explanation given there is stated here. 

The first difficulty, which is the less serious of the two that are discussed, is the slowness of 

local relaxation processes near singularities. The global step as mentioned in section 5.2.1 does not 

always improve the rate of convergence. In order for this to happen the function q5 used in the 

global step should be an approximation to a slowly convergent component in the local process; in 

case few such components exist, more than one function should be used. These components turn 

out to be the almost singular eigenfunctions of the operator L,(u,X). The global step should use 

as many functions as there are components that are slow to converge. It is shown below that the 

closer one is to singularity the more accurate the eigenfunctions have to be approximated. 

Consider a linear equation Az = b, where A is a symmetric operator, and let ( 4 j , X j )  be 

its eigenfunctions and eigenvalues, respectively. Let 41 be slowly converging in a local relax- 

ation process. Assume for simplicity that the residuals consist of that eigenfunction only, Le., 



b - Az  = A141 . Let the global step be z + x + a!$ where $ = 41 + E;, a!i4i and such that 

(I! minimizes llA(z + a!$) - bl12 (in the general case) or 

Q minimizes < A(z  + CY+), z + a$ > -2 < b, z + a!+ > in the case A is positive definite. 

<b-Az**> respectively. For our special These global steps imply a! = -- and Q = 

or a! = 1 respectively. In both cases it is 

<b-Az A*> 
<A+,+> 

1 residuals it means a! = 1+ x;;-”=, aj’(Aj/Al)’ 1+xT==, a:(Aj/Xl) ’ 
seen that a good convergence implies that “ j ,  (1 5 j 5 rn) should be small, and the closer A 1  is to 

zero the smaller these should be. In non h e a r  problems, however, since higher order terms exist, 

the accuracy need not improve indefinitely in the vicinity of a bifurcation point. 

As a continuation process starts and as long as the convergence rate is satisfactory, one should 

use 4 = ul  - uo in the global step. When approaching a singularity of the augmented system, 

for example, a bifurcation point (perfect or imperfect), it is necessary to approximate the nearly 

singular eigenfunctions and use them in the global step. An algorithm for approximating the almost 

singular subspace is therefore required for the method described here to be effective. I t  is presented 

in sec 6.2.1. 

The more serious difficulty which is encountered near singular points is related to badly a p  

proximated smooth components on the coarse levels. Let dh be a smooth eigenfunction of a linear 

operator Lh. Because of smoothness it is also an approximate eigenfunction for the operator L2h 

which approximates Lh. It can easily be shown [BT] that the rate of convergence of a two grid 

cycle using the operators Lh and L2h is approximately given by the quantity 

where Ah, X2” are the eigenvalues of Lh, L2”. When Ah is close to zero, the above quantity may 

be close to or larger than one, i.e., the multigrid algorithm will have slow convergence or even 

divergence. Note the the number of nearly singular eigenfunctions is small ( compared to the total 

number of eigenfunctions) . For the bifurcation problems discussed in this paper, the number is 

small (just a few nearly singular components are possible). 

In nonlinear problems when the Frechet derivative of the operator is nearly singular, a similar 

difficulty occurs. An algorithm that is well suited for continuation near singular points is described 

next. 
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6.2 Modified MultiGrid Method 

As before consider a sequence of grids htk(k 5 M )  with mesh sizes hk satisfying 2hk+1 = hk . 
Suppose on each grid an operator Lk is given in such a way that Lk(k < M) is an approximation 

to Lk+l . Assume that corrected coarse grid equations are used for levels k 5 1 and that the 

subspace of badly approximated components, Ho, which is spanned by the set {q51,. . . q5n} has 

been approximated (see section 6.2.1). The coarse grid equations are obtained in an analogue way 

the one obtained in [BT] for nearly singular problems. For k 5 1 the equations to be solved for 

u k ,  rlJ(j=l k , . . .TI) are given by 

n L k k  (u ,A) = P k  + c a;+; 
j =  1 
n 

Nk(Uk, A, s) = G k  + c q;w; 
j = l  

< u k k  , d j  >= uj k +q;cy: 1 5  j 5 n, 

where 
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(6.16) 

5: = 0; + (j = I,. . . n) 

( j =  1, ..A) 

(6.17) 

(6.18) a;=< q5j,(bj k k  > 

where 115, uk are the current approximations to  65, Uk respectively. Initial approximations are 

- 6 = 0, uk = ?i+l~k+l. The interpolation in this case takes the form 

n 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 
j= 1 

6.2.1 Algorithm for Approximating t h e  Nearly Singular Subspace 

As has been stated before, one needs approximations to the nearly singular components since these 

are slow to  converge in the local relaxation process and are needed also in the formulation of the 

coarse grid equation . Actually what we compute are the nearly singuIar eigenfunctions of L,. 

The algorithm for doing that is an FMG algorithm. It begins by identifying these functions on 

the coarsest level. The device for that is Kaczmarz relaxation. I t  has the property of damping the 

error components which belong to eigenfunctions with relatively larger (in magnitude) eigenvalues. 

The ones that correspond to nearly singular components are the slowest to converge. By starting 

with a random guess * and relaxing the equation 

L,(U,X)W = 0 (6.24) 

enough times until the convergence rate becomes very slow, the approximation I?, to the actual 

solution W = 0, lies mainly in the subspace of nearly singular functions. Starting with this as an 

approximation we can solve the following eigenvalue problem 
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L,(U,X)W - pw = 0 (6.25) 

llW1I2 = 1 (6.26) 

in order to define a function in the almost singular subspace. Assume for the moment that this 

subspace is of dimension 1, and we solve for that subspace on the coarsest grid. A relaxation for 

that purpose consists of local and global steps. The local one is a Kaczmarz relaxation. The global 

one is of the form 

w e w p  
< L,(U,X)W,W > 

<w,w > ’ C l e  

(6.27) 

(6.28) 

where is such that the norm requirement is satisfied. When more that one grid is involved the 

relaxation is only the local one for the fine grids, while on the coarsest one also the global step is 

performed. Coarsening is done using FAS for the whole system (6.25)-6.26). The algorithm used 

is the FMG algorithm. 

In the event that the nearly singular subspace is of a higher dimension than one, that algorithm 

will converge slowly very soon; in fact, it can be observed even on the coarsest level when solving 

the discretized equations for (6.25)-(6.26). In case on any level (k 1 1) a slowness of convergence 

is encountered, new eigenfunctions have to be introduced into the process, where at each time the 

initial approximation for such an eigenfunction is taken from the residuals, of the problems already 

in process, which have been orthogonalized to previous eigenfunctions found already, and for which 

an FMG algorithm is applied. The process should include a Ritz projection as in [BMR] for that set 

of functions. In this way an orthogonal set of functions that spans the nearly singular subspace is 

found. Each of these solves a system like (6.25)-(6.26) with a possibly different p .  When the finest 

grid is reached with the FMG algorithm, all the nearly singular eigenfunctions have been found. As 

mentioned before the accuracy needed for these functions depends on the closeness of the operator 

L, to singularity. A feasible approach is then to improve the accuracy of these eigenfunctions by 

one cycle of the eigenvalue problem per one cycle of the original problem in case convergence of 

the original problem remains slow. 
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6.2.2 Relaxation for Modified Equations 

As before when a system of equations has local and global unknowns, the relaxation is done in two 

steps. Here the local step is done for equation (6.2) keeping X and the right hand side fixed. This 

is done on all levels while the global step that is described next is performed for levels k 5 1, only, 

where 1, is usually 1 or 2. Given { + I , .  . . ,+n} and ( $ 1 , .  . . , $n} the global step is 

(6.29) 

(6.30) 

X + X + S  (6.31) 

where the unknowns (6, P I , .  . . , pn, G I , .  . . , en} are a solution to the following set of equations 

n n 

(6.33) 

(6.34) 

The first of these equations can be approximated by using a Taylor expansion up to quadratic 

terms. Note that the linear terms only are not enough since they vanish at a singular point. 

Modified Multigrid Cycle (MMG) 

Having a relaxation procedure we can now formulate a modified multigrid method. For level 

k = A4 it is identical to MG; therefore, we describe it for levels k 5 1 .  It is denoted by 

and is defined recursively as follows: 

IF k=l 

ELSE 

THEN solve (6.2)-(6.4) by enough relaxations (to achieve a desired accuracy) 

0 Perform v l  relaxation sweeps of section (6.2.2) on (6.2)-(6.4) resulting in a new approximation ii' 

0 Starting with uk-l = ?:-'ak - q - - 0,  Fk-l,@-l,zk-l given by (6.13)-(6.17), make 
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7 successive cycles of the type 

(uk-l, T7k-l, F k - 1  Gk-1  ~ k - 1 )  + ~ ~ ~ ( ~ k - l , ~ k - l ,  Fk-1 G k - l z k - 1  
> ,- - 9 - ). 

- k - l - k  
u ] 0 Perform the corrections iik = iik + - Ik 

qj k-1 w, k . 
,qk - = - q k  + $-’ 9 -  ok = gk + ak,nk-l 

F k  = F k  + E?=, qj”-’+i”, 6 k  = 6 k  + 
0 Perform v2 relaxation sweeps on (6.2)-(6.4) starting with tik and yielding the 

final result of (6.35) 

The cycle with 7 = 1 is called V cycle or V(v1, Q), and the one with 7 = 2 is called W cycle or 

Wl, v2). 

6.3 Modified Full MultiGrid Continuation Method (MFMGC) 

Given a sequence of problems 

k k  L (u , A )  = Fk 
N k k  (u , A , s ) = G k  

(6.36) 

(6.37) 

that are defined on a sequence of grids S2’ with mesh sizes hk(k 5 M) and such that coarse grid 

operators are approximations to finer ones as before. We describe now a modified continuation 

multigrid method (MFMGC). It is assumed that two previous solutions (u1, A,) and (UO, Ao) are 

given. 

continuation algorithm MFMGC 

0 Choose As (for example s1 - so ) and set s = S I +  As. 

Approximate the nearly singular subspace by 1-FMG. 

FOR k = 1,. . . , M  DO: 

0 Perform the cycle (uk $29 Fk > ek 2-  5:”) t MMG(uk, - f i k ,  Fk, 6:”“) N times. 

0 If k 5 M calculate uk+l t uk+l + II;+’uk . 

(uM, A). Call the resulting approximation on level M 

0 FOR k = l ,  . .. ,M-1 DO: 
k - fk &+l 

k+ 1 u -  
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minp2 subject to 
( a d  

(6.38) 

< L(u + p4, X + S), 4 >= < Fl, 4 > (6.39) 

This by itself is not enough since the second constraint equation (3.12) will converge very slowly in 

the 4 direction. This can be taken care of by changing p on the coarsest levels such that equation 

(6.40) holds there. Note that a change of p in this way is effectively relaxing this equation in 

the 4 direction. This step on the coarsest levels is preceded by updating the norm of 4 according 

to its constraint by multiplying it by the appropriate constant. To summarize the algorithm is 

basically an FMG algorithm using the FAS formulation where the local relaxation is combined 

with two global steps. One is performed on the finest level and the other on the coarsest levels. It 

is demonstrated in section 7 that 2-FMG-W cycles solve for the location of a bifurcation point, to 

the level of discretization error. The minimization problem (6.38)-(6.39) is solved by approximating 

it by a minimization problem obtained by expanding L(u + p4, X + 8 )  and Lu(u + p4, X + 6)4 by 

Taylor series taking up to quadratic terms in the first one and only linear terms in the second; that 

is, 

minp2 subject to  
( a 4  

where 

(6.41) 

(6.42) 

(6.43) 
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7 Numerical Experiments 

In this section we demonstrate some of the algorithms presented in the paper. We consider partial 

differential equations of the form 

The discretization used for all cases is the standard five point Laplacian for the Au term in the 

equation, and a pointwise approximation to f(z, y, u,A). The grids used were equally spaced in 

both directions. 

7.1 Locating Limit Points 

In order to demonstrate the algorithm for locating limit points we, have chosen the well known 

Bratu problem. That is, 

(7.2) f(z, y, u, A) = AeU. 

A bifurcation diagram for this problem is given schematically in Figure 1. 

I ul 

h 

Figure 1: Bratu Problem 

Table 1 shows the results of a 2-FMG W cycle. The coarsest grid has a mesh size of ho = .25. 

and a %point full weighting operator for Bilinear interpolation used for bicubic for 
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I:-'. The equations solved on each level are of the form 

where F M  = 0, GM = 0, rm = 1 and for k 5 M, and Fk, Gk, rk for k 5 M are obtained from the 

FAS equations. The relaxation used was Newton Gauss- Seidel for uk in the first equation , Gauss 

Seidel for pk in the second ( keeping uk, Ak fixed ). This local relaxation was employed on all levels. 

On the coarsest level also a global step was used as described in section 5.3. The residuals given 

in the table are for the currently finest level at  the end of the cycle. The two residuals a t  each row 

(starting at  the left one) are for equation (7.3),(7.4) respectively. In the notation of section (5.1) 

we have used VI = 2 and v2 = 1. It is clearly seen that 1-FMG solves for the location of the limit 

point to the level of discretization errors. The approximation to the limit point A t  obtained by 

1-FMG converges as O(h2) .  The same rate is obtained for < L:, ph >. 

7.2 Continuation near Singular Points 

Continuation in the vicinity of singular points should be done with a special multigrid algorithm 

like MFMGC. We show here the difficulties encountered with a standard method and compare the 

results to the modified algorithm MFMGC. Tables 2 and 3 show a two grid cycling in the vicinity 

of a nearly singular point of the differential equation. In this case the differential equation is given 

by (7.1) with f(z, y, u, A) given by 

f(z, y, u, A) = X(U + u2) + E .  (7.6) 

The choices E = 0 and E = -.01 are shown schematically in Figure 2. 

The numerical experiments in this section were for the case E = -.01. The reason for using only 

a two grid experiment was to see clearly the fact that the FMGC algorithm has difficulties while 

MFMGC has a very good convergence rate. Note that even in case the coarsest grid problem is 

solved exactly the two grid cycle has a very slow convergence rate which indicates that the coarse 

grid does not approximate well enough some components. The experiment is given for a value of X 

which is in a vicinity for which the linearized problem is almost singular. 
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E = 0,, perfect bifurcation 

l ul 

‘L 

x 
E. = - , O L  imperfect bifurcation 

Figure 2: Bifurcation diagram 

7.3 Locating Bifurcation Points 

In this section the algorithm presented in section (6.4) is demonstrated. Two cases are given 

for which the differential equation has bifurcations at X = 1r2(m2 + n2) where n, m are integers. 

A simple way of constructing a problem in the form of (7.1) for which bifurcations exist at the 

above mentioned X’s [K] is to  begin by prescribing a branch of solutions of the form u(z, y, A) = 

q(X)uo(z,y) where q(X),Uo(z,y) are given. This is achieved if 

In order that branches will bifurcate from this branch at the above X ’s we require that 

As a special case of this we take 

We consider two cases: (i) Do(z, y) = z(z - l )y(y - l), and (ii) Uo(z,  y) = sin(xz)sin(ny). The first 

is a case of a perfect bifurcation for the dicrete levels while the other is an imperfect bifurcation 

for the discrete levels. Tables 3 and 4 show the result of the 2-FMG-W algorithm for locating 
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the first bifurcation point. Intergrid transfers used are identical to the ones used in section 7.1. 

The two residuals (left and right) are for the first and second constraint equations (3.11),(3.12) 

respectively. The approximated singular point A t  converges at a rate which looks as O(h)  for the 

imperfect bifurcation case and as O(h2) for the other case. Also note that < Lt,cph > in case 

(ii) converges to zero as O(h).  As the actual value of this quantity shows, it is not enough to 

consider single grid experiments when locating bifurcation points. A refinement is essential for 

distinguishing between actual limit points and imperfect discrete bifurcation. The results of both 

tables clearly demonstrate the effectiveness of the algorithm described. 
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Table 1: Locating limit 

6.80669 2.03212 + 6.80665 2.03214 

~ 6.80776 1 2.03408 11 ' 6.80775 2.03408 

point 



level # I residuals 112 

0.833e-16 

0.165e-01 

x x level # 
1 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

1 

2 

0.500e- 16 18.99999 1 18.99997 

0.374e-02 

0.5OOe-16 

0.795e-03 

0.108e-01 

0.101e-01 18.99997 18.99999 
~~ 

2 

1 

1 

2 

0.956e-02 

0.517e-02 

0.804e-02 

0.342e-03 

0.340e-16 

0.544e-04 19.00000 18.99999 

18.99999 

18.99999 

0.792e-02 

0.3 1 Oe- 16 

0.142e-01 

0.187e-04 

0.139e-16 

0.296e-05 19.00002 

19.00003 

0.141e-01 

0.393e-16 

0.1 17e-01 

0.132e-05 

0.572e-16 

0.178e-06 

0.116-06 

0.31Oe-16 

0.140e-07 

0.1 17e-01 

0.555e-16 

0.721e-02 18.99999 19.00004 

Table 2: Algorithm FMGC Table 3: Algorithm MFMGC 
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4 1 0.715e-4 0.28Oe-2 19.72318 2.98171e-6 

2 0.235e-5 0.110e-3 19.72336 -3.31378e-8 

5 1 0.133e-4 0.297e-3 19.73545 -3.63521e-6 

2 0.974e-7 0.129e-3 19.73528 -7.34759e-7 

Table 4: Locating a bifurcation point: Perfect bifurcation 

level 

1 

2 

3 

4 

5 

cycle # 
5 

1 

2 

1 

2 

1 

2 

1 

2 

0.186e-13 0.628e-13 9.48662 0.56972 

0.160e-1 0.545e+0 13.46777 0.20472 t 0.291e-4 0.125e-1 13.46833 0.20487 

0.308e-1 0.901e+O 16.21966 0.85237e-1 

0.149e-2 0.4OOe-1 16.21687 0.8539Oe-1 

0.510e-2 0.591e+0 I 17.86465 I 0.38793e-1 

Table 5: Locating a bifurcation point: Imperfect bifurcation 
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