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1. INTRODUCTION 

I The primary goal of this paper is to illustrate, by a simple problem, the 

necessity of conducting a careful analysis of numerical schemes (that were de- 

veloped for open-loop simulation) when these schemes are to be applied to an 

optimization based control design problem. It is our feeling that many dis- 

tributed parameter control systems (viscoelastic structures, fluid flow con- 

~ 

I 

I 

I trol, etc.) are such that "standard finite element/finite difference" schemes 

might lead to numerical difficulties in certain control design methods, if 

I care is not taken to ensure that these approximation schemes have convergence 

I 

properties essential for the intended application. 

We shall concentrate on a non-convergence result for an optimal control 

problem governed by a delay differential equation. Although we feel that the 

technical details required to prove non-convergence are interesting, we hope 

that this proof is not viewed as the major contribution of the paper. Indeed, 

we hope that the reader is motivated to think about similar problems for more 

complex distributed parameter systems. 

I 

I 

During the past fifteen years considerable attention has been devoted to 

the construction of finite dimensional approximations of distributed parameter 

systems. Much of this work is based on algorithms first developed primarily 

for simulation. However, it is not clear that finite dimensional models 

developed for (open-loop) simulations will also be suitable for certain opti- 

mization based control design techniques. Moreover, there may be several 

reasons that a numerical scheme developed specifically for simulation does not 

perform well when applied to a control design problem. 

In this note, we concentrate on the use of the so-called spline scheme 

developed by Banks and Kappel [Z] as an approximation method for calculating 
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optimal feedback gains for control systems governed by functional differential 

equations. This problem is simple enough to be addressed in a short paper and 

yet it still illustrates how a specific numerical scheme when combined with a 

particular control design approach can lead to numerical difficulties. 

In order to motivate the paper and to describe the main technical con- 

tribution of the paper, we first review some known results. 

Let H and U be real Hilbert spaces and S(t): H + H denote a Co- 

semigroup of bounded linear operators with generator A. We assume that 

B: U + H, Q: H + H and R: U -+ U are bounded linear operators with Q 

and R self-adjoint, non-negative and R satisfies R > mI > 0. The (LQ) 

optimal control problem is to minimize 

- 

where z(t) is defined by 

for 0 < t < T and given zo E H. If T = +, then one has the linear 

quadratic regulator problem. 

- 

Assume now that there exists a sequence of Co-semigroups SN(t) on H 

and positive constants M, B such that 

IISN(t)ll < MeBt, t - > 0 ,  N - > 1 - (1.3) 

and 
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and t h e  convergence i n  (1.4) i s  uniform i n  t on bounded i n t e r v a l s .  Denote 

by AN t h e  genera tor  of SN( t )  and a l s o  assume t h e  ex i s t ence  of bounded 

l i n e a r  ope ra to r s  B : U + H, Q : H + H with QN se l f - ad jo in t  and 

Q~ - > o s a t i s f y i n g  

N N 

N IIBN - BU + 0, l l Q  - Qll + 0. 

Note t h e  assumption of uniform convergence (1.5) i s  s t ronge r  than requi red  by 

Gibson (see page 113 i n  [ 4 ] ) .  It is  well known t h a t  t h e  optimal c o n t r o l  ( i f  

i t  e x i s t s )  i s  given by s t a t e  feedback 

* -1 * * 
u ( t )  = -R BI I ( t ) z  ( t )  

where t h e  bounded se 

( i n t e g r a l )  equat ion  

f-ad j o i n t  operator n ( * >  s a t i s f  -2s t he  Riccati  

L e t  n N ( t )  be t h e  s o l u t i o n  t o  t h e  "approximating" Riccati equat ion  

m 

n N ( t ) z  =i S N* (s-t)[QN - IIN(s)B N R -1 B N* II N ( s ) ]SN(s - t )ds  (1 -8 )  
t 

and observe t h a t  (1.8) would determine the sub-optimal ga ins  i f  one used t h e  

approximating system ( A  N N  ,B ) with weights QN. 
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The following theorem is a direct consequent of Gibson's (more general) 

results (Theorem 6.1 and Theorem 6.2 in [4]). 

Theorem 1.1: If conditions (1.1) - (1.5) hold, then for 0 < t < T, 
nN( t 1 converges weakly to n(t) and the convergence is uniform on 

[O,T]. If in addition 

- -  

then n N ( t )  converges strongly to n(t) and the convergence is uniform 

for t E [O,T]. 

- 
- 

-1 * and KN(t) = R -1 B N* n N (t) Corollary 1.2: Let K(t) = R B n(t> - - 
denote the feedback gain operators. Assume that U = @' (i.e., is finite 

dimensional). If nN(t) converges strongly to II(t), then as N -+ +oo, 

(1.10) liKN(t) - K(t)l -+ 0. 

The main point to be emphasized is that if the control space is finite 

dimensional, then uniform convergence is assured provided the numerical scheme 

is stable and consistent and (1.9) holds. If one is concerned only with simu- - 
lation, then stability and consistency is sufficient for most numerical prob- 

lems. Moreover, it can be shown that many standard numerical schemes de- 

veloped for simulation of self-adjoint partial differential equations do 

satisfy (1.9). Therefore, it is not surprising that until Gibson "needed" 

(1.9) to establish the uniform convergence of optimal gain operators, the 
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~ question of whether a numerical scheme satisfied (1.9) received little atten- 

tion. Indeed, even after Gibson published his result it was still not  obvious 
I 

I 
~ that condition (1.9) was anything more than a technical assumption needed in 

Gibson’s proof. 

In [ 3 ]  Banks, Ito, and Rosen applied a convergent spline based scheme to 

an optimal control problem governed by a delay differential equation. The 

, numerical results in [3 ]  seemed to show that KN(t) did not converge uniform- 

ly to K(t) and these numerical results have often been used as evidence that 

I (1.9) did not hold for this particular scheme. Moreover, several new schemes 

have since been generated specifically to ensure (1.3) - (1.4) and (1.9) are 

valid. Still, it was not known if condition (1.9) held for the spline scheme 
I 

used in [ 3 ] .  We shall provide a proof that (1.9) fails for this scheme. We 

also show that this spline scheme is stable and consistent to on a dense 

subset of D(A*). 

I 
A* 

I 

2. SPLINE APPROXIMATIONS OF HEREDITARY SYSTEMS 

Consider the delay differential equation 

0 

-r 
(2.1) k(t) = AOx(t) + Alx(t - r) + I A(s)x(t + s)ds 

with initial data 

(2 -2) x(0) = ll; x(s) = 4 ( s ) ,  -r - < s < 0 ,  

where x(t) and the elements of A(*) are square integrable on 
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[-r,O]. It is well known that (e.g., [l]) for q E IC' and 

(IEL (-r,O; IC') 

x: [-r,+-) + @ such that xEW~'~(O,T; p) for all T > 0. If one 

defines the solution map S(t), t 2 0 on the product space 

Z = @ x L2(-r,0;l@) 

2 there exists a unique solution of (2.1) - (2.2) 

by 

where x is the solution to (2.1) - (2.2), then {S(t))t>o is a strongly 

continuous semigroup (i.e., co-semigroup) on Z. The infinitesimal 

generator A is the operator defined on the domain 

- 

The adjoint operator A* generates the adjoint semigroup S*(t) and it is 

easy to show that (see [4,71) 
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I 

I A s  in [2], we define the linear spline based approximation for S(t). 

denote the usual linear B-splines defined on the interval N N  
I Let {BiIi,O 

i 
I [-r,Ol by 

( 0  , otherwise, 

where T~ = -ir/N, i = 0,1,*** ,N,  N = -r and T N = 0. For each 
i -1 

I 
N = 1,2,*** let ZN denote the linear subspace of Z defined by 

l 

and let PN denote the orthogonal projection of Z onto ZN. This subspace 
~ 

I can be identified with Iff(N+l)  by the prolongation iN: p(N+1) -+ z 

defined by 

(2.10) 

where 

induced inner product 

a = (a:, aT,.*.,a:)TE*(N+l). The space e(N+l) is normed with the 

(2.11) <a,b>N = aTQNb, 

where a, b E lF?(N+l) and QN is defined by 
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L 

The adjoint operator [iN]*: Z + is given by 

where 

. 

Moreover, it is easy to show that 

[iN]*iN = I the identity on ,p(N+1) 

iN[iN]* = PN 

(2.14) 

and for z ,  W E  ZN 

N *  
(2.15) <z,w>, = <[iNl*Z, [i I w >" 

In order to construct the standard Galerkin approximation of A, we note 

that ZN C D(A) and define AN by AN = PNAPN. Observe that AN (and 

hence [AN]*) is continuous and although PNZ - c D(A), PN does not map all 

of Z into D(A*). It is shown in [2] that 

N N - 1 N  N *  (2.16) A N = i [ Q ]  H [ i I  
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where 

(2.17) 

l and 

N 0 
A: = A. + I A(s)Bo(s)ds 

-r 

N 0 

-r f = I A(s)Bk(s)ds, 1 < k < N-1 - -  

N A(s)BN(s)ds. 
0 

-1: 
4 = A1 + I 

I f  S N ( t )  denotes  the  Co-semigroup generated by AN, then  i t  is  shown i n  [2 ]  
I 
, t h a t  f o r  each zE  2, 

I (2.18) USN(t)z - S(t)zll + 0, 

where t h e  convergence i s  uniform i n  t on bounded i n t e r v a l s .  The convergence 

(2.18) w a s  e s t a b l i s h e d  by proving tha t  t he  Galerkin approximations AN 

s a t i s f y  t h e  Trotter-Kat0 Theorem [6]  and hence provided a s t a b l e  and consis-  

t e n t  approximation scheme for A. We s h a l l  prove t h a t  t h e  above convergence 

s ta tement  does not  hold f o r  t h e  sequence of a d j o i n t  semigroups [SN]*( t ) .  

Moreover, t h i s  convergence f a i l s  even though t h e  a d j o i n t  ope ra to r s  [AN]* are 

s t a b l e  and c o n s i s t e n t  t o  A* on a dense subse t  of Z (i.e., t h e r e  is a dense 

s e t  C C - D(A*) - c 2 such t h a t  [AN]*z + A*z f o r  a l l  zE  C) .  
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3. CONVERGENCE OF TEE ADJOINT GENERATORS 

We shall follow the approach given in [5] and consider the n(N+l) x n 

matrix 
N -1 T 

= [Q ] (O****.O,I) . N 
y+ 

Define the operators 6:: It? + ZN by 

where 

It follows that for all (rl ,+ = z E Z and x E I@" 

T N  N N *  
= x [Bo(-r)I,...,BN(-r)I][i 1 z ,  

and (2.14) - (2.15) implies 

N T N  <~+X,Z>~ = x (-11 , 

where PNz = PN(rl,+) = (+N(0),+N(*))€ ZN. Furthermore, if Xmin N denotes 

the smallest eigenvalue of QN, then (r/6N) < and it follows from 

(2.11) that 

- 

U6"+l < (6N/r) 'I2 for all N. - 
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I We a l s o  need t h e  fol lowing representa t ion .  

I 

Lemma 3.1: The o p e r a t o r s  [AN]*: Z + ZN are given by 

Proof:  Assume t h a t  z = (q,+) and w = ( 5 , J I )  belong t o  Z and 

l e t  P N z = ( + N ( 0 ) , @ N ( * ) )  and P N w = (JIN(0) ,qN(.))  denote the  or thogonal  

p r o j e c t i o n s  of z and w, r e spec t ive ly .  The i d e n t i t y  (3.1) impl ies  t h a t  

I n t e g r a t i n g  by p a r t s ,  t h e  boundary terms cance l  wi th  t h e  f i r s t  and l a s t  t e r m  

i n  t h e  sum. Therefore ,  it fol lows t h a t  i f  [AN]* is  def ined  as above, then  
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<[AN]*w,z> = <P N N  w,AP z> = <w,A N z> 

and t h i s  completes the  proof . 
N * N  It should be noted t h a t  [AN]*w = P A P w if and only i f  

ATI~J~(O)  - $ N (-r) = 0, i.e., i f  and only i f  PNwED(A*). Also, i f  

and 

then  D and C are dense i n  Z. Moreover, w e  have t h e  fol lowing convergence 

r e s u l t .  

Lemma 3.2: I f  C and D are def ined  as above, then 
_. - 

* 
( a )  [AN]*w + A w f o r  a l l  W E  C 

(b) f o r  a l l  X E IR, ( X I  - A*)D i s  not  dense i n  Z. 

Proof:  L e t  W E  C - C D(A) n D(A*). Note t h a t  w = ( $ ( O ) , $ ( * ) )  where 

$(-r> = AT$(O) and PNw = ($N(0),$N(.))  E D(A).  It fol lows from (2.7) and 

Lemma 3.1 tha t  

N *  * N *  * 
II[A ] w - A wll < IIP A w - A wII - 
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N N N  
2 = F1 + F + F3. 

- 
I * 2 Since w = ($(O), $(.))ECC_D(A)~D(A ) and $ ( . ) E C  (-r,O; fi), it 

I follows from standard estimates on interpolating splines (see equations (4.1) 

- (4.3) in 121) that 

I /$N(o)  - $ ( O ) I  5 0(l/N2) 

l and 

N N The first term F~ + 0 since w E D ( A * )  and P z + z for all z E  Z. The 

second term is estimated by 
, 

Therefore, F: + 0 as N + 03 .  Applying (3.21, the last term is estimated 

by 
1/2 T N 

F: ( W r )  IA1$(0) - $ (-1 I 
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N and hence Fg -+ 0 which establishes part (a). 

Turning to part (b), let w = ( J , ( O ) , J , )  E D, 5, x E If' and X E IR. A 

straightforward calculation yields that 

0 

-r 
= ~ J ~ ( O > [ ( X  - 1)I - Ao]S + J,T(0)[I - e-XrA1 - I eXSAT(s)ds]x. 

exist 5 f 0 and x # 0 such that 

If (X - 1) 4 u(Ao), let x f 0 and define 5 by 

0 

-1: 
5 = -[(A - 1)1 - A0]-l(I - e-hrA - I eXSAT(s)ds)x, 1 

0 

-r 
or  if e Xr d u(A1 + I e (X+r)sAT(s)ds), let 5 f 0 and define x by 

X s T  AI - I e A (s)ds]-l[(A - 1)1 - AolS. -X r x = -[I - e 
-r 

A *  In any case, there always exists an element z = (5 , $ ( e ) )  = (5,e x) f 0, 

such that 
* 

< z ,  (XI - A )w> = 0 
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for all w = ($(o), E D. Consequently, (XI - A*)D is not dense in 

Since II [sN]*(t )II = 11 sN(t> 11 - < em' for some w -.?dependent on N 

(see [ 2 ] ) ,  the existence of a set E c D(A*) and a X E IR such that 

(XI - A*)E is dense in Z and [AN]*w + A w for w E E would imply 

strong convergence of the semigroups [SN]*(t) t o  S * ( t )  ([6], 111, Th. 

4.5). Although [AN]*w + A w on the dense set C ,  (XI - A*)C is not 

dense in Z. E c D(A*) 

with the above properties. In fact, we shall show that [SN]*(t) does not 

converge strongly to s*(t>. 

- 
* 

* 

We shall establish that there does not exist a set - 

4. CALCULATION OF $( [AN]*)"PN 

In this section, we present several technical lemmas that will be needed 

in Section 5. The proof of Lemma 4.1 is straightforward and hence omitted. 

Lemma 4.3 can be found in [4,7]. 

Lemma 4.1: The operator [AN]* can be decomposed as 

Lemma 4.2: Assume that HN is invertible. If z = (n,+(*))€ Z, 

- then PN( [AN]*)-'PNz exists and 

(4 2) PN( [AN]*)-lPNz = iNaN, 
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where aN i s  t h e  s o l u t i o n  of - 

( 4 . 3 )  [HNITaN = 

Proof:  Consider t he  equat ion  AN* = PNz f o r  W E  ZN. By Lemma 4.1 and 

from ( 2 . 1 4 )  

N N -1 NT .N*w = N N*= 
i ( Q )  H 1 e 

Mult iplying with i N* and from ( 2 . 1 3 )  and ( 2 . 1 4 )  

. 

N N N* N N  The lemma now fo l lows  from t h e  f a c t  t h a t  w = P w = 3 i w = i a 

( 4 . 4 )  

(4.5) 

-r 

Consider equat ion ( 4 . 3 ) .  It fol lows from ( 2 . 1 7 )  t h a t  (4 .3 )  i s  equ iva len t  

t o  t h e  system 
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1 (a: + all N + [Ao] N T N  a. = rl + 4 ~ ~ -  N 

A straightforward induction argument yields 

(4.9) 

and 

(4.10) N k 
= aN - 2 1 

i= 1 
N 
2k+ 1 1 ([A:i]Taf: - $2i), if 2k + 1 < N e  - a 

Thus, it follows from (4.7) that 

(4.11) 

Moreover, (4.8) and (4.11) imply that 

0 

k=O j =O -r 

N N  N 
1 [<ITa: = rl + 1 @j = rl + I @(s)ds 

where 
T T  N 0 

1 [4IT = [Ao + A1 + A(s)ds] = A . 
k=O -r 

* 
If one assumes that O c p ( A  ), then by Lemma 4.3 it follows that AT is 



-18- 

invertible and 

(4.12) 
0 

= A-T(rl + I $(s)ds). 
-r aO 

Observe that (4.12) implies that is independent of N and by (4.4) it 

follows that a. = 5 where ( & , $ ( * I )  = [A 1 (TI,$(*)). Equation ( 4 - 8 )  

yields the identity 

af: 
N * -1 

(4.13) 

and hence it now follows from (4.10) that 

(4.14) 

Note that for 1 < k < N - 1 - -  
N 

and similarly 
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I Therefore, (4.9) and (4.10) imply 

and 

I respectively. The identity (4.12) yields the estimate 

and (4.13) leads to the bound 

Combining these estimates one has that for 0 - -  < k < N 

where M - > 0 is independent of N. An application of Lemma 4.2 yields the 

estimate 
N N* -1 N N N  

I IP  [A ] P Zi lZ = II i  a II - < ( G ) M  IIzllz 

for all z E  Z. We summarize these results in the following theorem. 
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Theorem 4.4: If 0 E p (A), then - 

N N T  N T  N T  
where a = col([aol ,[a,] ,***,[aN] is given by 

and for 0 - < 2k - < N 

while for 1 - < 2k+l - < N 

is uniformly bounded in N. N N* -1 N Moreover, IIP [A 1 P l l L ( z )  

denote the "averaging" orthogonal projection on Z defined N 
Let 'AVE 

N 
c 

where xI denotes the characteristic function for the interval I (see 111 

for details). 
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Corollary 4.5: There exist a costant K > 0 (independent of N ) - - 
such that for all z E 2 

N (P N [A N* 1 -1 P N z )  - [A*]-l~II < (B) K IIzll. 
I' 'AVE - 

Proof: A direct application of Theorem 4 . 4  yields the identities 

and 

and 

0 

-r 
E = aN = A-T(q + I $(s)ds) 0 

Therefore, if sN = (T: + ~;-~)/2, then 
j 

2k+l 

N 

.. 

2k+l S 
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and similarly, 

It follows that 

Since $ E  dS2(-r,O; p) and 

-r 

c. 

there exists a constant K such that 

This estimate combined with the previous inequality establishes the proof. 

We turn now to providing a proof that the approximating adjoint semi- 

groups constructed above do not converge strongly to the adjoint semigroup 

generated by A 
* 
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5. NOWSTRONG CONVERGENCE 

Let A, A*, AN, and AN* be defined by ( 2 . 4 )  - ( 2 . 5 1 ,  (2.6) - (2 .7 ) ,  

(2.16) and ( 4 . 1 ) ,  respectively. The corresponding semigroups will be denoted 

by S(t), S*(t), SN(t), and SN*(t). Recall that for z E Z  (see [21) 

N N N  2 
(5.1) <A z , z >  = <AP z,P z> - < ollPNzH2 - < wl lz l  

2 where o = (1 + 21AOI + IAll + 211All )/2 and for t - > 0 
L2 

The following result is a special case of Theorem 4.2 of Chapter 3 in [6]. 

Theorem 5.1: The following are equivalent: 

(a) For every z E  2 and A € $  with Re A > w - 

N* -1 * -1 (AI - A ) z + (XI - A ) z, as N + a. 

(b) For every z E 2 and t - > 0 - 

* 
sN*(t)z + s (t)z, as N + +=, 

the convergence being uniform in t on bounded intervals. 

We shall also need the following technical lemmas. 
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Lemma 5.2: Suppose the condition (b) of Theorem 5.1  holds, X e p ( A * )  

N N* -1 N and HP (AI - A ) P I is  uniformly bounded i n  N. Then for every Z E  Z - 

N* -1 N * -1 
p N ( x l  - A ) P z + (XI - A 2 -  

Proof: From Theorem 5 . 1 ,  for X o  > w and z E  Z 

N N* -1 N * -1 
P ( A o I  - A ) P z + ( A o I  - A ) z ,  as N + m. 

Note that for z E  Z 

N N* -1 N N N* -1 N 
P ( A 1 - A  ) P z - P ( X O I - A  ) P Z  

N N* -1 N N* -1 N 
= ( A o  - X)P (XI - A ) P (XoI - A ) P Z ,  

and similarly 

N N* -1 N * -1 
P ( X 1 - A )  P w - ( A I - A )  W =  

N N* -1 N N* -1 N * -1 
= ( A o  - A)P (XI - A ) P ((XoI - A ) P z - (XoI - A 2 )  

N N* -1 N * -1 + P (XoI - A ) P z - (XoI - A ) Z .  
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This implies that for all z E Z 

N N* -1 N * -1 P (XI - A  ) P W +  (XI - A )  W. 

I But since 

all W E  Z. 

I + (A - Xo)(XoI - A*)-' is onto, the above statement holds for 

We turn now to a special case where Xo = + aI, a E d, 
9 and N N x* xNN* A ( s )  z 0, -r < s < 0 ,  

N* -N* S (t), S (t) the corresponding infinitesimal generators and semigroups. 

= A. + AI and denote by - -  

Lemma 5.3: If statement (b) of Theorem 5.1 holds for SN*(t), then it 

holds for 'SN*(t) 

Proof: Note that 

N* * N N  A = A + E and "A* = AN* + P EP 

where E: Z + Z is the bounded linear operator defined by 

N 

N 

where o = w + la1 + IlAU . -N* It follows from (5.2) that I IS (t)ll 5 ewt 
Consequently, if X > G, then 

L2 

N* -1 N N N* 1 (5 3) (AI - xN*)-' = (XI - AN*)-' + (XI - A ) P EP (XI - )- 
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Theorem 5.1 implies that for all z E Z  

N* -1 * -1 ( A I - A  ) z + ( A I - A )  z 

and since the ranks of E and E* are finite it follows that 

llPNEPN - Ell + 0. 

It now follows from (5.3) - (5.4) that 

-N* -1 ,* -1 
( A I - A  ) z + ( A I - A )  z 

for all z E Z  and this completes the proof. 

By Lemma 5.3, without loss of generality, one can assume that A ( * )  = 0 

is invertible in what follows. We will show that there 1 and 

exists an element z E Z  such that P ( A  ) P z does not converge to 

(A*>-'Z. First we consider the case when A1 is not the indentity. From 

A = A. + A 

N N* -1 N 

Lemma 4.3, if ( ( , $ (e ) )  = [ A  * 3 -1 (n,O) where 0 f n E @, then 

5 = A-Tn and $ ( s )  A I S ,  T -1: < s < 0. - -  
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\ / \ / 

\ / \ / 

I 
\ \ 

I 

I 
Applying Theorem 4.4 we obtain 

, 
I 

N N  N N* -1 N 
P [ A  I P ( r l ,O)  = i a I 

A;€ 

I where 

i 

1 

N 
2k a - 5 ,  O < 2 k < N  - - 

I T = -5 + 2A15,  0 < 2k + 1 < N. - - a 2k+l 

~ 

For illustration, we have the following picture for the case N = 4 and n = 1 

I T 
\ 
\ 
\ 

N N  * -1 where the solid line stands for ( A  ) ( r l , O )  and the dashed line for i a . 
Since a N -  AT^ = AT( - a2k+l = 5 - AT5 = 8 E w" (independent of 

easy to show that 

N), it is 2k 

5 = rA-Tx and $(SI = 5 - (s  + r)x, -r < x < 0. - -  ( 5 . 6 )  
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N N* -1 N N N  And, from Theorem 4 . 4 ,  P ( A  ) P ( o , $ ( * ) )  = i a , where 

2k (5.7) a!k = 5 + c (6)x = 5 + rx, 0 - < 2k - < N 
j odd 
I< j <2k-1 - -  

N = 5 - - r x + 2  2N- 1 1 (a)x=C-( r 2N-2k-1)rx, 0 < 2k < N. 
2k+l N a - 

j even 
2<j <2k - -  

$((rN + ~!~)/2), it follows from (5.6) and (5.7) that 2k- 1 

Now we may state the main theorem. 

Theorem 5.4: There exists an element z E Z  and t > 0 such that 

SN*(t)z does not converge to S*(t)z. 

Proof: If for every z E Z and t > 0, SN*(t)z converges to S*(t)z, 

then it follows from Theorem 4 . 4  and Lemma 5.2 that for every z E Z  

P ( A  ) P z + ( A  ) z ,  where by Lemma 5.3 one can assume that A ( * )  = 0 

and A = A + A1 is invertible. This contradicts the facts (5.5) and 

(5.8). 

N N* -1 N * -1 

0 
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