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1. INTRODUCTION

The primary goal of this paper is to illustrate, by a simple problem, the
necessity of conducting a careful analysis of numerical schemes (that were de-
veloped for open-loop simulation) when these schemes are to be applied to an
optimization based control design problem. It is our feeling that many dis-
tributed parameter control systems (viscoelastic structures, fluid flow con-
trol, etc.) are such that "standard finite element/finite difference" schemes
might lead to numerical difficulties in certain control design methods, if
care is not taken to ensure that these approximation schemes have convergence
properties essential for the intended application.

We shall concentrate on a non-convergence result for an optimal control
problem governed by a delay differential equation. Although we feel that the
technical details required to prove non-convergence are interesting, we hope
that this proof is not viewed as the major contribution of the paper. Indeed,
we hope that the reader is motivated to think about similar problems for more
complex distributed parameter systems.

During the past fifteen years considerable attention has been devoted to
the construction of finite dimensional approximations of distributed parameter
systems. Much of this work is based on algorithms first developed primarily
for simulation. However, it 1is not clear that finite dimensional models
developed for (open-loop) simulations will also be suitable for certain opti-
mization based control design techniques. Moreover, there may be several
reasons that a numerical scheme developed specifically for simulation does not
perform well when applied to a control design problem.

In this note, we concentrate on the use of the so~called spline scheme

developed by Banks and Kappel [2] as an approximation method for calculating




optimal feedback gains for control systems governed by functional differential
equations. This problem is simple enough to be addressed in a short paper and
yet it still illustrates how a specific numerical scheme when combined with a
particular control design approach can lead to numerical difficulties.

In order to motivate the paper and to describe the main technical con-
tribution of the paper, we first review some known results.

Let H and U be real Hilbert spaces and S(t): H+ H denote a Co~
semigroup of bounded linear operators with generator A. We assume that
B: U+ H, Q: H+H and R: U=+ U are bounded linear operators with Q
and R self-adjoint, non-negative and R satisfies R>mI > 0. The (LQ)
optimal control problem is to minimize

T

(1.1) J(u) = f [<Qz(s), z(s)> + <Ru(s),u(s)>lds
0

where 2z(t) 1is defined by

t
(1.2) z(t) = S(t)z0 + [ S(t-s)Bu(s)ds
0
for 0<t<T and given zy€ H. If T = 4o, then one has the linear
quadratic regulator problem.

Assume now that there exists a sequence of Cy-semigroups sN(t) on H

and positive constants M, B such that

(1.3) st (e < MeBE, >0, N> 1

and




(1.4) SN(t) + S(t) strongly as N +» +=

and the convergence in (1.4) is uniform in t on bounded intervals. Denote
by AY  the generator of sN(t) and also assume the existence of bounded
linear operators BN: U+ H, QN: H+H with QN self-adjoint and

QN.Z 0 satisfying
(1.5) iBY - BI » 0, 10" - Q1 + O.

Note the assumption of uniform convergence (1.5) is stronger than required by
Gibson (see page 113 in [4]). It is well known that the optimal control (if

it exists) is given by state feedback
* ~1. % *
(1.6) u () = R M)z (e)

where the bounded self-adjoint operator () satisfies the Riccati

(integral) equation

T & -1 %
(1.7) I(t)z = [ S (s - t)[Q - N(s)BR "B N(s)]S(s-t)ds.
t

Let HN(t) be the solution to the "approximating" Riccati equation

-1_N*_N

N e-t)1Q" - 1Ms)BYR BV 1N (s) 15N (s-t)ds

T
(1.8) N (t)z = [ s
t

and observe that (1.8) would determine the sub-optimal gains if one used the

approximating system (AN,BN) with weights QN.




The following theorem is a direct consequent of Gibson”s (more general)

results (Theorem 6.1 and Theorem 6.2 in [4]).

Theorem 1.1: TIf conditions (1.1) — (1.5) hold, then for 0 < t < T,

IIN(t) converges weakly to nm(e) and the convergence is uniform on

[0,T]. 1If in addition

* *
(1.9) s™(t) » s (t) * strongly,
then IIN(t) converges strongly to m(e) and the convergence is uniform

for te[0,T].

- * -
Corollary 1.2: Let  K(t) = R I1B™n(¢) and  KNt) = R7IBM1N(p)

denote the feedback gain operators. Assume that U = T (i.e., is finite

dimensional). If IIN(t) converges strongly to I(t), then as N » +»,

(1.10) IRN(E) - RCE)H > O.

The main point to be emphasized is that if the control space is finite
dimensional, then uniform convergence is assured provided the numerical scheme
is stable and consistent and (1.9) holds. If one is concerned only with simu-
lation, then stability and consistency is sufficient for most numerical prob-
lems. Moreover, it can be shown that many standard numerical schemes de-
veloped for simulation of self-adjoint partial differential equations do
satisfy (1.9). Therefore, it is not surprising that until Gibson "needed"

(1.9) to establish the uniform convergence of optimal gain operators, the




question of whether a numerical scheme satisfied (1.9) received little atten-
tion. Indeed, even after Gibson published his result it was still not obvious
that condition (1.9) was anything more than a technical assumption needed in
Gibson”s proof.

In [3] Banks, Ito, and Rosen applied a convergent spline based scheme to
an optimal control problem governed by a delay differential equation. The
numerical results in [3] seemed to show that N(t) did not converge uniform—
ly to K(t) and these numerical results have often been used as evidence that
(1.9) did not hold for this particular scheme. Moreover, several new schemes
have since been generated specifically to ensure (1.3) - (1.4) and (1.9) are
valid. Still, it was not known if condition (1.9) held for the spline scheme
used in [3]. We shall provide a proof that (1.9) fails for this scheme. We
also show that this spline scheme 1is stable and consistent to A* on a dense

subset of D(A*).

2, SPLINE APPROXIMATIONS OF HEREDITARY SYSTEMS

Consider the delay differential equation

0

(2.1) x(t) = Agx(t) + Ax(t = 1) + [ A(s)x(t + s)ds
-Tr

with initial data

(2.2) x(0) =n; x(s) = ¢(s), -r s <0,

where  x(t) B and the elements of A(e) are square integrable on




[-r,0]. It is well known that (e.g., [1]) for n € ' and
¢€'L2(—r,0; H') there exists a unique solution of (2.1) - (2.2)

x: [-r,+) + ' such that XGWI’Z(O,T; ®') for all T > 0.
defines the solution map S(t), t > 0 on the product space

z =1 x L2(-r,0; ®) by

(2.3) S(e)(n,9(*)) = (x(t), x(t+e))

If one

where x 1s the solution to (2.1) - (2.2), then {S(t)}t>0 is a strongly

continuous semigroup (i.e., co—semigroup) on Z. The 1infinitesimal

generator A 1is the operator defined on the domain

(2.4) D(A) = {(n,6(+)) €Z]¢ () ewls2(=r,0; B, $(0) = n}
by
O L]
(2.5) A9 () = (A + Ap(-r) + [ A(s)p(s)ds, ¢(+)).
-r

The adjoint operator A* generates the adjoint semigroup S*(t)

easy to show that (see [4,7])
(2.6) D(AY) = (g, ¥) € zly €W P(-r,05 W), y(-1) = AfE}
and for (g,w)e'D(A*)

(2.7) AM(E0) = (W(0) + AfE, [ATC)E - $(HD).

and it 1is



As in [2], we define the linear spline based approximation for S(t).

Let {B§}§=O denote the usual linear B-splines defined on the interval

[-r,0] by
N N N
T (87 T4y sElrg Tyl
N,y _ N, N _ N N
(2.8) Bi(s) = - (Ti—l s), s 6[11, Tyoq)
0 s otherwise,
where Tf = ~ir/N, 1 = 0,1,¢0¢ N, T§+1 = -r and THI = 0, For each

N=1,2,00¢ let zN denote the linear subspace of Z defined by

N
(2.9) N = (zez|z = E a (B(0),B)(+)), a €W}

k=0

and let PV denote the orthogonal projection of Z onto zN, This subspace
can be identified with T(N*1) by the prolongation N, g+, g

defined by
N N N
(2.10) ita = (ao, kéo akBk('))

where a-= (aT T ..-,ag)TEI?(N+1). The space I?(N+l) is normed with the

0> %1’

induced inner product
(2.11) <a,b>y = aTQMb,

where a, be (L) 4pg QN 1is defined by




1 oa o)
I QO e O —
_]_'.I .2_I * .
(2.12) QN = 0 0..000 0 +% 6. . 3 L4 R . -g-I . -]'-I .
.. . . 3 6
. . 1 1
0 -0 EI -3-1-‘

The adjoint operator iM% oz (™) 45 given by

n o+ oy
¢N
(2.13) M aeen =Nt |,
N
|
N 0 N
where ¢, = / ¢(s)Bi(s)ds. Moreover, it is easy to show that
-r

*
[iN] iN = 1 the identity on @ (N+1)

(2.14)
iN[iN]* _ N

1
o

and for 2z, W€ A
* *
(2.15) <z,w, = <Mz, 11N >
In order to construct the standard Galerkin approximation of A, we note
that 2N C D(A) and definme AN by AN = pNapN.  Observe that AV (and
hence [AN]*) is continuous and although PNz c D(A), PN does not map all

of Z into D(A*). It is shown in [2] that

(2.16) AN = 4NN e *




where
-1
N N N . 0
. Ay Ay eee Ay . 0 .
. 7 = — * .o .
(2.17) H 0 + 5 . 0 -1
0 * -1
and
N 0 N
AO = AO + j_r A(s)BO(s)ds
N 0 N
A = [ A(s)B(s)ds, 1 <k < N-1
-r
N 0 N
AN = Al + {r A(s)BN(s)ds.

If SN(t) denotes the Co-semigroup generated by AN, then it is shown in [2]

that for each z€ Z,

(2.18) 1s¥(e)z - s(t)zn > 0,

where the coavergence is uniform in t on bounded intervals. The convergence
(2.18) was established by proving that the Galerkin approximatiouns AN
satisfy the Trotter-Kato Theorem [6] and hence provided a stable and consis-
tent approximation scheme for A. We shall prove that the above convergence
statement does not hold for the sequence of adjoint semigroups [SN]*(t).
Moreover, this convergence fails even though the adjoint operators [AN]* are
stable and consistent to A* on a dense subset of Z (i.e., there is a dense

set CC D(A*) C Z such that [AN]*z » A*z for all ze€C).
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3. CONVERGENCE OF THE ADJOINT GENERATORS

We shall follow the approach given in [5] and consider the n(N+l) x n

matrix

YE = [QN]—I(OOQQQOO’I)T,

Define the operators GE: B>z by

53 = (6,(0), ¢ (+))

where

N N N N
9,(¢) = [By(+)T, B ()T, ooe, Bu(e)Ily x.
It follows that for all (n,$) = z€Z and x€eX®

N T N . N,*

(R R FLD IS AP M R ER

§,%1 Q [1]

xT[Bg(—r)I,---,Bg(—r)l][iN]*Z,
and (2.14) - (2.15) implies

(3.1) <5fx,z>z = xT[¢N(—r)],

where PVz = PN(n,¢) = (¢N(O),¢N(-))€ 7N, Furthermore, if Agin denotes

the smallest eigenvalue of QN, then (r/6N) S-Agin and it follows from

(2.11) that

(3.2) 18Nt < en/n)? for a11 N
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We also need the following representation.
N, * N
Lemma 3.1: The operators [A7] : Z +» 2 are given by

(a1 ,0) = PN + Ay, Mo - iNeon

+ 8y @) - V-,

where  PN(E,¥) = (N(0),0N()).

Proof: Assume that z=(M,p) and w=(£,)) belong to Z and
let PVz = (¢N(0),¢N(')) and PNw = (wN(O) ,wN(-)) denote the orthogonal

projections of z and w, respectively. The identity (3.1) implies that
<o) + a0, 1T - Vo, Mo,

+ <L (A(0) - ¥ (1)), 2>,

0
= 101 N1 + N1 1N - [ GNe) 6" s)>ds
-r

0
+ Mo1T [ aenNedas + V01 A 40

-r

- o1 6N -1,

Integrating by parts, the boundary terms cancel with the first and last term

in the sum. Therefore, it follows that if [AN]* is defined as above, then
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* .
<[AN] W,Z) = <PNW,APNZ> = <w,ANz>

and this completes the proof.

N N

* *
It should be noted that [AN] w=PAPw 1if and only if

A'{le(O) - \pN(—r) =0, i.e., if and only if PNweD(A*). Also, if
D = D(A)M D(a*)
and

C = {(€,0)€ D|p € C2(-r,0; )}

then D and C are dense in Z. Moreover, we have the following convergence

result.

Lemma 3.2: If C and D are defined as above, then

(a) [AN]*w > A*w for all wecC

and

(b) for all X € R (A1 - A*)D is not dense in Z.

Proof: Let we€CC D(A)ﬂD(A*). Note that w = ($(0),p(+)) where
P(-r) = Afw(0> and  PY% = uN(0),yN(-))€e D(A). It follows from (2.7) and
Lemma 3.1 that

* * * *
1AM - AT < 1eMatw - AT

+ 1670 + a0, 1T N0 - N1 - W(0) + AGH(0), (AT IN(0) = (D)
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+ Ile[Arwa(O) - o=

. *
Since  w = (y(0), p(-))€CCDAYMD@A")  and () ec>(-r,0; B), it
follows from standard estimates on interpolating splines (see equations (4.1)
- (4.3) in [2]) that

b0 - ()] < o(1/N’)

V(s - w(s)| < 0(1/M), =r < 5 <O
and

190 () = $C < O(L/N).

The first term FN + 0 since we:D(A*) and PNz > z for all ze€Z. The

1

second term is estimated by
7y < 870 + a0 - 40 - A + 187" - v
O IO
<+ Al + AN YO - y(0)] + 0(1/M).

Therefore, Fg + 0 as N+ =, Applying (3.2), the last term is estimated

by

1/2

Fy < 60/ [aTy(0) - 4"(-0)|
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1/2

< /o 2| ) - v+ Juen e D,

N
3

Turning to part (b), let w= (YO),Y)€ED, &, x € B and A€ R A

and hence F. » 0 which establishes part (a).

straightforward calculation yields that

e *
<(£ »© X), [AI - A ](IP(O),#J(')))

AS

0
= 7O - DI - agle + T OI1 - Ay - [ %aT(s)as)x.
-r

0
If (L -Deo(a)  and Teaa + |
-T

e(“r)sAT(s)ds), then there

exist g +0 and x# 0 such that

<, %), AT = A1 (0),9(-))> = 0.

If (-1¢ o(AO), let x# 0 and define ¢ by

0
Ma - [ OAT(s)aex,

-Tr

g =-10 - DI-ATa-e

0
or if e)‘r ¢ o(A1 + f e(x+r)sAT(s)ds), let E+0 and define x by
-r

0
A, - {r AT (s)as1 MO - DT - A e

x = -[1 - e—lr
In any case, there always exists an element z = (E,W()) = (g,exox) # 0,
such that

*
<z, AT = A)w> =0
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for all w = ($(0), p(«))eD. Consequently, (\I - A*)D is not dense in
Z,

Since H[SN]*(t)n = HSN(t)"‘S et for some w independent on N
(see [2]), the existence of a set E c D(A*) and a X € R such that
(AT - A*)E is dense in Z and [AN]*w > A% for we€E would imply
strong convergence of the semigroups [SN]*(t) to  S*(t) ([6], 1II, Th.
4.5). Although [AN]*W > A% on the dense set C, (AI - A*)C is not
dense in Z. We shall establish that there does not exist a set E C D(A%)
with the above properties. In fact, we shall show that [SN]*(t) does not

converge strongly to S*(t).

4. CALCULATION OF PN([AN]*)~1pN
In this section, we present several technical lemmas that will be needed
in Section 5. The proof of Lemma 4.1 is straightforward and hence omitted.

Lemma 4.3 can be found in [4,7].

Lemma 4.1: The operator [AN]* can be decomposed as

(4.1) (AN = 1NN M Ty,

Lemma 4.2: Assume that HN is invertible., If z = (n,$(s))€ Z,

then PN([AN]*)'IPNZ exists and

(442) PN([AN]*)~1pN; = §NN
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where aV  is the solution of

(4.3) TN -

Proof: Counsider the equation AN* = PNz for we zN. By Lemma 4.1 and

from (2.14)

=12 *
Ny TLENT g M, Ny

N*
Z,

*
Multiplying with i  and from (2.13) and (2.14)

[ N
n o+ g
N
% $
mr N - :1 .
N
oy
e .

The lemma now follows from the fact that w = PNW = iNiN*W = iN N-

0
Lemma 4.3: If A=A +A + [ A(s)ds, then Oep(A") if and
-r
only if A is invertible and (E,(s)) = (A*)_l(n,¢(°))€ D(A*) is given

by
T -1 0
(4.4) E=["1 "+ [ ¢(s)ds)
-r
T S T S
(4.5) w(s) = (A  + [ A(e)dedE - [ ¢(6)de.
-r -r

Consider equation (4.3). It follows from (2.17) that (4.3) is equivalent

to the system
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(4.6) 7 Gt~ B * g = e 1
1 ,N, N NN _ N

(4.7) 7 (ay + aygy) + [Agl ey = ¢y
1, N, N N,T.N _ N

(4.8) 7-(30 + al) + [AO] ay =n + ¢0.

A straightforward induction argument yields

N N _

k

N T N

= a 2 z ([A
2™ %07 % L

(4.9) a 91-1] 8 ~

¢%ﬁp,1f 2k < N

and
N N < N ,T.N N
(4.10) Ay = 3 ~ 2 121 (1A) 1 ay = ¢,,), if 2k + 1 <N,
Thus, it follows from (4.7) that
N N
1 N N N,T N N
Moreover, (4.8) and (4.11) imply that
N N 0
[AE]Tag =n+ ] o =1 + [ ¢(s)ds
k=0 j=0 7 -r
where
N 0
] AT = tay + A+ [ Ate)s]T =aT
K=0 0 1 r

*
If one assumes that 0Oep(A ), then by Lemma 4.3 it follows that AT

is
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invertible and

0
ay =M+ [ e(s)ds).

-r

(4.12)

Observe that (4.12) implies that ag is independent of N and by (4.4) it
* -
follows that ag =E where (E,0()) = [A] 1(n,¢(-)). Equation (4.8)

yields the identity

N
N_ _N N,TN _ N
(4.13) a; = -a; + 2 kzl ([Ak] ag ¢k)

and hence it now follows from (4.10) that

N k
N  _ _N N,TN N, _ N TN N
i I 2Ly, (Bagl 2o ~ 42
(4.14)
_ N g QAT - oYy 4 o E (Y TN N
A R BT L, (Par! 20 7 924

Note that for 1 S_k {N-1

N

0 Tk-1
V2= 1 somleas? < & 1 late) %
-r N
Tk+1

and similarly

0

lopl? < & [ lete)]’as
7
N

Ty-1

N
N
M2 <G [ lete)] s,
-r
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Therefore, (4.9) and (4.10) imply

|a§k| < lagl 1+ 2|A1|) + 2/T/3 (lIAIlelagl + 090, )
2
and
lahpq| < 1a)] + 21a;] lagl + 27273 G lag) + 1en, ),
2 2

respectively. The identity (4.12) yields the estimate

lagl < 1A (1 + VDI, e,

and (4.13) leads to the bound

|
la)] = |-(1 + 2(a01 Day + 2(n + )| i

N N
< |a0| + 2|nl| + 2T/ (uAnL2 |¢0| + ||¢nL2).
Combining these estimates one has that for 0 <k < N
|a]| < Mi(n,e ¢
k! — ’ VA

where M>0 is independent of N. An application of Lemma 4.2 yields the

estimate

* -
e A 1PNzuZ = 1iVan L VoM azi,

for all z€Z. We summarize these results in the following theorem.
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Theorem 4.4: If 0€p(A), then

PN a1 N Le (o)) = 1NaN

N Ty

where al = col([ag]T,[aT]T,"',[aN

is given by

0
ay =T+ [ a(s)ds),
-r
and for 0<2k <N
N N k N T N N
e T3 72 L (MAgy]ieg ~ 0y p)
while for 1 < 2k+1 <N
N N N N,T N N k N T N N
a =-a. +2 ) ([A.]7a, - ¢,) +2 ) ([A);_ ) ay = 55 1)«
2k+1 0 j=2k+1 j 0 i i=1 2i-1 0 2i-1
*
Moreover, IIPN[AN ] 1PNIIL(Z) is uniformly bounded in N.
Let PEVE denote the "averaging" orthogonal projection on Z defined
by
TN
N N N i-1
Paypme ) =, T —(f o(sddsdx o y )
i=1 N [t,,T, 4)
Ty i’ i-1

where X1 denotes the characteristic function for the interval I (see [1]

for details).
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Corollary 4.5: There exist a costant K>0 (independent of N )

such that for all 2ze€Z

1P PN TN - (4% ¢ @ vzl

Proof: A direct application of Theorem 4.4 yields the identities

N
1 , N N N.T N
= (a +a,)= 3 ([A;1°E - ¢.), 0 < 2k < N-1
LS S i’ Tt
and
1 , N N N N.T N
7 (g ¥ 35) = iZZk ([A;1°8 = ¢,), 2 < 2k <N

On the other hand, since (£,p(+)) = [A*]_l(n,¢(’)). Lemma 4.3 implies that

=A (n+ ] ¢(s)ds)

-Tr

0

and

S S
() = (AT + [ AT(e)deds - [ ¢(e)ds.
-r -Tr

Therefore, if s? = (r? + T?_l)/z, then

!(agkﬂ * agk)/z B “’(sgkﬂ)'
SN
2k+1 T
=1 (B p(8) = DA (S)E - ¢(s))ds
N
T 2k+1
N
Tox T
] By ()(AT(s)E - 4(s))ds]|
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N N
Tk Tok
< (eNTZ W) {(f |A(S)|2d5)1/2|5| + (f |¢(S)|2d8)1/2}.
N N
Tok+1 Tok+1

and similarly,

N N N
[Cagy + ag_1)/2 = ¥(sy)|

N N
T T
2k~-1 2k~-1
<anmEm i) |a P e]l + (f T e 2t/ A
N
T2k T2k
It follows that
N
“PEVE iNa - (&, 1 w(s?)x ——
j=1 [Tj,Tj_l)

< (x/VI2N) (nAanlgl + u¢nL2).

Since Y€ Wl’z(—r,o; ') and

0
V(s) = AT(8)E - $(s) = AN(s)A"T(n + [ $(8)d8) - ¢(s),

-r

~

there exists a constant K such that

W= ] w(sg)x )"Lz 5.(R/N)"(n,¢(‘))"z'
1

This estimate combined with the previous inequality establishes the proof.
We turn now to providing a proof that the approximating adjoint semi-
groups constructed above do not converge strongly to the adjoint semigroup

generated by A%,
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5. NON-STRONG CONVERGENCE

Let A, A*, AV, and AY  be defined by (2.4) - (2.5), (2.6) - (2.7),

(2.16) and (4.1), respectively. The corresponding semigroups will be denoted

by S(t), S*(t), SN(t), and SN*(t). Recall that for z€Z (see [2])

N 2

(5.1) <ANz,z> = <APNz,PNz> < wiP znz L wlzh

where o = (1 + 2|A0| + |A1]2 + 21A0 )/2  and for t >0
2

%
| (5.2) isNCen < ef, asN e < 0t
The following result is a special case of Theorem 4.2 of Chapter 3 in [6].

Theorem 5.1: The following are equivalent:

(a) For every z€Z and A€f with Re i Dw

R - * -
a1 - Ay s o1 - 4571z, as N s w.

(b) For every z€2 and t>0

% *
SN (t)z + S (t)z, as N + 4o,

the convergence being uniform in t on bounded intervals.

We shall also need the following technical lemmas.




-2~

Lemma 5.2: Suppose the condition (b) of Theorem 5.1 holds, Ae:p(A*)

N N*.-1_N R
and 1P (OI - AT) TP is uniformly bounded in N. Then for every z€1Z

% -
N IPN

* —
PN(AI - A ) z+ (A\I - A) 1z.

Proof: From Theorem 5.1, for AO >uw and z€7Z

- * -
PN(xol - ANFyTIN, (T - &) 1., as No» .

Note that for z€ Z

- ¢ J.
PV - AV TN, - PN(AOI - AV LN,

. - L,
= (g - APror - AV IPN(AOI - ANFyTLpN,

and similarly

01 - A*)_l(I + (= Ag) (AT - A*)'l) = (Al - A"y,

* -
Hence, if w =z + (A = A)( I = A7) l,, then

L K -
V1 - A I - o1 - ANy e =

* —~
AN ) 1_N

= O - PO - AN*)-IPN((AOI - Pz - (T - NS

K - R -
+ pN(xox - AV, W L.
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This implies that for all ze€ 2

N * - * —
PNar - AV N, ar - A%
*_ -
But since I+ (- Ao)(AOI -A) 1 is onto, the above statement holds for
all weZ.
We turn now to a special case where KO = A0 +al, a € Hg,
K(s) = 0, -r <5 <0, & =% +A anddenote by X7, AN and

~k ~N*
S (t), SN (t) the corresponding infinitesimal generators and semigroups.

*
Lemma 5.3: If statement (b) of Theorem 5.1 holds for SN (t), then it

holds for gN*(t).

Proof: Note that

~ * ~N* *
X = A"+ & and EV = AV + pNpp¥

where E: Z > Z is the bounded linear operator defined by

E(n,0(+)) = (an,-A (+)n).

~N* @ ~
It follows from (5.2) that lISN (t:)|l_§.e°°t where w=w + Ial + HAHL .
2
Consequently, if A > w, then

(5.3) o1 - A7l 2 1 - AV 1 - AN IpNepNor - 3Vl
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and

(5.4) (A1 - K*)‘l = (A1 - A*)'1 + (A1 - A*)_lE(AI - K*)‘l.

Theorenm 5.1 implies that for all =z €2

N*

1 - AVH™L

Y "z > (A1 - A*)_lz

and since the ranks of E and E* are finite it follows that

1PVEPY - E1 » O.

It now follows from (5.3) — (5.4) that

N*

(1 - 3Vl

~k -
z> I - D71,

for all z€Z and this completes the proof.

By Lemma 5.3, without loss of generality, one can assume that A(e) =0

and A=A + A is invertible in what follows. We will show that there

0 1
. N, ,N*¥ ~]_ N
exists an element 2z €Z such that P(AT ) Pz does not converge to

* -
(A)712.  First we consider the case when A; 1s not the indentity.

Lemma 4.3, if &) = [A*]—l(n,O) where 0 # n € H, then

E=A and Y (s)

1
>
[
(a4
[

o}
N
[}
N
o
.

From
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Applying Theorem 4.4 we obtain

N. N*.—
P aN 17N, 0) = 1NaY

where

N

- T
8y4y =€ t28E, 0< 2%+ 1 KN,

For illustration, we have the following picture for the case N =4 and n =1

\ A T &
\ /N /
\ / \ /
\ / \ /
y , \ , aTe
\ / \ / 1
A~ wi W ya 3
: \ 7 \ 7/ 0
v T
v T=6 + 24

where the solid line stands for (A*)-l(n,O) and the dashed line for iNaN.
N _ T _ T, _ N = ATy o

Since  a, ~ A = AL - a, .. =& - A e € I (independent of N), it is

easy to show that

- _ /2N
(5.5 1@ m,0) - (4,002 = v g 12 s cf?as = 5| €)% ¢ 0.
0

Next we consider the case A; = I. let ¢(s) = x# 0 (constant vector in

R"). Then, from Lemma 4.3 (&, ¢(+)) = (A*)‘1(0,¢(-)) is given by

(5.6) £ = ra"Tx  and Y(s) =& - (s + r)x, -t < x £ 0.
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And, from Theorem 4.4, PN(AN*)_IPN(O,¢(0)) = iNaN, where

a0 = £
N _ TN, - 2k
(5.7) ap =&+ ) (Px =8 * g 1% 0 <2k <N
jodd
1<j<2k~-1
N 2N-1 r _ 2N-2k-1
a2k+1_E—N rX+2.z (‘N‘)x_g-(-——N—)rX,OSZk<N.
jeven
2<j<2k

N , N _ N N N N _
Since (ay + a5,,1)/2 =¥ ((ty +715,,,)/2) and (ay , + a5)/2 =

w((Tgk-l + tgk)/z), it follows from (5.6) and (5.7) that

T
N 2
(5.8) 1eN ") eN0,6(+)) - (0,00 2= an [ J2nsx|®ds = - |x|%# 0.
0

Now we may state the main theorem.

Theorem 5.4: There exists an element z€2Z and t > 0 such that
SN*(t)z does not converge to S*(t)z.

Proof: 1If for every z€Z and t > O, SN*(t)z converges to S*(t)z,
then it follows from Theorem 4.4 and Lemma 5.2 that for every z€Z
PN(AN*)_IPNZ +> (A*)_lz, where by Lemma 5.3 one can assume that A(e) =0
and A = A0 + A1 is invertible. This contradicts the facts (5.5) and
(5.8).
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