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INTRODUCTION

The common practice in applying pseudospectral methods to partial dif-
ferential equations is to satisfy the equation at the interior nodes and to
impose the boundary conditions at the boundary. This procedure does not take
into consideration that the differential equation is satisfied at points arbi-
trarily close to the boundary. 1In [4], the authors discussed the advantages
of imposing a combination of boundary conditions and the equation itself at
the boundary nodes, for Chebyshev approximations of the Laplace equation with
Neumann conditions. Here we analyze the same idea applied to the 1linear

hyperbolic equation

U = u, x| <1, t>o0,
u(x,0) = f(x),
“(lyt) = g(t)'

We assume that the collocation points are the Gauss~Lobatto Chebyshev
quadrature nodes, The stability of the method, with the commonly used
boundary treatment, 1i.e., imposing uy(l,t) = g(t) was analyzed in [10].

Here we show the convergence of the method for the new boundary treatment,

namely:
auN auN
'a_t—' (I,t) - 'a'x— (lgt) + a(uN(l’t) - g(t)) =0
where a is positive and large enough. A preliminary theoretical discus-

sion in Section I and numerical experiments in the last Section show the
effectiveness of the method. 1In Section III we use the results obtained for

the hyperbolic equations to show that the second derivative matrices, cor-



responding to the Neumann conditions with the new approach, have real and
negative eigenvalues. The analogous result for the classical way to impose

boundary conditions was previously proven in [8].

1. DESCRIPTION OF THE NEW METHOD
In order to illustrate the new method of imposing boundary conditions and
to explain what gain can be realized by this method, we begin with the
following simple time independent problem
U =f x| <1,
(1.1) X -
u(l) =0,
where feCS([-1,1]) is given (s > 0).
In the standard pseudospectral Chebyshev method (see for instance [6]),

we look for a polynomial of degree N, say vy, such that

va
{(a) i (Xj) = f(Xj) j = 1l,ee0,N,
(1.2)
(b) VN(l) = 0,

where xj = cos %l s j = 0,1,e0e,N are the Gauss-Lobatto Chebyshev nodes

in [-1,1]. 1In order to determine vy from (1.2), vy(x) is expressed by its

unknown point values vN(xj) using the Lagrange interpolation polynomial

N
v (x) = § v, (x)g (x),
N o N X1 8k
where

- - xz)T&(x)

g (x) =
k csz(x - %)




Here Ty is the N-degree Chebyshev polynomial and ¢, =1 if 1 <3 <N-1,

while cg = cg = 2. Therefore

va N dgk
I (Xj) = kéo VN(xk) = (xj) j = 1,0ee,N,

Upon substituting the above relations in (1.2), we get a linear system of
equations for the point values vy(x.). We note that in (1.1) the dif-
ferential equation holds in any arbitrary neighborhood of the boundary, where-
as in (1.2) the differential equation is satisfied not further than x = X e
We did not require, for instance, that the equation could also be satisfied
at  xg = 1. We propose now another procedure that takes into account the
differen;ial equation at the boundary as well as the boundary conditionm.

In our new method, we seek an N-degree polynomial uy such that

duN
(a) E;—'(xj) = f(xj) j = 1,e0¢,N
(1.3)
duN
(b) E)—{__ (1) - G\IN(].) = f(l),
where a>0 is a suitable constant depending on N, to be determined

later. By writing the equality (1.3)(b) as é-(;;ﬁ - £)(1) = uN(l), we note
that (1.2) is obtained from (1.3) by letting a + +», We remark that the
solution of (1.3) satisfies neither the boundary condition nor the equation
at x = 1; if the method converges both will be satisfied as N » +=,

To show the advantage of the new procedure, we give in Figure 1.1 the

plot of the error



N
2, L 1.1/2
j£1 (u UN) (Xj) E;)

m

(1.4) E = E(a) = (N

multiplied by 10° versus a, for £f(x) = sin(x - 1) and N = 8, The
point X5 is not taken into consideration in the sum because the exact
solution is known there. It is clear from the figure that E(a) is not

monotone in o and there exists o =a

min which minimizes E. In

particular we have E(amin) < E(4=). Further experiments indicate that, in

terms of N, o increases like NZ.
min

EX10° J

%min 100 a

Figure 1.1 - Behavior of the error versus a.

We would like to explain why the procedure (1.3) should be, in general, better
than (1.2). We start by noting that if £ 1is a polynomial of degree N-1 at

most, then both (1.2)(a) and (1.3)(a) hold, not only at the grid points X35




but for every x since both sides of the equations are polynomials of de-
du

gree N-1. In particular E;E-(l) = (1), thus by (1.3)(b) we get wuy(l) =0,
leading to the conclusion that wuy(x) = vN(x), ¥x. Suppose now that f 1is a

polynomial of degree N. We can assume, because of the linearity, that

(1 + x)T&(x)

on?

(1.5) f(x) =

Hence: f(xj) =0, j=1,eee N and £(1) = 1. Any other polynomial, up to
a constant factor, can be obtained from (1.5) by adding some suitable poly-
nomial of lower degree., In this case it is easily verified that the solu-

tion U of (1.1) is given by

2
_ 1 (1 N 1 N _2N*-1
(1.6)  U(x) = =5 [7 {7 Ty @ + Ty + 3 77 Ty O - 51
2N N -1
It is clear that the solution of (1,2) is
(1.7) VN(X) = 0, ¥x,

On the other hand, the solution of (l.3)(a) is a constant and from (1.3)(b) we

get
(1.8) u (x) = - 'l'.' VX.
N a’
Set é-= B, then the error is given now by
o Y . )2 Ly1/2
(1.9) E= (g 1 (Ulx;) + 8 =)'

j=1 3



To minimize E one has to choose 8 as the negative mean of U, namely

and an easy calculation shows that

2
(1.10) o = X - ZNZ'N v2-1) ~ N2

min 2N" -1

This explains the behavior of a i 32 function of N.

In Table 1.1, we summarize the results of another experiment. This time

we took f(x) = - %—(1 - x)1/2, with the boundary condition U(1l) = 1, so
that the solution was U(x) = (1 ~ x)3/2 + 1. We have tried the two different

ways of imposing boundary conditions, i.e.

(1.11)  wg(1) = 1

duN

(1.12) T

- amin(uN(l) - 1) = f(1), (where ¢ in is given by (1.10)),

and we varied the number of grid points N,




T

N Condition (1.11) Condition (1.12)
2 0.281837 0.243315

4 0.338991E~01 0.183894E~-01

6 0.995738E~-02 0.478991E-02

8 0.418410E-02 0.190129E-02

Table 1.1 - Comparison of the errors between the two ways of imposing boundary
conditions.

2. THE TIME DEPENDENT PROBLEM

In this section, we show how to apply the new procedure of setting the
boundary conditions, described in the previous section, to a hyperbolic equa-
tion. An analysis of the convergence of this method will be carried out for

Chebyshev approximations. Consider the equation

(2.1) U =1U |x| <1, £ >0,

[em]
~~
—
-
(a4
g
il

g(t),

U(x,0) = f(x).

The pseudospectral semi-discrete approximation to (2.1) we suggest in this

paper involves seeking a polynomial wuy of degree at most N such that



Ju Ju
N N .
3T 3w at x = xj, j = 1l,eee N, ¥ >0
auN auN
(2.2) T (1,t) = Fre (1,t) - alug(l,t) - g(t)),
uN(xj,O) = f(xj) j = 0,00, N,

The choice of the nodes {xj} determines the particular spectral method. For

example, the points

(2.3) X, = cos %J- j = 0,1,00e¢ N,

determine the usual pseudospectral Chebyshev method, whereas the points
(2.4) X, = cos LA j = 0,1,e0¢,N,

determine a different version (see [7]). Pseudospectral Legendre is defined
by choosing X to be the extrema of the N-th degree Legendre polynomial.

We would like to show here the convergence of the solution uy(x,t) of
(2.2) to U(x,t) defined in (2.1) when N + 4=, 1in the case of Chebyshev
methods. The proof of the stability in the case a = +o (i.e., the common
way of imposing boundary conditions) was discussed in [10]. Here we follow
the same basic ideas. We give the proof with some detail, since it will be
useful to further results concerning systems of differential equations. For
the convenience of the reader, we also report the proof of convergence which

never appeared in literature. We start with the following preliminary re-

sults.




——— ey

Lemma 2.1: Let uN(x,t) be the solution of (2.2) when X

(2.3), then

BuN B auN . (1+x)Tﬁ(x)

= T .
at 9x 2N2

(2.5)

where 1T = ~ a(uN(l,t) - g(t)).

are given by

Proof: It is sufficient to note that (2.5) exactly coincides with (2.2), when

evaluated at the collocation nodes. W

We define now PyU as the polynomial interpolating U at the points

cos ﬁl y J =0,1,0e0 M, Note in particular that (PMU)(I,t)

any M. We are ready to write the error equation.

Lemma 2,2: Let eN(x,t) = uN(x,t) - PN_3U(x,t), then

de de (14x)T (%)
N
=N - e (1,8) + Q(x,t)
2N
(2.6)
eN(x,O) =P f - PN—3f’

where Q(x,t) is a polynomial of degree N-3 in x, given by

3
Py-3Gx

_ 9
Qlx,t) = =—( U) n.

PN-3

Proof: We apply Py_3 to (2.1) to get

3(Py_30)  3(Py_30)

- Q(x,t) = al(Py_30)(1,t) ~ g(t)]

= U(1,t), for

(1+x)Tﬁ(x)

2 9

2N




_10_

with the initial condition [Py_3Ul..q = Py-3f. In fact, note that, since
(PN_3U)(1,t) = g(t), the last term that was introduced in (2.7) i1is zero.

Hence, (2.6) follows from (2.7) and (2.5). W

Next we will show that eN(x,t) tends to zero as N increases. The
proof will be based on a careful energy estimate for (2.6). For this, we need

the following lemmas.

4N-1
Lemma 2.3: Let w(x) = Z kak(x), then
k=0
N w(x.) 1
n i” _ w(x)
(2.8) L) L= EE—dxtd,,
j=0 i -1 1 - x2

where cg = ¢y = 2 and e = 1 for 0 <k <N.

Proof: We test (2.8) for Tk’ k = 0,ee0 4N-1, 1f 0 < k < 2N-1, (2.8) is

a well-known quadrature formula (see [9]); if k = 2N, it is a trivial result
by noticing that TZN(Xj) = 1; if 2N+1 < k < 4N-1, then by writing Tonyp =
= 2TNTp=ToN-m? (2.8) follows easily from the orthogonality of the Chebyshev

polynomials. [l

N
Lemma 2.4: Let v(x) = ) T, (x), then
- Lo Xk —

N
) %“ 1+ x,)(1 - ij)v(xj)vx(xj) =

(2.9)
5=0 % 3

2=
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(1 + x)(1 - Bx)vv
=f1 xdx+%[(1—B)Na§-B

-1 1 - x2

2N-1
7 a1l

for any B real.

Proof: The result is an application of the previous lemma (see also [10]). M

Lemma 2.5: Let sN(x,t) be defined by (2.6). Suppose that

N
aN(x,t) = ) aka(x), then
k=0
d 2 _ 2
(2.10) rra (2aN - aN_l) = 4N(2aN aNaN—l)'

Proof: We can argue as in [10] using (2.6) and the fact that Q(x,t) is a

polynomial of degree N-3.

Lemma 2.6: Let eN(x,t) be defined by (2.6), then

N de

m 1 N -

(2.11) N jzo q (1 + xj)(l ij)eN(xj,t) Fr (xj,t) =
_ 1 (1+x) (1-8x) ey dx - pg 2L d (2a. - )2 4
=/ *Nox 7™ Ter Ir “en T Ayl

-1 /& - x2

_m _ _ By.2

Proof: Combine the results of Lemma 2.4 and Lemma 2.5. W
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Theorem 2.1: Define

N
2 m 1 1 2 2N-1 2
. == — (1 + - = — -
(2.12)  ne0” =g jZO > (1 + %00 =5 x.) eyx,,0) + 1 3% (22 = ay_ )%,
and let 2
K 1- 2z +z
=Ly nonm
Yk T 2K & 1-z ’
m=1 m
where z, are the zeroes of TK and K is chosen such that K.Z N+1.
Then we have
d 2

(2.13) e\l 2 - YK)Efx(l’t) <

mw
dt '°N +'2'(ﬁ

N

1 X\ 2 2 2
<2f (+x)1 - 79 Q°(x,t)1 - x~ dx, ¥t > 0.
-1

Proof: We evaluate the equation in (2.6) at the points x;, then we multiply

j,
m 1
by ﬁz; (1 + xj)(l - 7'xj)€N(xj’t) and sum up over j = 0,0ee N to get
b N 1 1
(2.14) N Y Ef-(l + x (1 - 7 X e (x ,t) — at eN(x y8) =
j=0 73
N 1
=“ﬁ-2—-—(l+x)(l-—x)e(x,t) en(x;t) +
\ c
=0 7j
T N 1 1
- 2N N(1 t) + ¥ 2 . (1 + xj)(l - i'xj)eN(xj’t)Q(xj’t)'

The right hand side of (2.14) is composed by three terms. We start by
estimating the last term. First, we realize that the polynomial

1+ x)(1 - %-x)eNQ is of degree 2N-1 and therefore, by Lemma 2.1, we have
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N
m 1 1 =
ﬁ jzo c—j' (1 + Xj)(l - 5 Xj)EN(xj’t)Q(ijt) -
=/ A+ 00U - 50y (x,000t) =X,
-1 2

1l -x

Upon using the Gauss quadrature formula based on zsm= 1,000 ,K one gets
1 1 dx r X 1
+ - —— = |- -—
{ (1+x)(1 7%)e\Q - , K L (l+zm)(1 > zm)eN(zm,t)Q(zm,t)
1 - x
2
i K 1-z +z K 2(1-z )
5_27'—7— (z,t)+ z —-(1+Z)(1-—Z)Q(z,t)<
2K 2z N 1-z +z
m
K 1=z +z K
n m m 2 2 1,22 _
< 2 7_7-7. ex(zot) + = 1 (1-z )Y(1+z )" (1 -5z, )°Q(z ,t) =
K 1-z +22

= %" Z “?‘:;‘S‘EN(Z yt) + 2 f (I+x)(1 ~ —x) Qz(x,t) /1 - %% ax.

For the first term in the right hand side of (2.14) we use the result in Lemma

2.6 with 8 = 7 . Therefore, by (2.12) and the previous estimate, we get

215 e’ <g [ @0 - 0 & el - ea,o)
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1~z +22

z _?_____7.3 (z t) + 2 fl (1+x)(1 - lx)z Q2(x t) dx
o N , -1 ’ , l-x2

Integration by parts for the first term in the right hand side of (2.15)

yields

1

%-f (1+x)(1 -

9 2 2

x) — le (x,t) = e (1,t)]
X N N

-1 Jl—xz

1 x+x
I

S le2x0) - ef(1,0)] -

1-x
K 1-z +22

P ] g eha - vgea@o),

p—

where we noted that the last integrand is a polynomial of degree 2N+1 < 2K~-1
and therefore the Gauss quadrature formula is exact. Going back to (2.15),

one finally gets (2.13). W

Remark 2.,1: It can be shown that el defined in (2.12) is actually a
norm. In fact, it is possible to find a constant ¢, independent of N, such

that

IIsII >cfe (1+x)———d}——,

1 - x

for every polynomial € of degree at most N. H

N

Finally, by integrating (2.13), we get the main result of this section.

*
) > C, where c* does not

o . o _
Theorem 2.2: Let a be such that "(N Y1

depend on N, then we have




Remark 2.2: One can check that
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t

*
(2.16) ||eN(-,t:)l|2 +C j(') e;(l,'t)dr <
2 ¢ 1 2 2
< UBGE = Py of1° + & [ Q+x)(1 - ;) Q (x,t W 1-x" dxdr. |
- o -1

The previous theorem is a convergence result by noting that the right hand

side of (2.16) goes to zero in a spectral way (see for instance [1]).

converges to %- when N goes to +w,

This means that, by taking a proportional to NZ, the hypothesis of Theorem

N+
N

2,2 1is satisfied. This assumption is similar to that made for the time

independent problem (see (1.10)). I

3. BOUNDARY CONDITIONS FOR ELLIPTIC EQUATIONS

A theoretical analysis of the convergence for pseudospectral approxima-
tions of the solution of Neumann problems, with a modified approach to treat
the boundary conditions similar to that examined in the previous sections, has
been developed in [4]. Here we shall prove that the matrices relative to such
approximations have real and strictly negative eigenvalues (note that, in the
Chebyshev case, these matrices are not symmetric). To this purpose, we con-

sider the parabolic equation
(3.1) U, =10

with the Neumann boundary conditions
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(3.2) Ux(il) = 0,

The solution is determined up to a constant. The Chebyshev method with the

new boundary treatment involves seeking an Nth degree polynomial wuy such

that
2
Ju 9 u .
(3.3) E?E = 2N at xj = cos %ﬂ- j = l,eee N-1,
ax
and
2
BuN 0 uN auN
5T 5 + a TE 0 at x =1
9x
(3.4)
2
duy  duy  duy
T 5 = 03% =0 at x = -1,
ax

where a is a positive constant to be determined later on. The eigenvalue
problems associated with (3.3) - (3.4) consist of finding a non-vanishing

polynomial v, of degree at most N, such that

(3.5) Av = Ve at x = xj, j = 1,0es ,N-1,

and

]
o

AV ~ v + av at x =1
XX

(3.6)

[]
o

AV = v - av at x = -1,

XX X

The problem (3.5) admits the trivial solution A = 0., We will show that the

other eigenvalues are real and strictly negative. We begin by noticing that




where u =
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one can explicitly derive the characteristic polynomial of (3.5) - (3.6).

fact, (3.5) can be written as follows

(3.7) Av =v__ +aR + bS, a,beR,
where
XT7 (x) T2 (x)
R(X) = —N—z—— s S(X) = N 5 .
N N

Therefore, following [8], we have the next result.

Lemma 3.1: The solution v of (3.7) is given by

(3.8) v(x) = a p(x,u) + b q(x,un),

and

> =

_ z R(Zk)(x) uk+1
k=0

p(x,u)
(3.9)

q(x,u) = | s(28) () K,
k=0

Proof: We first note that p and q are polynomials in

easily verified that

Xe

In

Then, it is
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]
=

AP — pxx in R

(3.10)

]
w

Aq — qxx in R,
and therefore v defined in (3.8) is the solution of (3.7). This completes

the proof. M

To get the characteristic polynomial of the second derivative operator we need

to substitute (3.8) into (3.6) and make use of (3.10) to get

alR(1) +o £ (1,101 + b[s(1) +a 23 (1,1)] = 0
(3.11)
alR(-1) = o 32 (-1L,u)] + BIS(-1) - o 32 (-1,1)] = 0.

From now on we suppose that N is even (for N odd similar arguments can be

-S(-1) =1 and

applied), so that we have R(l) = S(1) = R(-1)

p(x,u) = p(~x,p), q(x,u) = =q(~x,u). Hence, we can state:

Theorem 3.1: The complex number A # 0 is an eigenvalue of (3,.6) iff

H = %- satisfies

(3.12) 2[1 + g—g (1,) e[l +a gi}} (1,1)] = O.

Proof: The left hand side of (3.12) 1is the determinant of (3.11). Since

we are looking for nontrivial solution of (3.6), such determinant must vanish, B
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Now, define

QL

gluy) =1 +a —% (1,m)
(3.13)

h(u) =1 +a %% (1,u).

It is not difficult to check that g and h are polynomials in u of

N

degree 7 . In order to show that the roots of glu) and h(p) are
real negative and distinct, we use the notion of a positive pair (see [5] and
[8]). Two polynomials form a positive pair if their roots are real negative
and interlaced. We shall prove, for instance, that g(yu) and p(l,u)/u

form a positive pair. To show that, we first need the following result (we

recall that has been defined in Theorem 2.1).

Yi
Lemma 3.2: Let

2
(3.14) £(u) = gu?) + au[Biliﬁ—ld,
u

where g 1s definedvinu(3.13) and p in (3.9). Then f 1s a Hurwitz

polynomial (i.e., all its roots lie in the left side of the imaginary axis)

provided a is sufficiently large.

Proof: By the definitions (3.9) and (3.13), one easily gets

]

(3.15) £y =1+qa § Ry 22 0y g2 gy 2k
k=0 k=0

=1 +q 2 R(m)(l)um+1.
m=0
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We show that f 1is the characteristic polynomial relative to the pseudo-

spectral approximation of a hyperbolic problem. In fact, define

©o

p(x,u) - z R(m)(x)um+1,
m=0

then it is readily verified that
(3.16) 20 () = p Geou) = ap (1RG0,

and that the roots of f(u) =1 +ap(l,y) = 0 give the corresponding eigen—
values. Now, (3.16) actually is the eigenvalue problem associated with the

hyperbolic equation

ow,

N _
(3.17) e

(=P

N

T wN(l,t)R(x).

With a proof similar to that of Theorem 2.1, where Wy plays the role of ey

with g=0 and Q= 0, it is possible to show that, for some norm |l.|,
we have %E-HWNHZ <0 if o is suitably large. This implies that £ 1is

Hurwitz. W

As an immediate result of Lemma 3.2, we have the next theorem.

Theorem 3.2: If « is sufficiently large then the roots of the

polynomial g defined in (3.13) are real negative and distinct.
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Proof: The theorem is a consequence of f being a Hurwitz polynomial. 1In
fact, this is a necessary and sufficent conditon for g(u) and p(1l,p)/u
to form a positive pair (see [5], p. 228). 1In particular, the roots of g

are real and negative. W

In the same way, we can also prove:

Theorem 3.3: If a is sufficiently large then the roots u of the

polynomial h defined in (3.13) are real negative and distinct.

Proof: It can be verified that the polynomials h(y) and q(l,p)/p form

2
a positive pair by showing that h(uz) + aulgilég—l] is a Hurwitz poly-

u
nomial. W

Finally, by Theorems 3.1, 3.2, and 3.3, we can conclude with the following

result.

Theorem 3.4: If « is sufficiently large then the eigenvalues A# 90 of

the second derivative Chebyshev matrix with the boundary conditions (3.5), are

real and negative. W

It is easily verified that «a turns out to be proportional to N2 as is

also pointed out in [4].
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4. ANALYSIS OF THE EIGENVALUES AND NUMERICAL EXPERIMENTS
In this section, we analyze the behavior of the eigenvalues of the
(N+1)x(N+1) matrix associated with the scheme (1.3). Applying the same proof

of Theorem 2.1 in Section 2 to the equation (2.5) with g = 0, we get

d 2
ac IIuNII < 0.

A
N=9 ims.
o
a=N?
o
1-5
o
o
rei
-~—— another =5
eigenvalue
at -47
o
o
L -5
o
o

Figure 4.1 - Eigenvalues in the complex plane using scheme (1.3).
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This says that such eigenvalues have negative real parts. In Figure 4.1, they
are plotted for N =9 and a = Nz. The distribution in the complex plane
is similar to that of the eigenvalues corresponding to the NxN matrix
associated with the system (l.2). The extra eigenvalue coming from (1.3) is
real, negative and its magnitude is proportional to N2, If RN(A) is the
nth degree characteristic polynomial related to (1.2) (see [2] for the
explicit expression of the coefficients) it is easy to check that the eigen—
values of (1.3) are the N+1 roots of the equation

(4.1) AWML e ) = 0.

The eigenfunction corresponding to the root by of (4.1), up to a normaliz—-

ing constant, takes the following form

N
(4.2) u(x) = § n ) aVE,
k=0

where h(x) = T&(x)(l+x).

To discretize in time (2.2), we can use the second order Runge-Kutta method.
The analysis of the stability of the method, based on the knowledge of the
eigenvalues of (1.3), gives an upper bound on the time step At. By choos-
ing o proportional to Nz, the restriction on At is, with a good

approximation, represented by the formula

2
(4.3) g2 .
a - .4N
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Therefore, by taking a = N2, condition (4.3) says that At S_3.3/N2.
Such restriction is slightly more severe than that obtained by exactly impos-
ing the boundary condition in x = l. Actually, in this last case, we had

At _<__17/N2 (see [2]). The more restrictive condition on At is due to
the presence of the real eigenvalue with the largest magnitude. One could
think that this result negatively influences time discretization for scheme
(2.2). Nevertheless, we argue that this is not the case. In fact, consider

for instance problem (2.1), when the initial guess is f(x) = l-cos(x-1)

and g = 0. We discretize the equation by collocation at the Chebyshev

nodes X35 j =1,eee¢,N, Two different conditions are tested in x =1, i.e.

a) uy(1,t) =0,

(4.4)
Ju auN
b) T (l,t) =a—x— (l,t) -a UN(I,t)o
We take N = 8, a = N2 and t€[0,T] with T=1, and we evaluate the error

E as in (l.4) using both the schemes, respectively obtained by imposing con—
ditions a or b 1in (4.4). Second order Runge-Kutta is used for time dis-
cretization. Figure 4.2 shows the behavior of the error versus  At. As the
analysis of the eigenvalues pointed out, by increasing At using condi-

tion b, imstability occurs earlier than using condition a.
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|
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Figure 4.2 - Comparison of the errors versus At using different boundary
conditions.

Nevertheless, the error relative to condition b is definitely lower than the
other. Furthermore, the choice of a higher At is not appropriate because
the time discretization error dominates.

For the same example, Table 4.1 shows the error when T =1 for various

choices of N,
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At =

.01

At = .001

N {Condition a

Condition b

Condition a

Condition b

Condition a

Condition b

8 . 1649E-02 .1124E-02 .1644E-02 .1122E-02 «1644E-02 .1122E-02
16| .2076E-03 .2039E-03 «.1996E-03 .1962E-03 »1995E-03 .1961E-03
32| .6837E~04 OVERFLOW . 3846E-04 «3653E-04 .3842E-04 .3649E-04
Table 4.1 - Comparison of the errors for different At and N,
Similarly, Table 4.2 shows the error when different values of are used
and At = ,001. In almost all the cases the use of condition b is pre~-

ferred, especially when large values of T are considered.

T =

]

T =

2

T =

10

N |{Condition a

Condition b

Condition a

Condition b

Condition a

Condition b

8 . 1107E-02 «1200E~02 «8904E-03 . 7875E-03 . 2010E~07 .4098E-09

16 .2594E-0e .2540E~03 +9567E-04 «.8506E~-04 .8312E-10 .2718E-13

321 .4168E~04 «3904E-04 .1187E-04 .1174E-04 .2231E-14 .9872E-19
Table 4.2 - Comparison of the errors for different T and N.

Similar results can be obtained when time dependent boundary conditions are

considered.

We conclude this section by discussing preconditioning for the matrix

corresponding

efficient preconditioner was proposed in [3].

to (1.3).

For the matrix resulting from scheme (1.,2) an

Such preconditioners can be
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written as a product of two NxN wmatrices Z and D, where D is the up-
wind finite~differences matrix at the collocation nodes and Z is a shift in
the space of polynomials of degree N-1, from the values at the staggered grid
points to the values at the initial grid. The eigenvalues after precondition—
ing are real positive and between 1 and %«. An analogous result holds
for the (N+1)x(N+l) matrix corresponding to the scheme (1.3). As precondi-

tioner for such matrix we set ZD, where A and D  take respectively

the form

-a 0 ¢ ¢+ 0
1 0 + ¢ 0 _1_
. 0 R %™
Z=: 7 , D= 0 D .
0 .
0

The preconditioned eigenvalues can be explicitly computed also in this case.

They are
i
mSin_Z-N-
Vo= Ag T s m T Leeeuh
Sini-ﬁ
In particular 1 S_km < %-. The corresponding eigenfunctions, up to a
multiplicative constant, are
2

m = e
um(x) = Tm(x) -1 +m;;—1~3- ’ m = 0,1,0 ,N.

The preconditioner presented above is particularly suggested when steady state

solutions of problem (2,.,2) have to be computed.
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