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Foreword

This document comprises a report of progress made in the initial phases
of a long-term research effort aimed at understanding the unsteady interactive
aerodynamics of large-amplitude wing motioms and maneuvers. This part of the
research was supported by NASA-Langley under Grant Nr. NAG-1-658. The work

is being continued with support from other agenciles.



Abstract

The initial phases of a study of the large-amplitude unsteady aerodynamics
of wings in severe maneuver are reported. The research centers on vortex flows,
their initiation at wing surfaces, their subsequent convection, and their
interaction dynamically with wings and control surfaces. This report focuses
on 2D and quasi-2D aspects of the problem and features the development of an
exact non-linear unsteady airfoil theory as well as a new approach to the
cross-flow problem for slender wing applications including leading-edge separation.
The effective use of interactive on-line computing in quantifying and visualizing
the non-steady effects of severe maneuver is demonstrated. The effects of
viscosity in establishing and limiting the size of vortex cores is also being
investigated in a companion effort not reported here.

In the first part of this study, analysis of 2D unsteady airfoil behavior
was developed along lines analogous to classical theory, except that no linearizing
assumptions were admitted. Successful use of certain convective characteristic
variables [1] has led to a viable non-linear wing theory for unsteady flow past
airfoils in violent motion. The theory reproduces classical results in the
limit of very low amplitudes. This part of the research sets the stage for a
similar study of the slender wing cross-flow problem. [2]

The new non-linear airfoil theory has been implemented on the computer.
Interactive computational work is now possible, in which a "maneuver" can be
_initiated (i.e., input) and its effects observed and analyzed immediately
(i.e., on-line). Typical results from these studies are discussed in the report
(Section II) and, where possible, compared with classical linear theory. The
effects of certain severe maneuvers are illustrated.

A video tape of representative interactive computational results is also

available and can be obtained from the author on request. .
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I. Non-Linear Unsteady 2D Airfoil Theory and the Quasi-2D Cross-Flow Problem

The goals of this research do not actually include, per se, the development
of non-linear unsteady 2D airfoil theory as it might be applied, for example,
to large aspect ratio wings in violent maneuver. Rather, we are interested here
in developing the tools with which the non-linear unsteady aerodynamics of slender
wings, including deltas, can be studied. However, in the process of putting
these tools in place, particularly for the cross-flow problem, it is useful and

natural to study the 2D unsteady airfoil case.

A. Comparisons

A major feature of classical linearized unsteady wing theory (2D or 3D) is
the introduction of crucial simplifications regarding the wake. Recognizing even
in 2D airfoil treatments that vorticity (incremental circulation) must be shed
into the wake behind a host body on which the bound circulation varies in time,
the classical description approximates the spatial location and motion of that
vorticity. One assumes namely that all shed vorticity lies in the plane of the
incoming undisturbed flow vector passing through the midchord location of the
corresponding airfoil or wing mean camber line at mid-span. Moreover, in the
linear model each increment of circulation is assumed to be 'convected"
approximately by the undisturbed free stream speed, Uo, say. The latter assumption,
of course, is the linearized version of the constraint that the vorticity in
the wake is "free", i.e., supports no force.

In reality the wake vorticity moves at a speed and direction determined not
only by the free stream but also by the "induced" velocities associated with
both the bound vorticity on the wing and the neighboring "free" vorticity in the
wake or wakes. The result in the 2D airfoil case is that even at very low
amplitudes of airfoil motion in pitch or plunging there 1s a net displacement
of the wake relative to the plane of the wing or airfoil. In addition, there is
coagulation of the vorticity, distortion of the wake and, eventually, possible
roll-up into cores sometimes resembling spirals.[3] (See Figure I.l.)

Such features of the wake motion not included in linear theory can have
several important effects. One of the more obvious is the introduction of
additional "bound" vorticity on the wing needed to cancel out at the wing the
"induced" normal velocities associated with the wake or wakes when the actual
positions of the vortex elements is treated correctly. (See Figures I.2 and I1.3.)
Wake deformation affects directly both the bound vorticity and the Bernoulli "3¢/3t"

term needed to determine the wing loading in unsteady motion or maneuver.
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Also important, as it turns out, is the fact that the topside-to-bottomside
mean velocity at the airfoil is modified (relative to the linear version) whenever
there is a net displacement of the wake. The net result is a further change in
the airfoil loading. Both magnitude and phase are modified relative to the
predictions of the linear model.

An interesting feature of the non-linear 2D airfoil work that follows 1is
that for simple "benchmark" examples such as pure pitching or pure plunging, the
amplitude threshold of important non-linear effects can be determined, most
prominently as a function of the reduced frequency. No particular emphasis on
these thresholds is contained in this report; we content ourselves with noting
that they are very low even at relatively modest reduced frequencies. (See
Section II.)

An additional advantage of studying this aspect of the overall problem has
also emerged recently. Work on the non-linear aerodynamics of 2D airfoils of
other authors, notably that of Mook, et. al. [4], has become available and 7
provides us with a rich and convenient source of comparisons against which both

fundamentals and accuracy of computation can be checked.
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B. Non-Linear Treatment of the Wake

In the classical linear theory, having approximated the location and motion
of the wake vorticity, the next step is to devise a means of determining the
instantaneous magnitude of that vorticity, v,, everywhere in the wake. Representative
of this approach is the well-known Wagner integral equation for Y, [5] applicable for
example to a plunging and pitching "flat plate" airfoil

Xend(t)
T'o (t) = ‘/ dx Yy (x=Ugt) (I.B.1)
(known) b (unknown)

2
where Fo(t) is the known instantaneous Kutta value of circulation that would be
appropriate to satisfy the boundary condition at the plate in the absence of
any wake. In the above, c¢/2 is the airfoil semi-chord, U, is the free stream
speed, and xend(t) is the downstream location of wake end, according to the

linearized model. Thus, by linear theory, if vo(x,t) is the required normal

velocity at the plate

vo(x,t) 2 h(t) - x &(t) - U, alt) (1.B.2)

and, if the Kutta condition 1s applied in the same spirit,

2
PO (t) = =2 [ dx vg (x,t)
<
2

Here, h(t) is the vertical plunging location of the plate and a(t) is the

(1.B.3)

angle of attack. Thus, if Yc(x,t) is the camber line of the plate,
Y. = h(t) -x tana= h(t) - x0o where x is measured from midchord.

Many authors [5], [6], [7] have exploited this approach in linear theory
to determine the wake vorticity for such classical examples as the steady-state
low-amplitude oscillation of the plate in pitch or plunge (including possible
flutter) and the "gust problems.

Once the wake vorticity is known, the loading, 1ift, and moment can be
calculated. This procedure uses the fact that the wake alters the apparent
upwash at the airfoil so that additional bound vorticity on the airfoil is
tequired to cancel out the wake effect. (See Figure I.3.) The net result is

an alteration of the loading, 1ift and moment, both in phase and magnitude.
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Early in the present investigation we were able to show [8] that the
Wagner integral equation, as such, can be generalized to the non-linear case
with arbitrary amplitude (always applying, however, the Kutta condition) for
a flat plate or any Joukowski airfoil, even including wake displacement and
roll-up exactly.

In the framework of the interactive computer studies we have developed,

(see also Section II) the solution of the generalized Wagner is relatively
straightforward. As the history of the wake formation and the associated airfoil
motion, loading, and moment are developed at each time step and displayed on the
screen, the incremental value of circulation that must be shed into the wake in
order to maintain the Kutta condition (for example) is recorded. Then, as time
proceeds, and using the methods proposed in Ref. [1], the instantaneous location
of that incremental circulation is computed exactly and charted. The net result
is an exact, non-linear (and virtually automatic) mapping at any instant of the
wake intensity and shape. No CFD-type grid is required at any time.

Once the wake structure is available, the non-linear theory proceeds by
analogy with the linear theory. For the flat plate and Joukowski airfoils, in
fact, the generalization to arbitrary amplitude proceeds with surprising convenience.
The exact boundary condition, representing the generalization of Equation (I.B.2)

is, for example,

o

“osal) " ut tana(t) (1.B.4)

vo(®,t) = h(t) - &

where % 1s measured from midchord but along the actual plate surface, i.e.,
® = x/coso.. (See Figure I.2.)

Using the theory of conjugate functions in the "circle-plane" obtained by
an instantaneous Joukowski transformation from the physical plane, one is able
to solve the problem for the airfoil loading almost precisely as in linear theory.
Results for violent airfoil motion and maneuver® are then readily obtained,
some of which are discussed in Section II.

For completeness, we record in Section I.C some of the key relationships
that make the non-linear theory possible. In Section I.D a brief discussion of
how the 2D theory is to be modified for the treatment of the slender wing 2D

"cross-flow" problem is included.

*The results described above apply, of course, only if the instantaneous Kutta
condition is reasonable. Effects of separation, leading-edge and otherwise, are
being investigated and are reported elsewhere.
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C. Exact (Non-Linear) Updates of Linear Theory for an Oscillating Plate

We need to solve V2¢ = 0 with appropriate boundary conditions for this
problem without linearizing.

The exact boundary condition for an oscillating plate in pitch and plunge
is given in (I.B.4). In terms of the instantaneous normal component, v, at

the plate, where

v cos o + u sin a

<>
1]

-v sina + u cos Q

e>
]

we find without approximation

v [= h cos a(t) - X & (I.Cc.1)
plate

Here, ® and § are the instantaneous cartesian coordinates centered on and

parallel to and normal to the plate, respectively. (See Figure I.2.) Thus,

X = x cos o - (y-h) sin o (I.C.1a)
9 = (y-h) cosa+ x sin o
so that on the plate, where ¥ = 0, y-h = -x tan o, and X = (x/cosa). Note

that for steady flow at any angle of attack, ¥ = 0 as required.

To solve this potential problem it is convenient to use an instantaneous

conformal mapping such that, if 7 =x+ iy and Z = X'+ iY = Reie, then

RZ o~21a(t)

z =7+ + ih(t)

Z

where ZRO = ¢/2., Thus, on a circle Z = Roeie in the "Z-plane"

2] = G+ 19| ze 1 (z-1h)| = 2R; cos (8+a) (I.C.2)
plate plate plate

Matching real and imaginary parts, one finds

HH
o

Re(el®(z-ih)) = 2R; cos (6+a) = ¢/2 cos (B+w)

(I.C.3)

Im(el®(Z-ih)) =y =0

so that this particular circle in the Z-plane maps the plate precisely.
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Completing the conformal map one identifies the complex potentials in
the - and Z-planes, and finds the relationships between the corresponding

velocity components. In particular, on the plate and circle surfaces

VR[ = 2$|sin B
circle plate
(I.C.4)
V8| = —Zu]sin B
circle plate
where
B = 0+ (I.C.5)

In the circle plane the mathematical problem is relatively easy to solve
using the theory of conjugate functions. When the Kutta condition at the trailing

edge is assumed, the results are typified by

U.sina(l-cosB)  LE (8) {2 sint?} + 4. (I.C.6)

= (I -
U cosa+ ain B 7 sin B W

u,plate

where B = 6+ 0o and ﬁl is the component of velocity parallel to the plate

plate
at its surface. Since &% = ¢/2 cosf from (I.C.3) the upper plate surface corresponds

to (0 < B<7), while the lower surface is specified by (1< B <27m). In the

above, the third term involves the conjugate function operator "LE", with
2 sinT v(T) as operand, "A". Gw and v will be defined presently. With the
Kutta condition applied, LE (B) {A} 1is given by
K . _ .even in B odd in B
Le B {A(M} = Leg  (B) (A + Lo (B) {Al (I.C.7)
where
U o%d
even _  +(l-cosB) dTtA (1) 1l + cosT (I.C.7a)
= P
Lex (B fa(m} = T f sin T cos T-cos B
odd 1 i sin B
L A(T E+—I"[dTAevn——————— .C.
cx (B) TA(D)} F O e ooss (I.C.7b)
even in T

odd in T
where A(T) = A (T) + A (1)
The result in (I.C.6) has necessarily been adjusted to include the effects
of the wake, as suggested in Figure I.3, just as in Wagner's theory [5]. For

example, 4. in (I.C.6) is the parallel velocity component to be calculated at

w
the plate surface due to the wake. Moreover,
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v =30@®) - Y ®) (1.C.8)
plate

where G'plate is given in (I.C.1l) and Gw is the normal component of velocity due
to the wake. Both Uy (B) and Vy(BR) are obtained via the Biot-Savart Law, once
the exact non-linear wake structure has been obtained.
The parallel induced velocity { at the plate, of course, has no discontinuity.

Thus, if -AG =Y = -(d —ubottom) and <u> = (utop+ubottom)/2 then

top
even dd
Ao _ l-cos B Leg  (B) {a°9¢}
Au = =Y = 2U_sin a ( SinB ) - sin B (I.C.9)
while
A ) Lg%d(B){ Aeven
<> =1U cosa +-uw(8) - 7 oin B (I.C.10)

where, again, A = 2 sin T G[ (t) - Gw Y.
plate

For the flat plate case, no matter the amplitude of the unsteady motion,

Lgﬁd vanishes since A(T) is pure odd. Thus,

<{i>flat plate = U cos a + ﬁw(B) (I.C.10a)

Note that Gw, being due to the wake, will vary, along with other effects, according
as a net displacement of the wake from the plane of the wing does or does not develop.
The results in (I.C.9) and (I.C.10) are part of what is needed to calculate

the airfoil loading, pl =(p -p ). In fact, from the Bernoulli equation
bottom *top

pl = +po [<q> + Aq + AG%%)J

where ¢ is the velocity potential and q is the fluid velocity vector. Also,

<()>= ¥ [() + () and A() 2 ()p—=() . Since AV =0
top bottom top bottom

in this case, Aq * <q> = <u>A{, so that the plate loading becomes

pl = p_ [<G> A G+ A( gf H (I.C.11)
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The "A(%Q " term, related to "apparent mass" effects, can also be
t

calculated exactly. Letting

¢ (R,y,t) = ¢ (x,¥,t), (I.C.12)

where %(x,y,t) and $(x,y,t) are defined in (I.C.la), the result is [8]

A® (%,9,t) + Au h sina(t) (1.C.13)

But A® 1is easily available given A{l as given in (I.C.9); in fact,

T
Ad =c/2desin8 Al ,
B

so that
m
80, = c/2 [ dB sinB (A8), (I.C.14)
° 5
h 1 B x h in 8 = (1 22 d dg = Bd
where, again, cosB= —5 so that sin = - an X = - = sin .

Given the loading expressed in this fashion, the instantaneous 1lift and

moment of the plate are calculated readily from

unit span

i
0

and

Ul
( moment_> Mg(0) = (c/2)2f dB sinB cosB p] (I.C.16)
u 0

nit span

where "MO" is measured from mid-chord and is positive nose down.

Note that the expression in (I.C.15) is adjusted for the "leading edge force"
in the classical manner. This, of course, means that not only have we applied a
Kutta condition at the trailing edge but that we are also omitting for the
moment any effects of leading-edge separation of the 2D airfoil type.

The multiple integrals in (I.C.15) and (I.C.16) can all be reduced in the
manner of Munk [9], so that, at most, only a single quadrature over the airfoil
chord is required at any instant to determine L(t) and Mo(t) . (See Ref. [8]
for details.) Thus, for the "flat plate airfoil",



ln' ~
u
L(t) = p, ; {f dg \ U, + h tan ot coZOt) <2Uwsina(1—cosB)-L(e:§en)
0
m
+ % J'l -cosf) éL (?U sina (l-cosB) - Lg;en) dB} (I.C.17)
Q ¢cosa

whereas

2 T it even
Mo(t) = Py % {6‘. dR cos o cosf (Uco + h tana+ 'c%x) (ZUmsinu(l-cos B)—LCKe

(
+ %{ (1-cos 2B)dB a_at (zu sina (1- coss)—Lg‘ée‘) (1.C.18)

Note that the final " 36/ot" terms in (1.C.17) and (I.C.18) have each been
integrated once by parts. Equation (1.C.17) can also be obtained by applying
the principle of conservation of impulse.

These exact (non-linear) results, together with the non-linear version of
the Wagner integral equation mentioned above, have been used by Scott [8] to
obtain the non-linear unsteady results discussed in Section II. Scott's lift
and moment results, and that part of his NLWAKE code as of this writing, are
based on Equation (I.C.17) and (I.C.18).

However, we have recently recognized that these equations, as written, are
not as convenient for computational purposes as they could be. For example, in

the above expression for L (t) the term

T
- 0o f 48 (U_ + B tano) LEYE™(B) = - (Ut h tana)Tp (1.C.19)
0

is a wake-effect contribution where Fl ig defined as in [6] (see Section IT.a.).

We will show in Section III, however, that this contribution is almost exactly

cancelled by the term

K
2
Ci"‘;u (%) %fcose dB Lggo(B) (I1.C.20)
0

in the second integral of (I.C. 17). The difference between the two is the

non-linear version of the "Lz" wake-effect 1lift formulated by von Kirmin and Sears.{6]
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Computationally this means that one is attempting to calculate a small residual

lag- or lead-effect by taking the difference between two much larger quantities,

a situation obviously to be avoided from the numerical point of view. (See Section II.B.)
The procedure is vastly improved in this respect by reformulating the

wake-induced terms in (I.C.17) (for example), in terms of integrals over the

wake. An account of how this can be carried out is given in.Section III.



-11-

D. The Cross-Flow Problem with Two Wakes

In this section we discuss briefly the development of the quasi-two-dimensional
cross-flow problem appropriate for application to a slender (1ovr/R )} delta wing.
We content ourselves with a "flat plate" wing under symmetrical loading and use
the time-analogy approach of Munk and Jones, because we have a limited objective
here. 1In particular, we wish to demonstrate the necessity of vortex wakes
"emanating" from each edge of the wing (in the cross-plane view) provided omne
assumes a Kutta condition (i.e., smooth edge flow) to apply at those edges.
(Compare Figures I.4 and I.5.) 1In the linear version, one can approximate the
location of these wakes, and the cross-plane motion of the vorticity within them,
in a manner analogous to the classical linear airfoil theory of Section I.B. An
integral equation for the vorticity strength within the wakes results which plays
a role for this problem similar to that of the Wagner equation in the linear
airfoil analysis. The non-linear treatment of the same problem can then build
on this approach, with the linear theory providing a "benchmark" as before.
(Compare Sections I.B and I.C.)

In this simplified model, as illustrated in Figures I.4 and I.5, the wing
trace representing the penetration of the flat delta wing moving at speed Uy
through a fixed reference cross-plane (x,y) is a straight line, the "span" of
which appears to grow in time. Moreover, if the flat delta has an angle of
attack o, the trace through the fixed plane moves "down" (to the left, in Figure I1.4)
at speed U tan 02 U Q. If we now fix our attention on a cross-plane fixed in
the delta wing at some chordwise station z, this plane moves at speed U, relative
to the previous one and has a wing trace whose span is proportional to z if z is
measured from the vertex of the delta. Moreover, in this fixed cross-plane there
is an apparent wind (from the left, in Figure I.4) of magnitude U tana = Ux®.

Note that in Figures I.4 and I.5 "z" is out of the paper and the triad (x,y,z)
is right-handed. The orientation of the coordinates was chosen to point up the
analogy with a flat plate "airfoil" at 90° angle of attack, for eventual reference
to the results of Sections I.C and II.

The linear version in the completely inviscid limit (Re = «) of the cross-flow
problems {2}, [9], [10] includes no wake at all and thus cannot satisfy a Kutta
condition at the edges. (Recall that according to the Kelvin theorem there can
be no net circulation in any cross—-flow plane.) In fact the flow solution in

that case is represented by
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u[ =0 (normal component)

lat
prate (I.D.1)
v! = (-Ux,®) tan 6 (parallel component)
plate

where y = % sin 6. Thus, the flow in this limit is singular at the wing edges,

since 5
| - — Y

(b/2)2

cos 6

At any finite Re such singularities, of course, are unrealistic. At very large
but finite Re we expect a smooth flow and postulate a Kutta condition at each edge.
To smooth this flow and apply such a Kutta condition, omne requires two
"wakes" of vortices (as viewed in the cross-plane) above the wing trace [11], [12],
[13], [14].* (See Figure I.5.) In the linear case, and for the spanwise symmetry

assumed here, one can locate the traces of these vortices. In complex variable

notation we find ¢y = h + is(h) at any z, where for steady flow at small a, (Fig. 1.6)
h =a(z - z4), (I.D.2a)
and

s(h) = béz) - h(§£2) {1-f}. (I.D.2b)

Here, b/2 is the local semi-span and h is the apparent height at z above the wing
of the vortex element which "emanated" from the wing edge at the upstream chordwise
station zg. "s(h)" is then the spanwise location from midspan of the same element.
Note that b/2 = (cot A)z where A is the wing sweep angle. The fraction f, £<1,
allows for a certain spanwise convection, Usaf, of the vortices. The companion
(starboard side) wake is located at g$ = h - is(h). Note that, at any z, h
varies from 0 to oz, and at h = 0, s = b/2. (See Figure I.6.)

But one may ask: why a pair of "wakes", or wake traces? We note that at
any given z, for example, two point vortices above the wing trace would suffice
by themselves to smooth the flow if their strengths were chosen properly for the
given location, so one might consider that possibility. However, at the chordwise
station immediately downstream, generally of different span, these two vortices,

being free, will have convected to a new relative location above the new wing

*This phenomenon is often referred to as leading edge separation in the slender-
wing literature.
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We can then write

v| = (-Ux®) tan 8 + vy |
plate plate
Ul
oz
_ t;nﬂe f dh T'(h) Re TlT_ P dT cos T (I.D.7)
) F4 cosT - cosg*
T2

1 1
{b/Z sinT +1iZy (h) T b/2 sinT +iz¥ (h)}

The v term in I.D.7 is not singular enough to cancel the tan 6 singularity

wpllate
of the first term. It remains for the final integral term to be adjusted, by
choice of T (h), so as to smooth the flow and satisfy the Kutta conditions. One
requires namely that the sum of the coefficients of tanf vanish in the limit

8 »xw/2.

But in that limit, as cos 6 -0, the inner integral in the final term of

(I.D.7) can be carried out handily. The result is

ul
2

1 1
dt {b/Z sinT +iz,  b/2 sim+ic;';}

e
Nl#g‘_~\

1 1

. (1.D.8)
Vi) 2-(b2/4) V(53 2= (b2/4)

where the square roots are defined in the sense of complex variables and require
determining the correct branch. Note that as h+0, where the wakes approach the
wing at its edges, iZy =+ -b/2 while ic$ - +b/2.

Satisfying the Kutta condition then requires

1 1

0z
271 Upl -—Ref dh T'(h) {V - } (1.D.9)
(

0 10,)2-(b2/4) V(1) 2-(b2/4)

This is an integral equation for the distribution of circulation element, dr (h),
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along the two symmetrical wakes. It will be noted that it bears a very close
resemblance to the Wagner integral equation of classical airfoil theory (compare
Sections I.B and I.C) as well as to the non-linear version of that equation
obtained by Scott [8].

The non-linear unsteady version of (I.D.9) is actually the same, except
that the explicit approximation (I.D.2) for the shape of the wake traces has
to be dropped and the ¢ remain to be found self consistently. As explained in
Section I.C and in greater detail in Ref. [8], this replacement amounts to devising
a scheme of mapping out the wake as time (and/or z/U,) progresses. This is
precisely what Scott's codes [8] do for us, using the exact non-linear characteristic
variables proposed in Ref. [1]. Thus, in illustrating in the next Section the
results of his successful interactive treatment of the non-linear unsteady airfoil
problem (albeit, with only one wake), we have set the stage for a similar
application of the interactive method to the quasi-two-dimensional cross-flow
problem in the non-linear, unsteady case, including two wakes. This work, to
be used to help determine the unsteady aerodynamics of slender wings in severe
maneuver, 1s being carried out in the extension of our work beyond the present
NASA Grant. It is to be expected, of course, that relative to the linear theory
the actual wakes will distort and very likely roll-up in most situations. In
such cases the full theory may eventually emulate the models of Adams, Edwards,
Cheng, Brown and Michael. [11], [12], [13], [14]. Results of this part of our

study are to be reported elsewhere.



-16-

II. Typical Results: Non-Linear 2D Airfoil Behavior

A, Basic Method of Determining Wake-Effect Terms

The non-linear version of Eq. I.B.l is [l], [8]

0

- Io(t) = Real Part|-f ax v fa(,t)+1
0 3 (IT.1)
(known) £ A a(i,t)-1
where a(A,t) = % eia(t) CV(X,t) is a complex function of time and the convection

variable, A. [1] Here, Ty = Xy+iYy 1s the complex location of each wake vortex

element of circulation dI,(A). A satisfies dA/3t +<g> » VA=0 at the wake and equals

t at the trailing edge. Note that Fw, A, and t are real. At any t, a(A=t,t)=a(t,t)=1
representing a vortex element just leaving the trailing edge of the airfoil, so Eq. (II.l)
is singular there. On the basis of this, Scott [8] has developed a code, NLWAKE,

which automatically and efficiently determines the unknown circulation elements

dT,(X) for any given Fo(t). Equation (II.l) is solved under the constraint,

following from Kelvin's Theorem, that

Pgound(t) = Tg(e) + Ty(t) = = Tgape(t) (11.2)
Note that the total wake circulation Fwake(t) is
0
dTr. (D)
I vake(t) = ‘f —¥_ " 4a (11.3)
dA
t
so that Fl(t), defined by (II.2), is just
0
I, (t) = Real Part{-[ d2 Ly arl o (I1.4)
1 eal Par Ix ] .

Once the de(K) are determined we have all the information needed to calculate
the wake terms in Eqns. (I.C.17) and (I.C.18) for the lift and moment, involving
the operator ngen_ (See, however, Section III.)

In the remainder of this Section we discuss typical results of Scott's

calculations as reported in Ref. [8].
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B. Airfoil Aerodynamic Response to Imposed Maneuver

A critical part of studying the behavior of wings in maneuver is the
understanding of the wing's aerodynamic response to new conditions suddenly
imposed. Representative of such response are, for the 2D case, the results of
the classical Wagner problem, illustrated for the low-amplitude (linear) case in
Figure II.l.a. The net bound circulation on the airfoil (F0+-F1 in the Figure)
adjusts only gradually to the suddenly imposed change in angle-of-attack as
represented by the jump in T[j. The 1ift coefficient jumps to } its eventual
value and gradually adjusts. Note that the relaxation to the quasi-steady result
is very slow. (On the Figures, time is normalized to c¢/4 Ux).

The corresponding large-amplituae case is illustrated in Figure II.l.c.
Qualitatively, the response is very similar to the linearized result, despite the
relatively severe deformation of the wake as illustrated in Figure II.l.d.
(Compare Figure IT.1.b.) This bodes well for the effectiveness of the linear
analysis for this type of problem, and is consistent with the fact that the wing
in each case is adjusting to vorticity rather strongly concentrated toward the
far reaches of the wake.

The response of an airfoil to imposed low-amplitude long-duration oscillatory
motion (plunging in this case) is illustrated in Figure II.2 (a through d).

Corresponding to classical linear theory, for times long enough after imposition

of the motion, the 1ift either lags or leads the quasi-steady value, depending on

the value of the reduced frequency. The results provide a necessary check of the
present non-linear method. (The wakes are not shown in these particular examples,
as they were negligibly displaced or wrinkled. )

The values of lead or lag indicated in Figure II.2 are generally small. They
also agree only qualitatively with the classical linear theory. This fact
provided us with the first indication of certain numerical inaccuracies arising
from the use of (I.C.17) and (I.C.18). The remedy is discussed in Section ITI.
(See also the remarks at the end of Section I.C.) ‘

Illustration of the airfoil's asrodynamic response to a rudimentary but severe
maneuver is illustrated in Figure II.3. There, a sudden single-cycle cinusoidal

angle-of-attack variation of 2° amplitude is imposed and just as suddenly stopped.

The wake vorticity coagulates and begins roll-up without significant net displacement

from the plane of the airfoil (Figure II.3a). The lift jumps immediately due to the

abrupt change in & (see Eq. I.B.4) and then leads the quasi-steady value into the
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negative lift region. It then overshoots the recovery (because of wake induction),
plunges again, and only very slowly recovers to the state before the maneuver.
During the maneuver, from start to finish, the airfoil advances 5 chord lengths
in this example. Both "apparent mass" effects and upwash induced by the wake
play vital roles in the net result.

In all the examples the pitching moment has also been studied and behaves
in the classical manner at low amplitudes such as used in Figure II.2., For this
sudden, high-amplitude maneuver, however, its behavior, though also classical,
emphasizes the need for skilled control responses on the part of the pilot.

Many additional examples are available in the recently-completed thesis of
M.T. Scott [8].
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II1. Planned Improvements of NLWAKE

As mentioned in Section II and anticipated at the end of Section I.C.,
numerical inaccuracies arise in the use of (I.C.17) and (I.C.18) because of
near cancellation between two major wake terms in each of those expressions.
Therefore, reformulation of the 1ift expression, via wake integrals [6] can be
very advantageous for numerical purposes. In the following, we discuss some of
the steps needed for this purpose in the non-linear treatment.

We begin by focusing on the particular term (see Eq. (I.C.17))

s
= - =P €7/4 N n
= (AL0+ALW) = —— EC-IE f dB sinB cos B (A g +Auw) (III.1)
0
where Al = Aﬁ0-+Auw is given in (I.C.9) and Ay 1s the "quasi-steady" form
A l-cosR Ae
Auo = THB 2Upsina- 2 hcoso+ 2%a (I11.2)

and

- +LEg S (B) {2 sinT v (1,t)}
Aty = sin B (ITI.3)

"apparent mass"

as defined in Section I.C. We recognize AL, as the classical
contribution [6] involving only quasi-steady terms.
But AL, can be re-expressed in terms of an integral over the wake vorticity,

using the Biot Savart Law and Eqs. (II.1) - (II.4). The result is

0
p,c/2 dr
AL, = —— é% Real Part '_/;k ¥ [Va -1 - a] (I1I.4)

cos O
t

with "a" defined as in Eq. (II.l).

Similarly, if we focus on the contribution

2
12 1 1 _ Pee/D" g A
AL = ALO + ALw “eos o dt dR sinB (Auo +Auw) (I1I.5)
0
we see that
1 - _ QOOC/Z dPO
ALO —EBEGT I (I11.6)
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and / T
1 _ “Ppc/2 1
ALy cos O dt (II1.7)

so that
-Pc/2 4T'Bound

1 o Pt/ e
AL cos o dt ’

Going further, we perform the time derivative in (III.4), to obtain

-0.c/2 dTgppe Py /2 dIy  3a(i,t)

a
= - d A -1
ALw cos Q dt cos O f dX ot %,/az_l 2

t

(I1I.8)

Thus, since T some exact cancellations occur*and we find, following

wake = “Bound®
Kdrman and Sears,

1 12
ALO + AL, + AL, + ALO =

= ALO(t) + Lz(t) + L3(t) (I1II1.9)
"apparent mass" "wake effect" "pU,T; + non-linear
correction"

where ALy has its exact classical form [6], and

c/2 0 ar
Lo +0, i) —w da (A,t) 1 (II1.10)
2 cos o dx Jt 2
t a1
0 dr
_ e w (¢ da_ -
L3 = meoo Fl - cosa f dA dA (2 at UOOCOS Oi) [ a-1 1]
t (ITII.11.)

In (III.11) we have used (II.4) to eliminate Fl(t). Note that in the

low-amplitude limit £ da -+U°° and cos o > 1, so the second term in (III.11)

2 3t
vanishes exactly in linearized theory.

Finally, we note the Q U, T; term in (III.1l) exactly cancels the leading

term in (I.C.19). Thus, reformulation of the 1lift expression allows total
elimination of "o U I)", just as in [6]. 1In the final expression for the lift

the only terms proportional to Fl are non-linear in origin, and the lift expression

*For example, in the final net expression for 1lift, no terms proportional to either

ary dr
F or Et_ occur.
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reduces exactly to the classical result in the limit of low amplitudes airfoil
motion. The computational advantages of this approach are clear and are being
exploited in advanced versions of NLWAKE. Similar results for the moment are

also to be used.



10.

11.

12.

13.

l4.

-22-

References

McCune, J.E., "A Proposed Study of the High-Angle-of-Attack Aerodynamics
of a Slender Delta Wing." Internal Report, M.I.T., May 1985.

Jones, R.T., "Properties of Low—-Aspect-Ratio Pointed Wings at Speeds Below
and Above the Speed of Sound." NACA Report 835,

Rott, N., "Vortices." The 3rd Annual W.R. Sears Distinguished Lecture,

Cornell University, April 30, 1987.

Mook, D.T., et. al. "On the Numerical Simulation of the Unsteady Wake Behind
an Airfoil." ATIAA-87-0190, Engineering Science and Mechanics Department,
Virginia Polytechnic Institute and State University.

Wagner, H., "Dynamischer Auftrieb von Tragfligeln." Z.A.M.M. 5, 1925,

Karman, Th. von, and Sears, W.R., "Airfoil Theory for Non-Uniform Motion."
J. Aeron. Sci., 5, 1938.

Theodorsen, Th., "General Theory of Aerodynamic Instability and the Mechanism
of Flutter." NACA Report 496.

Scott, M., "Non-linear Airfoil Wake Interaction in Large Amplitude Unsteady
Flow." M.I.T., M.S. Thesis, June, 1987.

Munk, M., "The Aerodynamic Forces of Airship Hulls." NACA Report 184.

Ashley, H., and Landahl, M., Aerodynamics of Wings and Bodies, Addison-Wesley,
1965.

Adams, Mac, "Leading-Edge Separation from Delta Wings at Supersonic Speeds."
J. Aeron. Sci., 20, Reader's Forum, June, 1953.

Edwards, R.H., "Leading-Edge Separation from Delta Wings." J. Aeron. Sci.,
21, Reader's Forum, Nov., 1953.

v

Cheng, H.K., "Remarks on Non-linear Lift and Vortex Separation." J. Aeron. Sci.

21, Reader's Forum, Dec., 1953.

Brown, C.E., and Michael, W.H., Jr., "Effect of Leading-Edge Separation on the
Lift of a Delta Wing," J. Aeron. Sci., 21, 1953.



-23-

|
M SCOTT — WAKE DISALAY R
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Figure I.1 Wake behind an oscillating airfoil.



~2f4=

rwa ke

<>

y-h(t)
I‘a irfoil

A
\J

q § = Velocity Vector
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a) Penetration Of Delta Wing Through Fixed
Reference Cross- Plane

b) Streamlines Of The Cross-Flow Without
Enforcing Kutta Condition

Figure I .4 a) Time analogy. b) Cross-plane flow configuration, singular at
wing edges when no "wake" is present.
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Figure I.5 Wake configuration leading to satisfaction of Kutta condition at wing
edges in each cross-plane.
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