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ABSTRACT

A coupled finite element/boundary element capability is described for

calculating the sound pressure field scattered by an arbitrary submerged 3-D

elastic structure. Structural and fluid impedances are calculated with no

approximation other than discretization. The surface fluid pressures and

normal velocities are first calculated by coupling a NASTRAN finite element

model of the structure with a discretized form of the Helmholtz surface

integral equation for the exterior fluid. Far-field pressures are then

evaluated from the surface solution using the Helmholtz exterior integral

equation. The overall approach is illustrated and validated using a known

analytic solution for scattering from submerged spherical shells.

INTRODUCTION

Two fundamental problems of interest in structural acoustics are the

calculation of the far-fleld acoustic pressure field radiated by a general

submerged three-dimensional elastic structure subjected to internal time-

harmonic loads and the calculation of the far-field acoustic pressure

scattered by an elastic structure subjected to an incident time-harmonic wave

train. These problems are usually solved by combining a finite element model

of the structure with a fluid loading computed using either finite element

[I-3] or boundary integral equation [4-11] techniques.

Although both approaches are computationally expensive for large

structural models, the fluid finite element approach is burdened with the

additional complications caused by the approximate radiation boundary

condition at the outer fluid boundary, the requirements on mesh size and

extent, and the difficulty of generating the fluid mesh [1,3].
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In contrast, the boundaryintegral equation (BIE) approachfor generating
the fluid loading is mathematically exact (except for surface dlscretizatlon
error) and requires little or no additional modelingeffort to convert an
existing modelof a dry structure for usein submergedanalyses. Thesaving
in engineering time, however,is partially offset by the somewhatgreater
computingcosts associated with the BIE approach.

Several general BIEacoustic radiation capabilities havebeendeveloped
previously [4, 7, II]. One,called NASHUA[II], couplesa NASTRANfinite
elementmodelof a dry structure with a fluid loading calculated by a
discretlzed form of the Helmholtzsurface integral equation. NASHUAis the
only capability developedfor a widely-used, public domain,general purpose
structural analysis code. Herewepresent an extension to NASHUAto handle
also the problemof acoustic scattering from general three-dlmensional elastic
structures.

The primary purposesof this paper are to summarizethe theoretical
basis for NASHUAand to demonstrateits validity for scattering by showing
results of calculations for the elementaryproblemof plane-wavescattering
from a thin spherical shell.

THEORETICALAPPROACH

Consider an arbitrary submerged3-Delastic structure subjected to either
internal tlme-harmonicloads or an external time-harmonicincident pressure
wavetrain. Thematrix equation of motionfor the structural degreesof
freedom(DOF)can be written as

Zv = F - GAp (I)

whereZ = structural impedancematrix (dimensions x s),
v = complexamplitude of the velocity vector for all structural DOF

(wet or dry) in terms of the coordinate systemsselected by the
user (s x r),

F = complexamplitude of the vector of mechanicalforces applied to the
structure (s x r),

G = rectangular transformation matrix of direction cosines to transform
a vector of outwardnormal forces at the wet points to a vector of
forces at all points in the coordinate systemsselected by the user
(s x f),

A = diagonal area matrix for the wet surface (f x f), and

p = complex amplitude of total pressures (incident + scattered) applied

at the wet grid points (f x r).

In this equation, the time dependence exp(i_t) has been suppressed. In the

above dimensions, s denotes the total number of structural DOF (wet or dry),

f denotes the number of fluid DOF (the number of wet points), and r denotes

the number of load cases. In general, surface areas in NASHUA are obtained
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from the NASTRANcalculation of the load vector resulting from an outwardly
directed static unit pressure load on the structure's wet surface.

In Equation(I), the structural impedancematrix Z (the ratio of force
to velocity) is given by

Z = (-_2M+ i_B + K)/i_ (2)

whereM, B, andK are the structural mass,viscous damping,and stiffness
matrices, respectively, and_ is the circular frequencyof excitation. For
structures with material dampingor a nonzeroloss factor, K is complex.

Thetotal fluid pressure p satisfies the reducedwaveequation

V2p+ k2p = 0 (3)

wherek = _/c is the acoustic wavenumber,and c is the speedof soundin the
fluid. Equivalently, p is the solution of the Helmholtz integral equation
[7,12]

p(x')/2 - Pl, x' on SfS p(_)(_D(r)/_n)dS - fS q(_)D(r)dS = --
P(_') - PI' _' in E

(4)

where S and E denote surface and exterior fluid points, respectively, Pl is

the incident free-field pressure, r is the distance from _ to _' (Figure I),

FLUID

Pi

Figure 1 - Notation for Helmholtz Integral Equations
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D is the Green's function

and

D(r) = e-ikr/4_r (5)

q = _p/_n = -i_pvn (6)

where p is the density of the fluid, and vn is the outward normal component of

velocity on S. As shown in Figure I, x in Equation (4) is the position vector

for a typical point Pj on the surface S, x' is the position vector for the
point Pi which may be either on the surface or in the exterior field E, the

vector r = _' - _, and n is the unit outward normal at Pj. We denote the
lengths--of the vectors _, _', and _ by x, x', and r, respectively. The normal

derivative of the Green's function D appearing in Equation (4) can he

evaluated as

BD(r)/Sn = (e-ikr/4_r) (ik + I/r) cos 8 (7)

where 8 is defined as the angle between the normal _ and the vector _, as

shown in Figure I.

The substitution of Equations (6) and (7) into the surface equation (4)

yields

p(_')/2 - f p(_) (e-ikr/4xr) (ik + I/r) cos 8 dS
S

= i_p fS Vn(_) (e-lkr/4_r)dS + Pl
(8)

where x' is on S. This equation is an integral equation relating the total

pressure p and normal velocity v n on S. If the integrals in Equation (8) are

discretlzed for numerical computation (the details of which were presented

previously [II]), we obtain the matrix equation

Ep = Cv n + Pl (9)

on S, where p is the vector of complex amplitudes of the total pressure on the

structure's surface, E and C are fully-populated, complex, non-symmetric,

frequency-dependent matrices, and Pl is the complex amplitude of the incident

pressure vector (if any). The number of unknowns in this system is f, the

number of wet points on the fluld-structure interface.
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Thenormalvelocities vn in Equation (9) are related to the total
velocities v by the sametransformation matrix G:

vn = GTv (I0)

whereT denotesthe matrix transpose. If velocities v and vn are eliminated
from Equations (1), (9), and (I0), the resulting equation for the coupled
fluld-structure systemis

where

and

Hp= Q+ Pl (II)

H = E + CGT Z-I GA (12)

Q = CG T Z -I F (13)

Since H and Q depend on geometry, material properties, and frequency, Equation

(II) may be solved to yield the total surface pressures p. The vector v of

velocities at all structural DOF may be recovered by solving Equation (I)

for v:

v = Z-IF - Z-IGAp (14)

Surface normal velocities v n may then be recovered by substituting this

solution for v into Equation (I0). The triangular factors of Z are saved

when first generated in Equation (12) and reused in Equations (13) and (14).

The free-field incident pressure for planar or spherical waves is

calculated in the following way. Consider an arbitrary surface S subjected

to a time-harmonlc incident wave train of speed c and circular frequency m as

shown in Figure 2. The complex amplitude Pl of the incident pressure at a

typical point i is given by

= I Po exp(iei),
Pl

IPO exp(iOi) s/(s - 6i) ,

plane wave

spherical wave

(15)

where Po is the pressure amplitude at the coordinate origin (where the phase

angle is arbitrarily set to zero), s is the length of the vector _ (the vector

from the origin to the source), _i is the distance (positive or negative)
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from the origin to the wavefront throughpoint i, and 8i is the phaseangle
for point i. Theselast two quantities can be computedusing

and

O i = k _i

I_i • s/s,
6i= i

plane wave

spherical wave

(16)

(17)

where x_i is the position vector for point i. For plane waves, only the

direction cosines of _ are used. Positive values of 8 i and 6 i for a point i

correspond to that point's being closer to the source than the origin is.

To summarize, the NASHUA solution procedure uses NASTRAN to generate K,

M, B, and F and to generate sufficient geometry information so that E, C, G,

A, and Pl can be computed by a separate program (SURF). Then, given all

matrices on the right-hand sides of Equations (12) and (13), NASTRAN DMAP is

used to compute H and Q. Equation (II) is then solved for the surface

pressures p using a new block solver (OCSOLVE) written especially for this

problem by E.A. Schroeder of the David Taylor Naval Ship R&D Center. Next,

NASTRAN DMAP is used to recover the surface normal velocities vn and the

vector v of velocities at all structural DOF. This completes the surface

solution. In general, this approach combines in a highly automated fashion a

finite element model of the structure with a Helmholtz boundary integral

equation model of the fluid.

/

\ oSii s

\\ \

SOURCE

Figure 2 - Geometry for Calculating Incident Pressure
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TheFar-Field Solution

Given the solution for the total pressures and velocities on the surface,
the exterior Helmholtzintegral equation, Equation (4), can be integrated to
obtain the radiated (or scattered) pressure at any desired location x' in the
field. Wefirst substitute Equations (6) and (7) into Equation (4) t_ obtain
a form suitable for numerical integration:

p(_') = fs[i_OVn(_) + (ik + I/r)p(_) cos _] (e-ikr/4_r)dS (18)

where all symbols have the same definitions as were used previously, and x'

is in the exterior field. Thus, given the total pressure p and normal

velocity vn on the surface S, the radiated or scattered pressure at _' can be

determined by numerical quadrature using Equation (18).

In applications, however, the field pressures generally of interest are

in the far-fleld, so we use instead an asymptotic (far-field) form [II]

of Equation (18):

_ [pCVn(_) + p(x) cos 8]e ikx cos e dSp(x') = (ike-ikx'/4wx ') IS
(19)

where e is the angle between the vectors x and x' (Figure I), and, for far-

field points, cos 8 is computed using

cos _ = £-_'/x' (20)

We note that, since Equation (19) is a far-field formula, the pressure varies

inversely with distance x' everywhere so that any range x' may be used in its

evaluation (e.g., 36 inches).

OVERVIEW OF NASHUA SOLUTION PROCEDURE

The overall organization and setup of the solution procedure is

summarized in Figure 3. NASTRAN appears four times in the procedure; to

distinguish one NASTRAN execution from another, the integers I-4 are appended

to "NASTRAN" in the figure.

A separate NASTRAN model is prepared and run (Step 1 in Figure 3) for

each unique set of symmetry constraints. Since up to three planes of

reflective symmetry are allowed, there would be one, two, four, or eight such

runs. Step 1 generates files containing geometry information and a checkpoint

file for subsequent use in the other steps.
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For each symmetry case and drive frequency, the Step 2 sequence is run

in a single job. The SURF program reads the geometry file generated by

NASTRAN in Step 1 and, using the Helmho!tz surface integral equation,

generates the fluid matrices E and C for the exterior fluid, the area matrix

A, the structure-fluld transformation matrix G, the free-field incident

pressure vector Pl, and a geometry file to be used later by FAROUT (Step 3)

for the field calculation. SURF is followed by a NASTRAN job which takes the

matrices K, M, B, and F from Step i and the matrices E, C, A, and G from SURF

and calculates H and Q according to Equations (12) and (13). Equation (II)

is then solved for the surface pressure vector p by program OCSOLVE written

by E.A. Schroeder of DTNSRDC. OCSOLVE is a general block solver for full,

complex, nonsymmetric systems of linear, algebraic equations. The program

was designed to be particularly effective on such systems and executes about

20 times faster than NASTRAN's equation solver, which was not designed for

efficient solution of such systems of equations. NASTRAN is then re-entered

in Step 2 with p so that the velocities v and v n can be recovered using DMAP

operations according to Equations (14) and (I0), respectively.

SYMI

(Symmetry Case I)

I. NASTRAN-IB, M, Geometry)

fl (Frequency #I) fn

2. SURF

NASTRAN-2

OCSOLVE

NASTRAN-3

MERGE
f2 "°°I

SYM2 SYM8

I

4. NASTRAN-4 (structural plots) IUTIFORM (UTI formatter) (

i

i

5. UTIUNFORM J b. CANDI

(UTI unformatter) _ (animation)

3. FAROUT

(far-field

I

7. IPLOT

(X-Y plots)

8. FAFPLOT

(polar plots)

NOTE: Each solid block is a separate job submission.

Figure 3 - Summary of NASHUA Solution Procedure
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The surface pressures, normal velocities, and full g-set displacements are

then reformatted and merged into a single file (for each symmetry case) using

program MERGE.

Steps 1 and 2 are repeated for each symmetry case. After all symmetry

cases have been completed and merged, program FAROUT (Step 3) is run to

combine the symmetry cases and to integrate over the surface. FAROUT uses as

input the geometry file generated by SURF (Step 2) and the surface solutions

from the one, two, four, or eight symmetry cases generated by MERGE. The

far-fleld pressure solution is obtained by integrating the surface pressures

and velocities using the far-field form of the exterior Helmholtz integral

equation, Equation (19). Output from FAROUT consists of both tables and

files suitable for various types of plotting.

The remaining steps in the NASHUA procedure are for graphical display.

Deformed structural plots of the frequency response may be obtained by

restarting NASTRAN (Step 4) with the checkpoint file from Step 1 and a results

file from FAROUT. In addition, animated plots can be generated on the Evans

& Sutherland PS-330 graphics terminal using the CANDI program (Step 6) written

for the DEC/VAX computer by R.R. Lipman of DTNSRDC [13]. If the rest of

NASHUA is run on a computer other than the VAX, the NASTRAN UTI file which is

passed to CANDI must first be formatted (Step 4) for transfer to the VAX

computer and then unformatted (Step 5) for reading by CANDI.

X-Y plots of various quantities (both surface and far-fleld) versus

frequency may be obtained using the general purpose interactive plotting

program IPLOT [14] (Step 7). Polar plots of the far-field sound pressure

levels in each of the three principal coordinate planes can also be generated

using the interactive graphics program FAFPLOT [15] (Step 8) written by R.R.

Lipman of DTNSRDC.

FREQUENCY LIMITATIONS

It is known that the fluid matrices E and C in the surface Helmholtz

integral equation formulation are singular at the frequencies of the

resonances of the corresponding interior acoustic cavity with Dirichlet (zero

pressure) boundary conditions [5]. Although the NASHUA formulation described

in the previous section was designed to avoid having to invert either E or C

in Equations (12) and (13), the coefficient matrix H is also poorly conditioned

at these frequencies (referred to as the "critical" or "forbidden" frequencies

of the problem) [II]. Therefore, to be safe, the user should generally avoid

excitation frequencies which exceed the lowest critical frequency for the

geometry in question.

For spheres, for example, the lowest critical frequency occurs at ka = 7,

where k is the acoustic wave number, and a is the radius. For long cylinders

with flat ends, the lowest critical frequency occurs at ka = 2.4, where a is

the radius. For short cylinders with flat ends, the lowest critical frequency

is slightly higher than for long cylinders.
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RESTRICTIONSONMODEL

Although the NASHUAsolution procedurewasdesignedto be general enoughso
that arbitrary three-dimenslonal structures could be analyzed, a few restrictions
remain. In our view, however,noneis a burden, since a NASTRANdeck for a dry
structure modeledwith low-order finite elementscan usually be adaptedfor
use with NASHUAin a few hours. Thefollowing general restrictions apply:

I. All translational degreesof freedom(DOF)for wet points mustbe in
NASTRAN's"analysis set" (a-set), since all symmetrycasesmust havethe same
wet DOF,and the fluid matrices E and Cinvolve all wet points. This
restriction also affects constraints. Thus, constraints on translational DOF
of wet points maynot be imposedwith single point constraint (SPC)cards,
but must instead be imposedusing large springs connectedbetweenthe DOFto
be constrained and ground. Generally, this restriction affects only those
DOFwhich are constrained due to symmetryconditions.

2. Thewet face of each finite elementin contact with the exterior
fluid must be defined by either three or four grid points, since the numerical
dlscretlzatlon of the Helmholtzsurface integral equation assumesthe use of
low order elements. In particular, NASTRANelementswith mldside nodes
(e.g., TRIM6,IS2DS,or IHEX2)maynot be in contact with the exterior fluid.

3. Symmetryplanesmust be coordinate planes of the basic Cartesian
coordinate system.

4. Noscalar points or extra points are allowed, since programSURF
assumesthat eachpoint is a grid point.

5. For cylindrical shells, the axis of the cylinder should coincide
with one of the three basic Cartesian axes; for spherical shells, the center
of the sphereshould coincide with the basic origin. Theserestrictions
facilitate the treatment of symmetryplanesand the calculation of curvatures
in programSURF.

6. At least one degreeof freedomin the modelshould be constrained
with an SPC,MPC,or OMITcard so that the NASTRANdata block PLis generated.

7. Thin structures with fluid onboth sides should be avoided, since
the formulations for the fluid matrices are singular if two wet points are
coincident. A precise restriction is not known.

TIMEESTIMATION

OnCDCcomputers,mostof the computertime required to execute the
entire NASHUAprocedureis associatedwith the forward/backwardsolve (FBS)
operation in Step 2, Equation (12), in which the matrix Z-IGAis computed
given the triangular factors of Z andthe matrix GA. Z is a complex,
symmetric, bandedmatrix of dimensions x s, wheres is the numberof
structural DOFin the problem, andGAis a real, sparsely-populated,
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rectangular matrix of dimension s x f, where f is the number of fluid DOF

(the number of wet points on the surface). This FBS time is proportional to

the product of s, f, and Wavg (the average wavefront for the stiffness matrix

K), and, for large jobs, accounts for a substantial part (perhaps two-thirds)

of the total time to make a single pass through the NASHUA Step 2 procedure.

For example, consider a problem with the following characteristics:

s = 2973 (number of structural DOF)

f = 496 (number of fluid DOF)

Wavg = 129 (average wavefront of stiffness matrix)

On the CDC Cyber 176 computer at DTNSRDC, the computer time ("wall-clock"

time) required to solve this problem in a dedicated computer environment for

a single symmetry case and one drive frequency was about 30 minutes, of which

19 minutes were spent in the FBS operation.

PROGRAM VALIDATION

For radiation problems, NASHUA has been validated previously [11] for

submerged spherical shells driven internally by both uniform and non-uniform

(sector) pressure loads. Here we demonstrate NASHUA's ability to solve

scattering problems by solving the problem of the submerged thin spherical

shell subjected to an incident time-harmonic planar wave train, as shown in

Figure 4. The solution of this problem exhibits rotational symmetry about

the spherical axis parallel to the direction of wave propagation. The

benchmark solution to which the NASHUA results will be compared is a series

solution published in the Junger and Felt book [16].

STEEL
SH

WATER

..,II..--

PLANAR
WAVETRAIN

Figure 4 - Plane Wave Scattering from an Elastic Spherical Shell
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The problem to be solved has the following characteristics [17]:

a = 5 m (shell radius)

h = 0.15 m (shell thickness)

E = 2.07 x I0 II Pa (Young's modulus)

= 0.3 (Poisson's ratio)

Ps = 7669 kg/m 3 (shell density)
q = 0 (shell loss factor)

p = i000 kg/m 3 (fluid density)

c = 1524 m/s (fluid speed of sound)

One octant of the shell was modeled with NASTRAN's CTRIA2 membrane/bending

elements as shown in Figure 5. With 20 elements along each edge of the

domain, the model has 231 wet points and 1263 structural DOF. Since the

incident loading does not exhibit three planes of symmetry, the NASHUA

solution of this problem requires decomposing the solution into both symmetric

and antisymmetric parts of the problem, thus providing a good check on

NASHUA's ability to combine symmetry cases for scattering problems.

The NASHUA model was run for 15 different drive frequencies in the

nondimensional frequency range ka = 0.5 to ka = 5.0, where a is the shell

radius. Two of the excitation frequencies are near a critical frequency.

(The first 13 critical frequencies are located at ka = _, 4.49, 5.76, 2_,

6.99, 7.73, 8.18, 9.10, 9.36, 3_, 10.4, 10.5, and 10.9 [18].) Figure 6 shows

a comparison between the NASHUA calculations and the series solution for the

far-field scattered pressure in the forward direction (9 = 180 degrees).

Figure 5 - Finite Element Model of One Octant of Spherical Shell
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Theordinate of this figure is the normalizedpressure IPrr/Poal, wherePr is
the far-fleld scattered pressure at distance r from the origin, and Po is the
magnitudeof the incident pressure. Clearly, the NASHUAsolution agreesvery
well with the exact (i.e., convergedseries) solution. Wenote that the
NASHUAcalculation at ka = 4.5 is adversely affected by the forbidden
frequencyat ka = 4.49. (Often, the effect of a forbidden frequencyis very
severe [II].) For several of the excitation frequencies, wealso tabulate on
the next pagethe far-field scattered pressure patterns. Again the agreement
betweenthe NASHUAcalculations and the series solution is excellent, evenat
ka = 1.6, which is near a resonant peak. At the sharper resonant peaks, the
results wouldbe muchmoresensitive to small changesin frequency.

DISCUSSION

A very general capability has beendescribed for predicting the acoustic
soundpressurefield scattered by arbitrary three-dimensional elastic
structures subjected to time-harmonicincident loads. Sufficient automation
is provided so that, for manystructures of practical interest, an existing
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Figure 6 - Normalized Far-Field Pressure Iprr/poal Scattered in the Forward

Direction (8 = 180 degrees) by a Spherical Shell; Solid Curve is Converged

Series Solution [16], and Square Boxes are NASHUA Solution.
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Table - Comparisonof NASHUASolution with ConvergedSeries
Solution for Scattering from Spherical Shell

0.5

- - -I

1.0

1.6

4.0

Angle 0

(degrees)

O*

3O

60

9O

120

150

180

0*

30

60

9O

120

150

180

0*

3O

60

90

120

150

180

O*

30

60

90

120

150

180

Normalized Far-Field Pressure_

NASHUA

0.0083

0.0144

0.0299

0.0481

0.0626

0.0708

0.0734

0.0892

0.0382

0.0886

0.1926

0.2208

0.1893

0.1662

3.146

1.993

0.325

1.515

0.561

2.058

3.213

0.166

0.105

0.068

0.274

0.562

1.769

3.228

Exact

0.0081

0.0143

0.0299

0.0481

0.0626

0.0708

0.0733

0.0903

0.0389

0.0886

0.1930

0.2210

0.1887

0.1652

3.149

1.995

0.320

1.498

0.540

2.092

3.245

0.160

0.I01

0.069

0.269

0.554

1.757

3.205

% Error

2.5

0.7

0.0

0.0

0.0

0.0

0.I

1.2

1.8

0.0

0.2

0. I

0.3

0.6

0.I

0.I

1.6

I.I

3.9

1.6

1.0

3.8

4.0

1.4

1.9

1.4

0.7

0.7

* 0 = 0 corresponds to the back-scattered direction.

NASTRAN structural model can be adapted for NASHUA acoustic analysis within a

few hours.

One of the major benefits of having NASHUA linked with NASTRAN is the

ability to integrate the acoustic analysis of a structure with other dynamic

analyses. Thus the same finite element model can be used for modal analysis,

frequency response analysis, linear shock analysis, and underwater acoustic
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analysis. In addition, manyof the pre- and postprocessorsdevelopedfor use
with NASTRANbecomeavailable for NASHUAas well.

Theprincipal area in which NASHUAcould be improvedwouldbe to remove
the frequencylimitation causedby the presenceof the critical frequencies
inherent in the Helmholtz integral equation formulation. With the limitation,
cylindrical shells, for example,can be safely analyzed by NASHUAonly for
ka < 2.4, wherea is the radius. Since for someproblems, it wouldbe of
interest to treat higher frequencies, the limitation should be removed. A
conversion to a different formulation (e.g., Burton andMiller [8] or Mathews
[I0]) is being considered.

REFERENCES

I. Everstine, G.C., "A SymmetricPotential Formulation for Fluld-Structure
Interaction," J. Sound and Vibration, vol. 79, no. I, pp. 157-160 (1981).

2. Everstlne, G.C., "Structural-Acoustic Finite Element Analysis, with

Application to Scattering," Proc. 6th Invitational Symposium on the

Unification of Finite Elements_ Finite Differences_ and Calculus of

Variations, ed. by H. Kardestuncer, Univ. of Connecticut, pp. 101-122

(1982).

3. Kalinowski, A.J., and C.W. Nebelung, "Media-Structure Interaction

Method," The Shock and Vibration Bulletin, vol. 51, part I, pp. 173-193

(1981).

4. Chen, L.H., and D.G. Schweikert, "Sound Radiation from an Arbitrary

Body," J. Acoust. Soc. Amer., vol. 35, no. I0, pp. 1626-1632 (1963).

5. Schenck, H.A., "Improved Integral Formulation for Acoustic Radiation

Problems," J. Acoust. Soc. Amer., vol. 44, no. I, pp. 41-58 (1968).

6. Henderson, F.M., "A Structure-Fluid Interaction Capability for the NASA

Structural Analysis (NASTRAN) Computer Program," Report 3962, David

Taylor Naval Ship R&D Center, Bethesda, Maryland (1972).

7. Wilton, D.T., "Acoustic Radiation and Scattering From Elastic

Structures," Int. J. Num. Meth. in Engrg., vol. 13, pp. 123-138 (1978).

8e

9.

Burton, A.J., and G.F. Miller, "The Application of Integral Equation

Methods to the Numerical Solution of Some Exterior Boundary-Value

Problems," Proc. Roy. Soc. Lond. A, vol. 323, pp. 201-210 (1971).

Baron, M.L., and J.M. McCormick, "Sound Radiation from Submerged

Cylindrical Shells of Finite Length," ASME Trans. Ser. B, vol. 87,

pp. 393-405 (1965).

264



10.

II.

12.

13.

14.

15.

16.

17.

Mathews,I.C., '°ASymmetricBoundaryIntegral-Finite ElementApproach
for 3-D Fluid Structure Interaction," in Advances in Fluid-Structure

Interaction - 1984, PVP-Vol. 78 and AMD-Vol. 64, ed. by G.C. Everstine

and M.K. Au-Yang, American Society of Mechanical Engineers, New York,

pp. 39-48 (1984).

Everstine, G.C., F.M. Henderson, E.A. Schroeder, and R.R. Lipman,

"A General Low Frequency Acoustic Radiation Capability for NASTRAN,"

Fourteenth NASTRAN Users' Colloquium, NASA CP-2419, National Aeronautics

and Space Administration, Washington, DC, pp. 293-310 (1986).

Lamb, H., Hydrodynamics, sixth edition, Dover Publications, New York

(1945).

Lipman, R.R., "Computer Animation of Modal and Transient Vibrations,"

NASTRAN Users' Colloquium, National Aeronautics and Space Administration,

Washington, DC (1987). (this volume)

Everstine, G.C., "A Portable Interactive Plotter for Digital X-Y Data,"

Report CMLD-86-45, David Taylor Naval Ship R&D Center, Bethesda, Maryland

(1986).

Lipman, R.R., "Calculating Far-Field Radiated Sound Pressure Levels from

NASTRAN Output," Fourteenth NASTRAN Users' Colloquium, NASA CP-2419,

National Aeronautics and Space Administration, Washington, DC, pp.

282-292 (1986).

Junger, M.C., and D. Feit, Sound_ Structures_ and Their Interaction,

second edition, The MIT Press, Cambridge, Massachusetts (1986).

Huang, H., and Y.F. Wang, "Asymptotic Fluid-Structure Interaction
Theories for Acoustic Radiation Prediction," J. Acoust. Soc. Amer.,

vol. 77, no. 4, pp. 1389-1394 (1985).

18. Huang, H., "Helmholtz Integral Equations for Fluid-Structure

Interaction," Advances in Fluid-Structure Interaction - 1984, AMD-Vol.

64, ed. by G.C. Everstine and M.K. Au-Yang, American Society of

Mechanical Engineers, New York (1984).

265


