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Abstract - In this paper, a general procedure for upset
detectlon In complex sysctems, called the dala block caplure
and andlysis upset moniloring process, ls described and
analyzed. The process consists of repeatedly recording a
fixed amount of data from a set of predetermined observa-
tlon lines of the system being monlitored (l.e. capturing a
block of data), and then analyzing the captured block In
an attempt to determine whether the system ls functioning
correctly. The algorithm which analyzes the data biocks
can be characterized In terms of the amount of time it
requires to examine a given length data block to ascertaln
the existence of features/condltlons that have been
predetermined to characterize the upset-free behavior of
the system. The performance of linear, quadratic, and log-
arithmic data analysis algorithms is rigorously character-
ized in terms of three performance measures: (1) the pro-
babllity of correctly detecting an upset, (iI) the expected
number of false alarms, and (i) the expected latency In
detecting upsets.

1. Introduction

In this paper we consider an approach to upset detection in
complex systems. The approach is based on a data block capture
and analysis monitoring process which can be modeled in very
general terms, thereby rendering our results broadly applicable.
The process consists of recording signais on a set of observation
lines of the system to form (capture) a data block and then
analyzing this block of data. On the basis of this aralysis, a deter-
mination is to be made as to whether the system is functioning
correctly or has been upset by some fault condition.

One possible implementation of the data block capture and
analysis process could be a concurrent monitoring device. Figure 1
is a schematic which illustrates this perspective of concurrent
monitoring. -

A key aspect of the data block capture and analysis moni-
taring process is that its implementation, whatever form it may
take, should be relatively simple when compared with the complex
system being monitored. In other words, the process is not meant
to duplicate the performance of the system. Accordingly, the
analysis that is performed on a captured block of data will not be
an explicit comparison of results with the system being monitored.
Rather, the analysis should be thought of as an examination of
the captured data block in which an algorithm is executed in an
attempt to ascertain the existence of features or conditions that
have been predetermined to characterize the upset-free behavior of
the system.

In order to characterize the performance of the data block
capture and analysis monitoring process, we must consider the
four possible outcomes which couid result from execution of the
analysis algorithm on a captured block of data:

Assuming the system was upset during the capture of a data
block, there are two possible outcomes:
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Figure 1 - A Concurrent Monitor Employing
the Data Block Capture and Analysis Process

the data analysis algorithm could perform correct detection by
indicating that the system was in the upset state

or
the data analysis algorithm could perform incorrect rejection by
indicating that the system was in the no-upset state.

Assuming the system was not upset during the capture of the
data block, there are two possible outcomes:

the data analysis aigorithm could generate a faise slarm by indi-
cating that the system was in the upset state

: or
the data analysis algorithm could perform correct rejection by
indicating that the system was in the no-upset state.

We will want to theoretically analyze the upset detection
capabilities of the data block capture and analysis process in
terms of the single moniloring period error probabililics, Lhe pro-
babilities of faise alarm and incorrect rejection resuiting from a
captured block of data. These error probabilities characterize the
capability of the data analysis algorithm on a single block of data.
To analyze the overall performance of the process, we will intro-
duce measures of upset detection capability called the probabilily
of correct detection |1}, {or more succinctly, the detection prodabil-
ity), the expected number of false aisrms per upsel, and the
ezpected deteclion lalency.

Heretofore, evaluations of an upset monitor's performance
could only be achieved by implementing or simulating the monitor
and then experimentally determining its upset detection capabili~
ties [2],13]. Our measures will permit an analytical evaluation of
the performance of the data block capture and analysis process
based on key parameters of the process.

Preliminaries

An upset is a disruption of correct system behavior. Upsets
are caused by faults or underlying lailure mechanisms in the sys
tem. The faults can be permanent or intermitlent/transient in
nature. In general, these auits occur at such a low level in the sys-
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tem that they are, unto themselves, of no use relative to con-
current monitoring. It is the effect of the faults on observable sig-
nal lines of the system with which we must be concerned. In order
for correct detection of an upset to take place, 2 data block would
have to be captured at a time when the signal activity on the
observation lines was showing evidence of the upset. However, we
will assume that the entire captured data block need not indicate
an upset for correct detection to take place. Rather, in general, if
any portion of the captured data block shows evidence of an
upset, we will assume that it is possible for the process implemen-
tation to perform correct detection. Furthermore, the implementa-
tions are not expected to be infallible. Even il the entire captured
data block showed evidence of an upset occurrence, it would still
be possible for an incorrect rejection to take place. Likewise, il the
captured data block showed no evidence of an upset, there would
still be the possibility of a false alarm occurrence.

Given our perspective of upsets and their detection, we can
model the occurrence of upsets in the system as a two-state
continuous-time Markov process, moving between the states upset
and no-upeet. This is illustrated in Figure 2. In this model, both
the time of occurrence and the duration of the upsets are random.
The infinitesimal matrix, A, characterizes a continuous-time Mar-
kov process (4]. For our modei,

-A A
A= [# -u]

where the no-upset state is state 0 and the upset state is state 1.
It is implied by this model that the time the upset condition does
not exist is exponentially distributed with parameter X, and the
time the upset condition is active is exponentially distributed with
parameter u. A continuous-time Markov model such as this has
been used to model both individual fault conditions within digital
systems [5], as well as system-level upsets (6],{7]. An upset will be
said to occur at the time that the system enters the upset state.
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Figure 2 - A Continuous Markov Model

3. The Data Block Capture and Analysls Process

The data block capture and analysis process consists of
repeated applications of a two-phase function:

In the data caplure phase of operation, a sequence (block)
of data signals (cycle-by-cycle relative to the system clock) on the
selected observation lines is stored (captured). We will denote the
length of the captured data block by the parameter n.

In the dats analysis phase of operation, an algorithm,
which examines the most recently captured data block for evi-

- dence of an upset, is executed.

We will refer to the total amount of time spent by the pro-
cess in the data capture phase and Lhe data analysis phase as the
monitoring period.
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Implementation of the data analysis phase of the process
requires execution of a data analysis algorithm which examines the
captured data block for variations of predetermined
features/conditions of signal activity. These features/conditions
could be based on properties of the functions being computed {8];
or they could result from a use of coding theory [9), or an embed-
ding of signatures in the signal/data flow [10]; or they simply
could be experimentally extracted using pattern recognition tech
niques [11],[12]. These techniques encompass both specification
based (8], as well as symptom based |13, diagnosis.

3.1. The Data Analysis Algorithm

Certainly, the upset detection capability of the data block
capture and analysis process depends on the amount of time allot.
ted to the analysis of captured data. More time spent examining
the captured data intuitively ccrresponds to a more thorough
analysis of the block and a higher probability of correctly detect~
ing (the more subtle) evidence of an upset. We can generally
characterize this analysis time in terms of the complexity of the
data analysis 2lgorithm employed by the process impiementation.
Since n is the length of the data block captured, we will consider
data analysis algorithms that require 2 number of execution steps
that are linear, quadratic, and logarithmic functions of n, For each
such data analysis algorithm, the time required for execution will
be assumed to be proportional to the complexity, and we will
denote this anslysis time by the function T(n). The following
table lists the data analysis algorithms which we will consider in
the remainder of the paper.

Data A'naiysis Execution Time Constraints
Algorithm
Linear Ty(n) = an 2a>0
a>0
Quadratic Tg(n) = an®+ba+c | b >0
c>0
Logarithmic Trog(n) = an-logn |2 >0

Table 1

3.2.. Error Probabllities
* We are led by.the above discussion to consider 2 means of

assessing the single monitoring period error probabiiities of the

data biock eapture and analysis process. These error probabilities
describe the exient to which the data analysis algorithm produces
the incorrect outcomes (incorrect rejection or false alarm) during a
single data analysis phase, and are defined to be:

p = Pr{algorithm indicates no~upset | system in upset state}
and
q = Pr{algorithm indicates upset | system in no-upset state}

We will consider four ciasses of p functions, each of which
in some way quantifies the notion that as n increases, the sensi-
tivity of the process implementation to upsets will also increase,
and p will correspondingly decrease. The characteristics of these
classes are summarized in Table 2. )

We will assume that increasing the data which is available
to the analysis algorithm enhances the performance of the algo-
rithm relative to false alarms as well as incorrect detections. Thus,
we will allow q functions to belong to the same four ciasses pro-
posed for p functions.




Class Function Comments
. . K
Inverse Logarithmic I poor sensitivity to features/conditions, large p oflset at high n, low detection pro-
bability
Decaying Exponential o2 moderate sensitivity in short blocks, high sensitlivity in longer blocks, sometimes
requires several indications to correctly detect an upset
. k
Inverse Linear T moderately high sensitivity for all block lengths, does not benefit from extra indi-
cations in longer blocks, hence some upsets in longer blocks not detected
k
Inverse Quadratic -— e .
Quadrati 0 excellent sensitivity in all blocks, most rapid decrease, aimost complete detection
for large n

Table 2

4. The Probabliity of Correct Detection

The primary performance goal of an upset detection pro-
cedure is to detect as many of the upsets which occur in the sys-
tem as possible. The probability of correct detection |1, or simply
the detection probabdilily, is defined to be

Pr{an upset detected | an upset occurs}

The detection probability is & natural measure of upset
detection capability. Clearly, this quantity depends on the time of
occurrence of the upset. To remove such short term inconsisten-
cies, it is natural to consider upset occurrences over a long period
of time. If we define the detection probability over an interval,

D(]ty, ts)), to be
D([ty,t5)) = Pr{upset detected | upset occurs in ty,t5)}

then this can be accomplished by considering intervals with
S>>ty

Specifically, for the data block capture and analysis pro-
cess, we will consider the interval detection probabilily over a
large number of monitoring periods. Thus, we will define the
detection probability, D, in the following way:

D= ll-l-x: D(l0, i(n+T)))

where [0, +T) is & single monitoring period of the process. If we
let X represent the time of occurrence of the upset we can express
the detection probability as

1(0+T)

D= lim [ Pr{upsetdetected | X = x} -
0

j—eoo

f(x | upset occurs in {0, i(n+T))) dx

Caicuiation of the detection probability of the data bicck capture
and analysis process by the above formula requires knowledge of
the conditional distribution of time of upset occurrence. This dis-
tribution can be shown to be approximately uniform, assuming
the mean time between upsets (1/)) is much larger than the mean
upset duration (1/p). Using this resuit along with the fact that
the probability of an upset being detected depends only on its
position within the data block capture and analysis monitoring
period, we get the following:

I(n+T)

D= [ Pr{upset detected | X=x}dx
°

lim ———r
Fres (a+T)

i o+T
lim —— =
Jim o) {Pr(upset detected | X=x}dx
a+T

1
J Pr{upset detected | X = x}dx (4.)
Q

n+T

= D([o, n+T))

Thus, the detection probability of the data block capture snd
analysis process is simpiy equal to the interval detection probabil-
ity over a single monitoring period. Now,

Pr{upset not detected | X == x}

o
= Y Pr{upset missed in 1** i snalysis phases |
{m=i

upset ends during i*® monitoring period}-
Pr{upset ends during i*® monitoring period}
o
= p(1 - e #O+FTR) & T pl Prt<(i+1)(n+T) - x |
=2
t>i(n+T) -~ x} Pr{t=2i(n+T) - x}
if 0 € x < 0. By the memoryless property of the exponential dis-
tribution,
Pr{t < (i+1)(n+T)-x[ ¢t = i(a+T)~x}
= Pr{t < a+T} == 1 - ¢#0+T)
Thus,
Pr{upset not detected | X = x}

= [1 - o~#(a+T-x) o {1- ,-#(M"n) iple-ﬂﬂ(w‘n-ll}
fuml

_ ~pu(n+T-x)
- [ 12 {1-p)e
l_ 1 - pe~#8+D

Thus,
Pr{upset detected | X = x}

(1 - p)e-u(n-b’l‘-x)

=1-p 1=~ l-pe"‘(n*'-n

}, 0<x<n (4.2)

Similarly, it can be shown that

(1 -p )e-p(n+1‘-x)

Pr{upset detected | X = x} = , B<x<n+T

1~ P,—AM‘D
(4.3)

where the data analysis phase of the process takes place during
[n, n+T). It remains only to evaluate Equation 4.1. The final
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result is that the detection probability'; given by

(1 - p) [(un+1)1-pe™0+) — (1-p)e-57 |
- a(n+T)(1-pe @)

§. The Occurrence of False Alarms

While the probability of correct detection is an important
measure of the performance of an upset detection procedure, it
should by no means be the only one. It would be trivial to imple-
ment a procedure which always claims that the system isin an
upset state. Clearly, such a procedure has D == 1 at the expense of
many [aise alarm occurrences. Given that false alarms will occur
[14], it may be worthwhile to trade off correct detection capability
and false alarm production.

The above discussion leads us to consider 3 measure for the
extent to which (alse alarms are produced. Let us define a random
variable, F, as

F == number of lalse alarms between upset occurrences

We will use EIF|, the expected number of [alse alarms per upset,
as our false alarm occurrence measure.

If a faise alarm is regarded as a ''success”, each decision
produced by the process implementation while the system isin the
no-upset state is a Bernoulli trial with parameter q. Thus,

N
F=3) B
ol

where By represents the outcome of the i decision and N is the
number of decisions made between upset occurrences. If we let

Y = sojourn time in no-upset state

where the sojourn time in a state is the length of time spent dur-
ing a single visit to that state, then

|

Using results from probability concerning random sums [4] we get
that

Y
n+T

E(F| = <E[N|
Now, it ¢can be shown that

No+T)

BNl = T~ S

and the expected number of false alarms per upset is therefore
given by
qe-x(n-ﬂ‘)

EFl =

To determine the optimum value of E{F| its behavior as
the block length is allowed to vary must be determined. The fol-
lowing lemma suggests the shape of E[F| for a wide class of q
functions.

Lemma {: Il qis 2 non-increasing function of n, then E{F|
is a strictly decreasing function of n.

Proof: e¥T) jg 3 strictly decreasing function and
1~ ¢Mo+T) jg 3 strictly increasing lunction. Thus, if q does not
~A{a+T)
. . . e . .
increase with n, it must be that ) is a strictly decreas-

ing function.

a

0. Detection Latency

Another important characteristic of an upset detection pro-
cess is the amount of time between an upset's occurrence and its
subsequent detection. We will refer to this time as the detection
latency of Lthe process.

Assuming an upset is correctly detected, we wiil define the
delection latency, L, to be the time between the system entering
the upset state and the time at which the upset is correctly -
detected. For the data block capture and anaiysis process, we will
assume that the data analysis aigorithm indicates whether or not
the system was found to be in the upset state only at the end of 2
monitoring period. This forces the detection latency to be at least
T, the length of the data analysis phase. As with the detection
probability, we will consider upsets occurring in a single monitor-
ing period, due to the periodicity of the data block capture and
analysis process. Hence, we will define the expected detection
{atency of the process in the following way:

E|L]=EIL | upset occurs in [0,n+T) and is detected]

where, as before, [0, n+T) represents a single monitoring period of
the data block capture and anaiysis process. If we let X represent
the time of upset occurrence, the expected latency can be rewrit-
ten as:

n+T
ElL|= f EIL | X=x]| f(x | upset occurs in [0,n+T)
o

and is detected) dx (6.1)

Given that X = x, L is a discrete random variable with sample
space {1, given by

Q= {n+T -x, An+T) -x, 3n+T)-x, ...}
Furthermore, the conditional distribution of L is given by
PrL =in+T)-x[X=x} =

{(1 -ph'2

(1-pk*,

From this the conditional expected value of L can easily be shown
to be

iftn <x<n+T
ifo<x<n

1+T-m fo<x<n
-p
E[L|X=x] =

%i}-x+n+n ifn<x<a+T

(8.2)

Now, f(x | upset occurs in [0,n+T) and is detected) can be caleu-
lated from quantities derived in Section 4. Evaluation of Equation
8.1 yields the following expression for the expected detection
latency:

ElL| =

fonelas D) (oot ](l-pe“‘(“n)- [2(n+T)+(1-P)(Tl"-n) ]e-n‘
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(s 1)(1-pe2+T) - (1-p)e™T]
(6.3)

7. Evaluation of Performauce Measures

In this section we will consider in detail the performance of
the data block capture and analysis process. The behavior of our
performance measures will be examined as the [ength of the cap-




tured data block is allowed to vary.
7.1. Linear Data Analysis Algorithms
Il we fet
(1 - p)(e#Toe#a+T)
an{l - pe#o¥D)

pp=1-p]|1

and

_b {1-p)1- T
pT(1 - pe~so+T)

then the detection probability is given by

P2

npy + Tpy
D= —— 7.1
n+T (7-1)
Since Typy = an, the detection probability for a linear data
analysis algorithm is
Py + 2ap,
= —— 7.2
D a+1 (72)
The asymptotic behavior of a linear data analysis algorithm can
be derived using Equation 7.2 and is stated in the following
lemma.
Lemma 2: For a linear data analysis algorithm, il p—0 as

n—oo, then limD = .
n—co a+1

Proof: If p—0 as n—oo, then p;—1 and py—0. We can

then see from Equation 7.2 that D— 1 .
a+1

a
Typically, 2 > 1. In this situation, limD < 1/2. Hence,
D00

eapturing arbitrarily long blocks does not yield a high detection
probability. The p functions being considered are all equal to, or
arbitrarily close to, 1 for some small value of n. With p =1,
D = 0, so arbitrarily small block lengths yield a low detection pro-
bability, 2s well. We would, therefore, like to examine the biock
length spectrum between n = 0 and n = oo to determine whether
a global maximum exists or whether the detection probability is

bounded by its limiting value, y i T In order to accomplish this,

specific choices of p and q functions must be considered.
A reiatively conservative linear data analysis algorithm
might have singie monitoring period error probability functions
'

given by p = % and q = —En—- Figure 3 shows plots of the detec-

tion probability, expected number of false alarms per upset, and
the expected detection latency of such an algorithm for a = 2,
k=10, and k' =2%x10%° A value of X\ =101 is used
throughout this section in calculating the expected number of false
alarms per upset. The maximum detection probability, with
u# = 0.005, occurs at n =32 and has a valye of 0.775. Thus,
almost 80% of all upsets are detected by such a scheme. Further-
more, an interesting tradeofl can be achieved by noting that the
expected number of false alarms per upset decreases very rapidly
with n while the detection probability decreases slowly and the
expected detection latency increases slowly. Because of this, small
sacrifices in detection probability and expected detection latency
yield a large payofl in terms of the expected number of false
alarms per upset. For example, at n = 32, E|L| = 152.65 and
E[F| = 6.510. When n==92, D =0.707, E|L]=333.70, and
‘E|F| == 0.788. Thus, the number of false alarms which occur is
decreased by a factor greater than 8 while the expected detection
latency increases by a lactor of about 2 and the detection proba-
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bility decreases by less than 10%.

" It is important tc determine il a given algorithm in a par-
ticular fauit environment can achieve a detection probability
greater than the limiting value given by Lemma 2. The following
theorem, stated without proof, gives necessary and sullicient con-
ditions on the existence of a maximum as shown in Figure 3, for
arbitrary values of a2 and k.

Theorem 1t For a linear data analysis algorithm, with

k 1 . 1
= — il and only if -
P D > g fandonlyin < g

A less conservative linear data analysis algorithm shouid be
able to detect more upsets by allowing more [aise a.lj:.rms to oceur.

Such an algorithm might have p = L and q = . Examina-

ns Inn
tion of such an algorithm for 2 = 2, k = 100, and ¥’ = §x 1077
shows that the maximum detection probability has increased to 2
value of 0.874 at n = 26, while the expected number of false
alarms per upset has increased to 19.675 at the same block length.
Thus, by using a2 more aggressive algorithm (which as a side-efect
allows an increased number of false zlarms to occur) it has been
possible to detect almost 90% of all upsets in the system. Such 2
tradeoffl would be beneficial in many cases.

For any linear data analysis algorithm with 2 p function
approaching U faster than 1/n the global maximum exists indepen-
dently of the choice of g, as is shown by the following theorem,
also stated without proof.

Theorem 2: For a linear data analysis algorithm, with

p= . where lim —— = 0, Tuax D> for all u.
-3

f(n)’ n—oo {(n) a+1’
7.2. Iligher Order Data Analysis Algorithms

It may be possible to decrease the probabilities of incorrect
rejection and faise alarm in a single monitoring period by spending
more time analyzing each data block. If the time required to
analyze a block grows too quickly, however, iarge portions of sys-
tem activity become invisible to the process, leading to poor
overall performance. For any data analysis algorithm which has
running time of order greater than n, the following limit result
holds.

Lemma 8: For any data analysis algorithm with n = o(T),

limD = 0.
D=e00
. npy + Tpo
Proof: From Equation 7.1, D = —————. Note that
n+T
np
po—0 as n—oo, r.e_ga.rdiess of p. Hence, D - +1T' Sinece p; < 1
and n = oT), we have that D—0.
a

With higher order data analysis algorithms, since D is arbi-

trarily close to O for small enough n and lim D = 0, clearly a gio-
N—co

bal maximum between 0 and oo exists, independent of p and u.
We will mainly be interested, then, in the value and position of
this maximum, along with the behavior of the expected detection
latency and the expected number of faise alarms per upset.

Use of a quadratic data analysis algorithm should produce
small probabilities of incorrect rejection and faise alarm over a sin-
gle mckmitoring period. Exar'nination of such an algorithm with

p=—, and values

q = —, with parameter
n?

a=02b=c=0,k =100, and k' = §x 1075, seems to show
that quadratic data analysis algorithms are feasible oniy if used on
very short data blocks. At n = 17, the maximum detection proba-
bility is achieved with a value of 0.773. E[L| = 132.70 and
E{F] = 23.130 at the same block length. For n > 17, Lhere is a
rapid decrease in the detection probability and a rapid increase in
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the expected detection latency. For example, when n == 100,
D = 0.141 and E[L| = 2237.82. The increase in performance over

a single monitoring period is overwhelmed by the decrease in 1
overall performance caused by the rapid growth rate of the non- )
visible fraction of system operation. 2.

It may be possible to achieve improved single monitoring
period performance with logarithmic data analysis algorithms,
which do not have a growth rate as rapid as that of quadratic
algorithms. Such an algorithm with p = —kz-, q= k'T', and 3.
a=23 k=002 and k' = 2x107% is not burdened by the
rapid detection probability decrease and expected detection
latency increase characteristic of a quadratic data analysis algo-
rithm. The maximum detection probability occurs at n =21, 5.
where D = 0.833, E[L] = 114.21, and E|F] = 12.444. When
n = 100, D = 0.541 and E[L| = 573.77 showing the more gradual
degradation of performance inherent in the logarithmic algorithm. 8.
Hence, such algorithms seem to be potentiaily useful over a wide
range of block lengths.

For each data analysis algorithm studied, the expected
detection latency appears to increase at the same rate as the
amount of time spent analyzing a captured data biock, after some
initial deviation. This is indeed true, as shown by the following
theorem, stated without proof. . ) 8.

Theorem 3: For any data analysis algorithm with
anaiysis time T, such that n = O(T), and p—0, E[L| ~ ¢T, for
some constant <.

8. Conclusions

A new procedure for upset detection in complex systems,
called the data block capture and analysis process, has been
presented. The upset detection capability of this process has been
characterized in terms of process parameters by deriving the pro-
bability of correct detection, expected number of false alarms per 11.
upset, and expectad latency of the process. It has been shown that
the detection probability can be maximized by a proper choice of
parameters. In addition, it has been shown that improvement in 12.
any one of our detection measures can be achieved at the expense
of one or both of the other measures. In particular, the detection
probability can be increased by allowing a greater number of false
ajarms to occur. Examples have been shown where the process can
detect almost 90% of all upsets while maintaining reasonable false 14.
alarm production and detection latency. These analytical results
suggest that the data block capture and analysis monitoring pro-
cess is 8 very eflective means of providing upset detection in com-
plex aystems.

10.

13.
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