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- Abstrnct - I n  t l i l s  p a p e r ,  a g e n e r a l  procedure for upset 
d e t e c t l o n  In c o m p l e x  systems, c a l l e d  the datd block capture 
and analyn.8 upact monitoring proccs8, Is d e s c r l b e d  a n d  
ana lyzed .  The procas c o n s l s t s  of r e p e n t e d l y  recordlng a 
f ixed amount  of data f r o m  a set of p r e d e t e r m l n e d  observa- 
t l o n  l lnes  of t l i e  s y s t e m  b e i n g  m o n l t o r e d  (Le. c n p t u r l n g  a 
b lock  of  d a t n ) ,  n n d  t h e n  n n a l y z l n g  the c a p t u r e d  block In 
a n  attempt to d e t e r m i n e  w h e t h e r  the s y s t e m  Is f u n c t l o n l n g  
cor rec t ly .  The n l g o r l t h m  w h l c h  a n n l y z e s  t l i e  data b l o c k s  
c a n  be c h a r n c t e r l z e d  In terms of the a m o u n t  o f  t h e  I t  
r e q u i r e s  to e x n m i n e  a g i v e n  l e n g t h  data b l o c k  to l u c e r t a l n  
t he  e x h t e n c e  o f  f e a t u r e s / c o n d l t l o n a  that l i n v e  been 
P r e d e t e r m i n e d  to  c l i a r n c t e r l z e  the upse t - f ree  b e l i a v i o r  of 
the sys tem.  The p e r f o r m a n c e  of h e a r ,  quadratle, and log- 
a r i t h m i c  data a n n l y s l s  a l g o r l t l i m s  1s r l g o r o u s l y  c h n r a c t e r -  
lzed In terms of three p e r f o r m a n c e  mensurut (I) the pro- 
b a b l l l t y  of c o r r e c t l y  d e t e c t i n g  an upset, (11) the expected 
n u m b e r  of fnise a l n r m s ,  and (111) the expected l a t e n c y  i n  
d e t e c t i n g  upsets. 

1. I n t r o d u c t i o n  
In this paper we consider a n  approach to upset detection in 

complex systems. T h e  approach is based on a d a t a  block capture 
and analysis monitoring process which can be modeled in very 
general terms, thereby rendering o u r  results broadly applicable. 
T h e  process consists of recording signals on a se t  of observation 
lines of the system to form (capture) a d a t a  block a n d  then 
analyzing this block of data, On the  basis of this  acalysis, a deter- 
mination is to be made a to whether t h e  system is lunctioning 
correctly or has been upset by some faul t  condition. 

O n e  possible implementation of t h e  d a t a  block capture and  
analysis process could be a concurrent monitoring device. Figure 1 
is a schematic which illustrates this  perspective of concurrent 
monitoring. 

A key aspect or the d a t a  block capture and  analysis moni- 
toring process is t h a t  i t s  implementation, whatever form i t  may 
take, should be relatively simple when compared with the complex 
system being monitored. In other  words, the  process is not meant 
to duplicate the performance of the  system. Accordingly, the 
analysis t h a t  is performed on a captured block of d a t a  will not be 
an  explicit comparison of results with the  system being monitored. 
Rather,  the analysis should be thought of as an examination of 
the captured d a t a  block in which an  algorithm is executed in an 
a t tempt  to ascertain the  existence of f e a t u r n  or conditions t h a t  
have been predetermined to characterize t h e  upset-free behavior of 
the  system. 

In order Lo characterize the performance of the d a t a  block 
capture a n d  analysis monitoring proceu, we must  consider the 
rour possible outcomes which could result from execution of the 
analysis algorithm on a captured block of d a t x  
Assuming the  system was upset during the capture  or a d a t a  
block, there are two possible outcomes: 
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Figure 1 - A Coiicurreiit h4oiiltor E m p l o y l i i g  
t l i e  Data  U l o c k  Capture mid Annlysis Process 

the data analysis algorithm could perform correct defection by  
indicating t h a t  the  system was  in t h e  upset s ta te  

o r  
the data analysis algorithm could perform iticorrccf rejecfion by  
indicating t h a t  the  system was  in  t h e  no-upset s ta te .  

Assuming t h e  system was not upse t  during t h e  capture or the 
d a t a  block, there  are  two possible outcomes: 

the d a t a  analysis algorithm could generate a false alarm by i n d i  
eating t h a t  t h e  system was in t h e  upse t  s t a t e  

the d a t a  analysis algorithm a u l d  perform correcf rejecfion by 
indicating t h a t  t h e  system was in  t h e  no-upset state. 

W e  will w a n t  to theoretically analyze t h e  upset detection 
capabilities of the  d a t a  block capture  and analysis process in 
terms of t h e  single rnoniloring period error probabiiilica, the pro- 
babilities of false alarm a n d  incorrect rejection resuiting from s 
captured block of data .  These error probabilities characterize t h e  
capability or the  d a t a  analysis algorithm on a single block of d a t r  
To analyze the  overall perforniance of the  process, we will intro- 
duce measures of upset detection capability called the  probabilily 
o/ correct defecfion 111, (or m o r e  succinctly, the defecfion pro6a6ii- 
i ty) ,  the  crpected number of j a k e  dorms  per upaef, and the  
erpccfcd detection lafcncy. 

Heretofore, evaluations of a n  upset monitor's performance 
could only be achieved by implementing o r  simulating the  monitor 
and then experimentally determining i ts  upset detection capabilb 
ties 121.131. O u r  measures will permit an  analytical evaluation ot 
the  performance of the  d a t a  block capture  and analysis proceu  
based on  key parameters of t h e  process. 

o r  . 

2. P r e l l m i n a r i c s  
An upset is a disruption or correct  system behavior. Upsets 

are caused by faults or underlying failure mechanisms in t h e  s y r  
tern. T h e  fau l t s  can be permanent  or intermittent:transient in 
nature. In general, t h n e  f a u l h  occur at such a low level in the  s y r  



tern t h a t  they are. u n t o  themselves, of n o  use relative to con- 
cur ren t  monitoring. I t  is t h e  effect of the  f a u l h  on obaervable sig- 
nal lines of t h e  sys tem w i t h  which we m u s t  be concerned. In order 
for correct detection of a n  upset to t ake  place, a d a b  block would 
have to be captured  at a time when t h e  signal activity o n  the 
observation lines w m  showing evidence of t h e  upset. However, we 
will s s u m e  t h a t  t h e  ent i re  captured  d a t a  block need n o t  indicate 
aa upse t  for  correct  detection to take  place. Rather ,  i n  generd,  if 
any  portion or t h e  captured  d a t a  block shows evidence of  an 
upset ,  we will a s u m e  t h a t  i t  is possible for t h e  proceu  implernen- 
ta t ion  to perform correct  detection. Fur thermore ,  t h e  implcmentr-  
t ions a re  not  expected to b e  infallible. Even  if t h e  entire captured 
d a t a  block showed evidence of a n  upset occurrence, i t .would still 
be possible for a n  incorrect  rejection to t a k e  place. Likewise, if the 
captured  d a t a  block showed n o  evidence of an  upset, there would 
still be t h e  possibility of a false a l a r m  occurrence. 

Given our perspective of upsets  a n d  their  detection, we  can 
model t h e  occurrence of upsets in the  sys tem M a two-state 
continuous-time Markov process, moving between t h e  s ta tes  uprcf 
and no-upref. T h i s  is illustrated in Figure 2. In  this  model, both 
t h e  t ime of occurrence a n d  t h e  dura t ion  of t h e  upsets  are  random. 
T h e  infinitesimal matrix, A, characterizes a continuous-time Mar- 
kov process 141. For o u r  model, 

D ~ ~ ~ ~ l ~  I Execution T i m e  

Linear I TL(n) = a n  

-A X 
A -  [ P  -PI 

Constraints 

a > O  

where t h e  no-upset s t a t e  is s t a t e  0 and t h e  upset s t a t e  is s ta te  1. 
I t  is implied by th i s  model t h a t  t h e  t ime t h e  upse t  condition doe  
not  exist is exponentially dis t r ibuted with parameter X, a n d  the 
t ime the upset condition is act ive is exponentially distributed with 
parameter  p. A continuous-time Markov model such as th i s  has 
been used to model b o t h  individual faul t  conditions within digital 
systems 151, as well as sys temlevel  upsets [61,[71. An upset will be 
said to occur at t h e  t i m e  t h a t  t h e  system enters  t h e  upset s ta te .  

XAt 

uAt 

Flgure 2 - A C o n t i n u o u s  hiarkov Model 

3. The Data Block Capture and Analysis P r o c e u  
T h e  d a t a  block capture  a n d  analysis p r o c u r  consists of 

repeated appl icat ions of a two-phase function: 
In t h e  dofa capture p i a r c  or operation, a sequence (block) 

of d a t a  signals (cycle-by-cycle relative to t h e  system clock) on  the 
selected observation lines i s  s tored (captured). We will denote the 
length of the  captured  d a t a  block by the  parameter  n. 

In t h e  dofa analyrir phore of operat ion,  a n  algorithm, 
which exarnines the  most  recently captured d a t a  block for evi- 

W e  will r d e r  to t h e  total  a m o u n t  or t ime spent  by t h e  pr* 
c e s  in t h e  d a t a  capture  p h u e  and  the  data analysis p h u e  u the 
rnoniforing period. 

. dence of a n  upset, is executed. 

Implementation of t h e  d a t a  analysis phase of Ihe proceu  
requires execution or a data analysis algorithm which examines t h e  
captured  d a t a  block for variations of predetermined 
features/conditions of signal activity. These ferturcs/conditions 
could be based on properties of the functions being computed [SI; 
or they  could result from a use or coding theory 191, or a n  embed- 
ding of s ignatures  in t h e  s igna l /da ta  flow 1101; or they simply 
could be experimentally extracted using pat tern recognition tech- 
niques 1111,[1?1. These  techniques encompass both rpccificofion 
bared 181, as well as rymptorn 6ared 1131, diagnosis. 

. 
' 

3.1. The Datn Annlysis A l g o r l t l i r n  
Certainly, t h e  upset detection capability of the  d a t a  block 

capture  a n d  analysis process depends  on t h e  a m o u n t  or t ime allot  
ted  to t h e  analysis of cap tured  data .  More time spent  examining 
t h e  captured d a t a  intuitively ccrresponds to a more thorough 
analysis of t h e  block a n d  a higher probability of correctly d e t e c t  
ing ( the more subt le)  evidence of an upset. W e  can generally 
characterize this  analysis t ime in terms or t h e  complexity of t h e  
d a t a  analysis algorithm employed by the process implementation. 
Since n is t h e  length of t h e  d a t a  block captured,  we will consider 
d a t a  analysis algorithms t h a t  require a number of execution s teps  
t h a t  are  linear, quadratic, a n d  logarithmic functions of n. F o r  each 
such d a t a  analysis algorithm. the  time required for execution will 
be assumed to be proportional to the complexity, a n d  we will 
denote th i s  analysis t ime by t h e  function T(n). T h e  following 
table  lists t h e  d a t a  analysis algorithms which we will consider in 
t h e  remainder or t h e  paper. 

I 1 c > o  
Logarithmic 1 T&n) = an-log n 1 a > 0 

Table 1 

3.2. Error Probnbllltiea 
W e  a r e  led by. t h e  above discussion to consider a means or 

assessing t h e  single monitoring period error probabilities of the  
d a t a  biocic capturc  a n d  anaiysis process. These error probabilities 
describe t h e  ex:eni to which t,hc data analysis Jjo:i thm p:cd?lcn 
t h e  incorrect outcomes (incorrect rejection or  false a la rm)  during a 
single d a t a  analysis phase, a n d  are  defined to be: 

' 

p = Pr{algorithm indicates no-upset I system in upset s ta te )  

a n d  

q = Pr(a1gorithm indicates upset I system in n-upset s ta te} 

W e  will consider four classes of p functions, each of which 
in some way quantifies the  notion t h a t  as n increases, t h e  sensi- 
tivity of t h e  process implementation to  upsets will also increase, 
a n d  p will correspondingly decrease. T h e  characteristics of these 
e l u s e s  a r e  summarized in T a b l e  2. 

We will a u m e  t h a t  increasing t h e  d a t a  which i s  available 
to t h e  analysis algorithm enhances the performance or the  algo- 
r i thm relative to false a la rms  as well as incorrect detections. Thus ,  
we will allow q funct ions to belong to  the  same four classes p r e  
posed for p functions. 
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Class 
Inverse Logirithmic 

Function I Comments 
k - 

i n  poor sensitivity LO features/conditions. l u g e  p onset at high n. low detection prw 
bability 

I 1 for large n I 
T a b l e  2 

k 
n 
- Inverse Linear 

4. The P r o b a b l l l t y  or Correct D e t e c t l o n  
T h e  primary performance goal of an upset detection prw 

cedure is to detect as many of the upsets which occur in the sys- 
tem as pmible .  T h e  probobilify of eorrecf dckcfion 111, or simply 
the defccfion probobilify, is defined to be 

Pr{an upset detected I an upset occurs} 

T h e  detection probability is a natural  measure or upset 
detection capability. Clearly, this quantity depends on the time of 
occurrence or the upset. To remove such short  term inconsisten- 
cies, i t  is natural to consider upset occurrences over a long period 
of time. If we define the detection probability over an  interval, 
D(Itu b)), to be 

D(lt,,tJ) = Pr{upset detected I upset occurs in [tl,q} 
then this can be accomplished by considering intervals with 

Specifically, for the d a t a  block capture and analysis pro- 
cess, we will consider the interval detection probability over a 
large number of monitoring periods. Thus,  we will define the 
detection probability, D, in the  following way: 

t.2>> t,. 

moderately high sensitivity for all block lengths. does not  benefit from extra indi- 
cations in longer blocks, hence some upsets in longer blocks not  detected 

D - lim D([O, i(n+T))) 
1 - 0  

where 10, n+T) is a single monitoring period or the  process. If we 
let X represent t h e  time of occurrence or the  upset we can exprus  
the  detection probability M 

D = lim 
Ib+?) 

Pr{upset detected 1 X = x} * 

f(x I upset occurs in (0, i(n+T))) d x  
I-w 0 

Caicuiation ol the  detection probability or the  d a t a  biock capture 
and analysis process by the above formula requires knowledge or 
the conditional distribution of time of upset occurrence. This dis- 
tribution can be shown to be approximately uniform, assuming 
the  mean time between upsets (l/X) is much larger than the mean 
upset duration (I/p). Using this result along with the fact that  
the probability or an upset being detected depends only on i b  
position within the d a t a  block capture and analysis monitoring 
period, we get the  following: 

D si lim - Kn+T 
Pr{upset detected I X==x)dx 

LW i(n+T) ,, 
. n+T 

= lim - I Pr(upset dcleeted 1 X==x}dx 
kw i ( n + r )  ,, 

n+T 

( 4 4  
1 - I Pr(upse t  detected I X = x}dx n+T 

Thus,  the detection probability of the  d a t a  block capture and  
analysis process is simply equal to t h e  interval detection probabil- 
ity over a single monitoring period. Now, 

Pr{upset pot detected I X - X} 
m 

1-1 
- x P r { u p s e t  missed in 1" i analysis phases I 

upset ends during ith monitoring period}. 

Pr{upset ends during ith monitoring period} 

W 

I p(1- + c p '  Pr{t<(i+l)(n+T) - x 1 
I 4  

t>i(n+T) - x} Pr{t>i(n+T) - x} 

if 0 5 x < n. By the  memorylus  property of the  exponential diu- 
tribution, 

Pr{t < (i+l)(n+T) - x 1 t 2 i(n+T) - x) 
-r(n+-n 1 - e P Pr{t < n+T} 

Thus, 

Pr{upset not detected I X P x} 

Similarly, i t  can be shown t h s t  

(4.3) 

where the d a t a  analysis phase or t h e  process taker place during 
In, n+T). I t  remains only to evaluate Equation 4.1. T h e  f ind 
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result is t h a t  t h e  detection probability> given by 

5. The O c c u r r e n c e  or Fnlse Alnrms 
While t h e  probability of correct detection is an important 

m c u u r e  of the  performance of an upset detection procedure, i t  
should by no means be t h e  only one. I t  would be trivial lo imple- 
ment a procedure which always claims t h a t  the  system is in an 
upset state. Clearly, such a procedure has D = 1 at the  expense or 
many false alarm occurrences. Given t h a t  ralse alarms will occur 
(141, it may be worthwhile to t rade OR correct detection capability 
and  false alarm production. 

T h e  above discussion leads us to consider a measure lor the 
extent to which false alarms a r e  produced. Le t  us define a random 
variable. F, as 

F = number or false alarms between upset occurrences 

We will use EIFI, the  expected number or false alarms per upset, 
u our false alarm occurrence measure. 

If a false alarm is regarded as a “success., each decision 
produced by the  process implementation while the  system is in the 
n e u p s e t  s ta te  is a Bernoulli trial with parameter q. Thus ,  

1-1 

where B, represents t h e  outcome of the ith decision and  N is the 
number or decisions made  between upset occurrence¶. If we let 

Y = sojourn time in no-upset s ta te  

where the  sojourn t ime in a s ta te  is the  length of time spent dur- 
ing a single visit to t h 3  state, then 

Using results f rom probability concerning random sums [4I we get  
t h a t  

EIFI = 

Now, i t  can  be shown t h a t  

and  the  expected number or rase alarms per upset is thererare 
given by 

To determine t h e  optimum value or E[Fl its behavior M 

t h e  block length is allowed to vary must be determined. The Tal- 
lowing lemma suggests the  shape or E[Fl for a wide c l a  of q 
functions. 

Lemma 1: If q is a non-increasing function or n, then ElFl 
is a strictly decreasing function or n. 

Proof: e-’@+- is a strictly decreasing function and 
1 - is a st r ic t ly  increasing function. Thus,  if q d o e  not 

qe-i(n+V 
increase with n. i t  mus t  be t h a t  is a strictly decreas- 

1 - e-ib+T) 

ing function. 

0. 

0. D e t e c t l o n  L a t e n c y  
Another impor tan t  characteristic ai  an upset detection pro- 

cess is the a m o u n t  of time between an upset’s occurrence and ita 
subsequent detection. W e  will refer to this time as the  dcfccfion 
latency of t h e  process. 

Assuming an  upset is correctly detected, we will define t h e  
delection lofency, L. to be the time between the system entering 
the upset state and the time at which the upset is correctly . 
detected. F o r  the d a t a  block capture and  analysis process. we will 
m u m e  t h a t  the d a t a  analysis algorithm indicates whether or not 
the  system was round to be in the upset s ta te  only at the  end or a 
monitoring period. T h i s  rorces the detection latency to be at least 
T, the  length or the d a t a  analysis phase. As with the detection 
probability, we will consider upsets occurring in a single monitor- 
ing period, due  to t h e  periodicity of the  d a t a  block capture  a n d  
analysis process. Hence, we will define the expecled defecfion 
lafency or the  process in the  following way: 

EILl=EIL I upset occurs in I 0 , n t T )  a n d  is detected] 

where, as before, (0. n+T)  represents a single monitoring period of 
the d a t a  block capture  and anaiysis process. If we let X represent 
the time of upset occurrence, the expected latency can be rewrit- 
ten as: 

E[LI= I E(L I X-XI f(x I upset occurs in [O,n+T) 
n+T 

0 

and is detected) d x  (6.1) 

Given tha t  X = x. L is a discrete random variable with sample 
space n, given by 

Furthermore, the conditional distribution of L is given by 

Pr(L = i(n+T) - x I X = x} P 

{ (1 - P)P’-~, if n 5 x < n+T 
(I - p)p’-I, if 0 5 x < n 

F r o m  this t h e  conditional expected value of L can easily be shown 
to be 

i f O < x < n  

E( L I X = XI  = 
n + T  x + n + T ,  i l n s x < n + T  

Now, f(x I upset occurs in (O,n+T) and is detected) can be calcu- 
lated rrom quant i t in  derived in Section 4. Evaluation or Equation 
6.1 yields the following expression for the  expected detection 
latency: 

ElLl = 

7. E v a l u n t l o n  or P c r f o r w m i c e  h l e n r u r e s  
In this section we will consider in detail the performance O r  

the  d a i a  block capture and  analysis process. T h e  behavior or our  
performance m e a u r e s  Hill be examined Y the  length or the cap- 



Lured d a t a  block is allowed to vary. 

7.1. L l n e a r  Dntn A n a l y s i s  A l g o r l t l i m s  
If we let 

and 

then the  detection probability is given by 

n P l +  TP, 
D =  

n + T  

Since T,, = an, t h e  detection probability for a linear 
analysis algorithm is ' 

bility d e c r e v e s  by less than  10%. 
I t  is impor tan t  tc determine il a given algorithm i n  a par- 

ticular fault environment can achieve a detection probability 
greater than  the  limiting value given by Lemma 2. The following 
theorem, s ta ted  without proof, gives necessary and suflicient con- 
ditions on the  existence of a maximum as shown in Figure 3, for 
arbi t rary v d u e s  of a and  k. 

Theorem I: F o r  a linear d a t a  analysis algorithm, with 

T h e  asymptotic behavior of a linear d a t a  analysis algorithm can 
be derived using Equation 7.2 a n d  is s ta ted  in the  Tollowing 
lemma. 

Lemma 2: F o r  a linear d a t a  analysis algorithm, if p+O as 
n-cu, then l i m D  = - 

n-m a + 1 '  
Proo/: If p-0 as n - a ,  then p l h l  and  p p 0 .  We can 

then see from Equation 7.2 t h a t  D-- a +  1' 

1 

1 

0 

Typically, a > 1. In this  situation, l i m D  < 1/2. Hence, 
n-m 

capturing arbitrarily long blocks does not  yield a high detection 
probability. T h e  p furletions being considered are  dl equal to, or  
arbitrarily close to, 1 for some smdl value of a. With p = 1, 
D - 0, so arbitrarily small block lengths yield a low detection pro- 
bability, = well. W e  would, therefore, like to examine the block 
length spectrum between n = 0 a n d  n = 00 to determine whether 
a global maximum exists or  whether the  detection probability is 

bounded by i t s  limiting value, - In order  to accomplish this, 
a +  1 '  

specific choices of p a n d  q functions must  be considered. 
A relaiively conservative h e a r  d a t a  analysis algorithm 

might have singie monitoring period error probability functions 

given by p = - and q = c. Figure 3 shows plots of t h e  detec- 

tion probability, expected number of false a l a r m  per upset, and  
the  expected detection latency or such an algorithm for a =  2, 
k = 10. and k' = 2 ~ 1 0 ~ .  A value of X = is used 
throughout this  section in calculating the  expected number or false 
alarms per upset. The maximum detection probability, with 
p = 0.005, occurs at n = 32 a n d  has a value of 0.775. Thus ,  
almost 80% of all u p s e u  are  detected by such a scheme. Further- 
more, an interesting tradeofl can be achieved by noting t h a t  t h e  
expected number of false alarms per upset decreases very rapidly 
with n while the  detection probability decreases slowly and  t h e  
expected detection latency increases slo~vly. Because of this, small 
sacrifices in detection probability a n d  expected detection latency 
yield a large payoil in t e r m  of t h e  expected number of false 
alarms per upset. F o r  example, at n = 32. ElLl = 152.65 and 
ElFl = 6.510. When n = B2, D = 0.707, ElLl - 333.70, and 
'EIFI = 0.788. Thus ,  t h e  number of false alarms which occur is 
decreased by a factor greater  than  8 while the  expected detection 
latency increases by a ractor of a b o u t  2 and the  detection proba- 

k 

i i l  and only if p < - k 
k '  p = - - , m a x D > -  n UI n a + l  

A l e u  Conservative linear d a t a  analysis algorithm should be 
able to detect more upsets by allowing more false alarms to occur. 

Such a n  algorithm might.have p = 7 k and q = - k' Examina- n -  i n n '  
tion of such an  algorithm for a = 2, k = 100, and k' .= S X I O - '  
shows t h a t  the  maximum detection probability has  increased to a 
value of 0.874 i t  n = 26, while the expected number of false 
alarms per upset has  increased to 19.Gi5 at the same block length. 
Thus ,  by using a more aggressive algorithm (which as a side-eliect 
allows an  increued  number ol false alarms to occur) it h a s  been 
possible to detect  almost, 90% o l  all upsets in the system. Such a 

(7.1) 

data 

(7.2) 

t radeoa  would be beneficial in many cases. 
For  any  linear d a t a  analysis algorithm with a p function 

approaching b faster than  l / n  the  global maximum exists indepen- 
dently of the  choice of p, as is shown by the following theorem, 
also s ta ted without proof. 

Theorem 2: For  a linear d a t a  analysis algorithm, with 

for a11 p. p = - where lim -!!- = 0, max D > - f(n) ' -OD f(n) all n a +  1' 
k 

- n  4 ._. 
It may be possible to decrease t h e  probabilities of incorrect 

rejection a n d  lalse a la rm in a single monitoring period by spending 
more time analyzing each d a t a  block. If the time required to 
analyze a block grows too quickly, however, large portions of sys- 
tem activity become invisible to the  process, leading to poor 
overail performance. F o r  any d a t a  analysis algorithm which has  
running t ime of order  greater than  n. the  following limit result 
holds. 

Lemma 3: F o r  any d a t a  analysis algorithm with n = o(T), 
lim D = 0. 

Proof: F r o m  Equation 7.1, D = n p ' C T p 2 .  Note t h a t  

p 2 - 4  as n-cu, regardiess of p. iience, D--. Since p1  5 1 
and n = o(T), we have t h a t  D-0. 

Iliglier Order Dntn A n n l y s i s  Algoritliiiis 

n-00 

n + T  
nPl 

n + T  

0 

With higher order  d a t a  analysis algorithms, since D is arbi- 
trarily close to 0 for small enough n and  lim D = 0, clearly a glo- 

n-m 
bal maximum between 0 and  cu exists, independent ol p and p. 
We will mainly be interested, then, in the  value and position ol 
this maximum, along with the  behavior of the expected detection 
latency and  the  expected number of false alarms per upset. 

Use of a quadratic d a t a  analysis algorithm should produce 
small probabilities ol incorrect rejection and  false alarm over a sin- 
gle monitoring period. Examination of such a n  algorithm with 

k' with parameter valum k p=;, a n d  q = -  
n- n2 ' 

a = 0.2. b = c = 0, k = 100. and k' = 5x1O4, seems to  show 
t h a r  quadratic d a t a  analysis algorithms are  lemible only il used on 
very shor t  d a t a  blocks. A t  n = 17, the  maximum detection proba- 
bility is achieved with a value of 0.773. ElLl = 132.70 and 
ElFl = 23.130 at the  same block length. For n > 17, there is a 
rapid decrease in the  detection probability and a rapid increase in 
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the  expected detection latency. For  example, when n = 100, 
D - 0.141 and E(LI - 2237.82. T h e  increase in performance over 
a single monitoring period is overwhelmed by the  decrease in 
overall performance caused by the rapid growth rate of the non- 
visible fraction of system operation. 

It may be possible to achieve improved single monitoring 
period performance with logarithmic d a t a  analysis algorithms, 
which d o  not have a growth rate as rapid as t h a t  of quadratic 

Ir' and algorithms. Such an algorithm with p =I - 
a = 2.3, k = 0.02, a n d  k' = 2X104, is not burdened by the 
rapid detection probability decrease and  expected detection 
latency increase characteristic of a quadratic d a t a  analysis algo- 
rithm. T h e  maximum detection probability occurs at n = 21, 
where D - 0.833, E[Ll = 114.21, and ElFl = 12.444. When 
n = 100, D = 0.541 a n d  E\Ll = 573.77 showing t h e  more gradual 
degradation of performance inherent in the logarithmic algorithm. 
Hence, such algorithms seem to be potentially useful over a wide 
range of block lengths. 

For  each d a t a  analysis algorithm studied, the expected 
detection latency appears  to increase at the  same rate as the 
amoun t  or time spent  analyzing a captured d a t a  block, after some 
initial deviation. This  is indeed true,  as shown by ,  t h e  following 
theorem, s ta ted  without  proof. 

Theorem 3: For  any  d a t a  analysis algorithm with 
anaiysis time T ,  such t h a t  n = O(T), and  p-0, EiLi - cT, lor 
some constant  c. 

k 
nz' = 

8. C o n c l u s i o n s  
A new procedure for upset detection in complex s y s t e m .  

called the  d a t a  block capture  and  analysis process, has been 
presented. T h e  upset  detection capability of this process h a s  been 
characterized in  terms of process parameters by deriving the  pr- 
bability of correct detection, expected number of false a larms per 
upset, and  expected latency of the proceu. I t  has been shown thrt 
the  detection probability c a n  be maximized by a proper choice of 
parameters. In addition, i t  has been shown t h l t  improvement in 
any one of our  detection measures can be achieved a t  the  ucpense 
of one or  both of t h e  o ther  measures. In particular, t h e  detection 
probability can be increased by allowing a greater number or false 
a larms t o  occur. Examples have been shown where the process can 
detect almost '30% of all upsets  white maintaining rearonable false 
d u m  production and detection latency. These analytical resulk 
suggest t h a t  the  d a t a  block capture  and analysis monitoring pro- 
c t u  is L very eBective means of providing upset detection in com- 
plex systems. 
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