

Technical Report II
to
NASA
Goddard Space Flight Center Greenbelt, Maryland

Shu Lin
Principal Investigator Department of Electrical Engineering University of Hawaii at Manoa Honolulu, Hawaii 96822

Shu Lin	Tadao Kasami
University of Hawaii at Manoa	Osaka University
Honolulu, Hawaii 96822	Toyonaka, Osaka 560, Japan

ABSTRACT

In this report, a method for multiplying two elements from the Galois field GF $\left(2^{m s}\right)$ is presented. This method provides a tradeoff between speed and complexity.

SERIAL-PARALLEL MULTIPLICATION IN GALOIS FIELDS

1. Multiplication over Subfields

In this note, we present a method for multiplying two elements from a Galois field over a subfield. Consider the Galois field GF(2 ${ }^{m s}$). This field contains the field $\mathrm{GF}\left(2^{5}\right)$ as a subfield and may be regarded as an extension field of $\operatorname{GF}\left(2^{s}\right)$. Let α be a primitive element in $G F\left(2^{m s}\right)$. Then the set, $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$, forms a basis for $G F\left(2^{m s}\right)$ over the subfield $G F\left(2^{s}\right)$. Any element z in $G F\left(2^{m s}\right)$ can be expressed as a linear sum of $\alpha^{0}=1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}$ over $\mathrm{GF}\left(2^{\mathrm{s}}\right)$ as follows:

$$
\begin{equation*}
z=z_{0} \alpha^{0}+z_{1} \alpha+z_{2} \alpha^{2}+\ldots+z_{m-1} \alpha^{m-1} \tag{1}
\end{equation*}
$$

where $z_{i} \in G F\left(2^{s}\right)$ for $0 \leq i<m$. There is a one-to-one correspondence between z and the m-tuple $\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ over $G F\left(2^{s}\right)$ with respect to the basis $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$. The basis, $\left(1, \alpha, \ldots, \alpha^{m-1}\right)$, is called the polynomial basis.

The trace of an element z in $\operatorname{GF}\left(2^{m s}\right)$ with respect to $G F\left(2^{s}\right)$ is defined as

$$
\begin{equation*}
T_{m}(z) \Delta z+z^{2^{s}}+z^{2 s}+\ldots+z^{2(m-1) s} \tag{2}
\end{equation*}
$$

which is an element in $\operatorname{GF}\left(2^{s}\right)$ [p. 111, 1]. The trace has the following properties:

1. For any $a \in \operatorname{GF}\left(2^{s}\right)$ and $z \in \operatorname{GF}\left(2^{\mathrm{ms}}\right)$,

$$
T_{m}(a z)=a T_{m}(z) ;
$$

2. For any two elements y and z in $G F\left(2^{m s}\right)$,

$$
T_{m}(y+z)=T_{m}(y)+T_{m}(z)
$$

With respect to the polynomial basis $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right)$, there exists another basis $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{m-1}\right\}$ for $G F\left(2^{m s}\right)$ over $G F\left(2^{s}\right)$ such that

$$
T_{m}\left(\alpha^{i} \beta_{j}\right)= \begin{cases}0, & \text { for } i \neq j \tag{3}\\ 1, & \text { for } i=j\end{cases}
$$

with $0 \leq i, j<m$. The basis $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{m-1}\right)$ is called the dual (or complementary) basis to $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right)$ over $\operatorname{GF}\left(2^{s}\right)$. Any element z in $\operatorname{GF}\left(2^{m s}\right)$ can be expressed in either of the following two forms:

1. polynomial form

$$
z=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{m-1} \alpha^{m-1}
$$

2. dual form

$$
z=b_{0} \beta_{0}+b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{m-1} \beta_{m-1}
$$

where a_{i} and b_{i} are elements in $G F\left(2^{s}\right)$ for $0 \leq i<m$. These two forms can be converted to each other as follows:

1. $a_{i}=T_{m}\left(z \beta_{i}\right)$, and
2. $b_{i}=T_{m}\left(z \alpha^{i}\right)$,
for $0 \leq i<m$.
Now we consider multiplying two elements from $\operatorname{GF}\left(2^{m s}\right)$. If one element is expressed in polynomial form and the other element is expressed in the dual form, then the multiplication can be achieved in a serial-parallel manner over the subfield $\operatorname{GF}\left(2^{s}\right)$. This would give a trade-off between the complexity_ and speed in the implementation of a multiplier. Let x and y be two arbitrary elements in $\mathrm{GF}\left(2^{\mathrm{ms}}\right)$. Express x and y in terms of the polynomial basis $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$ and its dual basis $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{m-1}\right\}$ respectively.

$$
\begin{align*}
& x=x_{0}+x_{1} \alpha+x_{2} a^{2}+\ldots+x_{m-1}{ }^{m-1} \tag{4}\\
& y=y_{0} \beta_{0}+y_{1} \beta_{1}+y_{2} \beta_{2}+\ldots+y_{m-1} \beta_{m-1} \tag{5}
\end{align*}
$$

where x_{i} and y_{i} are in $G F\left(2^{s}\right)$ for $0 \leq i<m$. Consider the product $z=x y$ and express z in dual form,

$$
\begin{align*}
z & =x y \\
& =z_{0} \beta_{0}+z_{1} \beta_{1}+\ldots+z_{m-1} \beta_{m-1} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
z_{i}=T_{m}\left(z \alpha^{i}\right) \tag{7}
\end{equation*}
$$

for $0 \leq i<m$.
Next we show how the coefficients of z can be obtained from the coefficients of x and y in a serial manner. It follows from (5) to (7) that

$$
\begin{align*}
z_{i} & =T_{m}\left(x y \alpha^{i}\right) \\
& =T_{m}\left(\sum_{\ell=0}^{m-1} y_{l} x \beta_{l} \alpha^{i}\right) \\
& =y_{0} T_{m}\left(x \beta_{0} \alpha^{i}\right)+y_{1} T_{m}\left(x \beta_{1}, \alpha^{i}\right)+\ldots+y_{m-1} T_{m}\left(x \beta_{m-1} \alpha^{i}\right) \tag{8}
\end{align*}
$$

Setting i=0 in (8), we obtain

$$
\begin{equation*}
z_{0}=y_{0} T_{m}\left(x \beta_{0}\right)+y_{1} T_{m}\left(x \beta_{1}\right)+\ldots+y_{m-1} T_{m}\left(x \beta_{m-1}\right) \tag{9}
\end{equation*}
$$

Since $T_{m}\left(x \beta_{i}\right)=x_{i}$ for $0 \leq i<m$, it follow from (9) that

$$
\begin{equation*}
z_{0}=x_{0} y_{0}+x_{1} y_{1}+\ldots+x_{m-1} y_{m-1} \tag{10}
\end{equation*}
$$

In order to obtain the other $m-1$ coefficients of z, we define

$$
\begin{align*}
& y^{(i)}=y \alpha^{i} \tag{11}\\
& y^{(i+1)}=y^{(i)} \alpha . \tag{12}
\end{align*}
$$

Note that $y^{(0)}=y$. We express both $y^{(i)}$ and $y^{(i+1)}$ in dual forms:

$$
\begin{align*}
\mathrm{y}^{(i)} & =\mathrm{y}_{0}^{(\mathrm{i})} \beta_{0}+\mathrm{y}_{1}^{(\mathrm{i})} \beta_{1}+\ldots+\mathrm{y}_{\mathrm{m}-1}^{(\mathrm{i})} \beta_{\mathrm{m}-1} \tag{13}\\
\mathrm{y}^{(\mathrm{i}+1)} & =\mathrm{y}_{0}^{(\mathrm{i}+1)} \beta_{0}+\mathrm{y}_{1}^{(\mathrm{i}+1)} \beta_{1}+\ldots+\mathrm{y}_{\mathrm{m}-1}^{(\mathrm{i}+1)} \beta_{\mathrm{m}-1} \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
& y_{j}^{(i)}=T_{m}\left(y^{(i)} \alpha^{j}\right), \tag{15}\\
& y_{j}^{(i+1)}=T_{m}\left(y^{(i+1)} \alpha^{j}\right) \tag{16}
\end{align*}
$$

It follows from (12) that, for $0 \leq \mathrm{j}<\mathrm{m}$,

$$
\begin{align*}
y_{j}^{(i+1)} & =T_{m}\left(y^{(i+1)} \alpha^{j}\right) \\
& =T_{m}\left(y^{(i)} \alpha^{j+1}\right)=y_{j+1}^{(i)} \tag{17}
\end{align*}
$$

Expression (17) gives a relationship between the coefficients of $\mathrm{y}^{(\mathrm{i}+1)}$ and those of $y^{(i)}$. From (14) and (17), we obtain

$$
\begin{equation*}
y^{(i+1)}=y_{1}^{(i)} \beta_{0}+y_{2}^{(i)} \beta_{1}+\ldots+y_{m-1}^{(i)} \beta_{m-2}+y_{m}^{(i)} \beta_{m-1} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{m}^{(i)}=T_{m}\left(y^{(i)} a^{m}\right) . \tag{19}
\end{equation*}
$$

The coefficient $y_{m}^{(i)}$ can be determined as follows

$$
\begin{align*}
y_{m}^{(i)} & =T_{m}\left(y^{(i)} \alpha^{m}\right)=T_{m}\left(\alpha^{m} \sum_{\ell=0}^{m-1} y_{l}^{(i)} \beta_{\ell}\right) \\
& =y_{0}^{(i)} T_{m}\left(\beta_{0} \alpha^{m}\right)+y_{1}^{(i)} T_{m}\left(\beta_{1} \alpha^{m}\right)+\ldots+y_{m-1}^{(i)} T_{m}\left(\beta_{m-1} \alpha^{m}\right) \tag{20}
\end{align*}
$$

From (18) and (20), we see that the coefficients of $y^{(i+1)}$ are completely determined by the coefficients of $y^{(i)}$.

Now we return to the coefficients of z. It follows from (7) that, for $0 \leq \mathrm{i}<\mathrm{m}-1$,

$$
\begin{align*}
z_{i+1} & =T_{m}\left(z \alpha^{i+1}\right) \\
& =T_{m}\left(x y \alpha^{i+1}\right)-T_{m}\left(x y^{(i)} \alpha\right) \\
& =T_{m}\left(\sum_{j=0}^{m-1} x_{j} y^{(i)} \alpha^{j+1}\right) \\
& =\sum_{j=0}^{m-1} x_{j} T_{m}\left(y^{(i)} \alpha^{j+1}\right) \tag{21}
\end{align*}
$$

Combining (15) and (21), we have

$$
\begin{equation*}
z_{i+1}=x_{0} y_{1}^{(i)}+x_{1} y_{2}^{(i)}+\ldots+x_{m-2} y_{m-1}^{(i)}+x_{m-1} y_{m}^{(i)} \tag{22}
\end{equation*}
$$

Putting (10), (17) to (22) altogether, we see that the coefficients, z_{0}, z_{1}, \ldots, z_{m-1} of the product $z=x y$ in dual form can be generated from the coefficients of x and y in a serial manner with m steps,

$$
\begin{align*}
z_{0} & =x_{0} y_{0}^{(0)}+x_{1} y_{1}^{(0)}+\ldots+x_{m-2} y_{m-2}^{(0)}+x_{m-1} y_{m-1}^{(0)} \\
z_{1} & =x_{0} y_{1}^{(0)}+x_{1} y_{2}^{(0)}+\ldots+x_{m-2} y_{m-1}^{(0)}+x_{m-1} y_{m}^{(0)} \\
z_{2} & =x_{0} y_{1}^{(1)}+x_{1} y_{2}^{(1)}+\ldots+x_{m-2} y_{m-1}^{(1)}+x_{m-1} y_{m}^{(1)} \tag{23}\\
& \cdot \\
& \cdot \\
z_{m-1} & =x_{0} y_{1}^{(m-2)}+x_{1} y_{2}^{(m-2)}+\ldots+x_{m-2} y_{m-1}^{(m-2)}+x_{m-1} y_{m}^{(m-2)}
\end{align*}
$$

where
(1) $y_{i}^{(0)}=y_{i} \quad$ for $0 \leq i<m$,
(2) $y_{j}{ }^{(i+1)}-y_{j+1}^{(i)} \quad$ for $0 \leq i<m-1 \quad$ and $\quad 1 \leq j<m$,
(3) $y_{m}^{(i)}=y_{0}^{(i)} T_{m}\left(\beta_{0} \alpha^{m}\right)+y_{1}^{(i)} T_{m}\left(\beta_{1} \alpha^{m}\right)+\ldots+y_{m-1}^{(i)} T_{m}\left(\beta_{m-1} \alpha^{m}\right)$.

2. Serial-Parallel Multiplier

From the expressions of (23) to (26), we see that, if we multiply two elements x and y from $G F\left(2^{m s}\right)$ in mixed forms, the coefficients of the product z in dual form over $G F\left(2^{s}\right.$) can be determined from the coefficients of x (in polynomial form) and y (in dual form) in a serial manner with m steps. At the i-th step, the coefficient

$$
z_{i}=x_{0} y_{1}^{(i-1)}+x_{1} y_{2}^{(i-1)}+\ldots+x_{m-1} y_{m}^{(i-1)}
$$

is formed. To form z_{i}, m multiplications over $G F\left(2^{s}\right)$ are required. These m multiplications can be carried out in a parallel (or direct) manner using either $\mathrm{m} G F\left(2^{s}\right)$ array multipliers or m look-up tables. The coefficients $y_{1}^{(i-1)}$, $y_{2}^{(i-1)}, \ldots, y_{m-1}^{(i-1)}$ must be formed separately. From (26), we have

$$
\begin{equation*}
y_{m}^{(i-1)}=y_{0}^{(i-1)} T_{m}\left[\beta_{0} \alpha^{m}\right)+y_{1}^{(i-1)} T_{m}\left(\beta_{1} \alpha^{m}\right)+\ldots+y_{m-1}^{(i-1)} T_{m}\left(\beta_{m-1} \alpha^{m}\right) \tag{27}
\end{equation*}
$$

To form $y_{m}^{(i-1)}$, m multiplications over $G F\left(2^{s}\right)$ are needed. Each of these multiplications involves a fixed element, $\mathrm{T}_{\mathrm{m}}\left(\beta_{\mathrm{i}} \alpha^{m}\right)$, from $\operatorname{GF}\left(2^{s}\right)$. As a result, the implementation is simpler. A general serial-parallel multiplier which
realizes the multiplication algorithm presented in a previous section is shown in Figure 1. It consists of two parts, the top part forms the coefficients, $z_{0}, z_{1}, \ldots, z_{m-1}$ of the product z, which is called the z_{i}-circuit. The lower part of Figure 1 forms the coefficients, $y_{m}^{(0)}, y_{m}^{(1)}, \ldots, y_{m}^{(m-1)}$, which is called the $y_{m}^{(i)}$-circuit. The multiplication is completed in mateps (or in m clock times). The z_{i}-circuit requires m GF(2^{s})-multipliers, each multiplying two arbitrary elements from $\operatorname{GF}\left(2^{s}\right)$. The $y_{m}^{(i)}$-circuit requires m $\mathrm{GF}\left(2^{s}\right)$ multipliers, each multiplying a fixed element and an arbitrary element from $\mathrm{GF}\left(2^{\mathbf{s}}\right)$. The overall multiplier also needs two ms-input s -output adders.

Suppose we implement the serial-parallel multiplier of Figure 1 by using $\mathrm{GF}\left(2^{\mathbf{s}}\right)$ array multipliers. Each $\mathrm{GF}\left(2^{\mathbf{s}}\right.$) array multiplier with two arbitrary inputs requires s^{2} AND gates to form the partial products, $(s-1)^{2}$ two-input X-OR gates to add the partial products and then approximately (s-1)($\ell-1$) two-input X -OR gates to reduce the sum to a s-bit symbol in $\mathrm{GF}\left(2^{5}\right)$. A $\operatorname{GF}\left(2^{4}\right)$ array multiplier with generating polynomial $\mathrm{X}^{4}+\mathrm{X}+1$ is shown in Figure 2. $\mathrm{A} \operatorname{GF}\left(2^{5}\right)$ array multiplier with one fixed input requires no AND gates and less than $(s-1)^{2}+(s-1)(\ell-1)$ two-input X-OR gates. Now consider the implementation of the serial-parallel multiplier using look-up tables (ROMs). For multiplying two arbitrary elements from $G F\left(2^{s}\right)$, a single look-up table requires a ROM of 2 s inputs, s outputs and $2^{2 s} s$-bit words. For multiplying an arbitrary element with a fixed element, the look-up table requires a ROM of s inputs, s outputs and 2^{s} s-bit words.

The multiplication of two elements from $G F\left(2^{m s}\right)$ can be achieved by using a single Berlekamp's bit-serial multiplier [2]. This implementation is extremely simple, however it takes ms clock times to complete the multiplication, which is s times longer than the serial-parallel multiplier over $\mathrm{GF}\left(2^{s}\right)$ of Figure 1 . If speed is critical, we may multiply two elements from $\operatorname{GF}\left(2^{m s}\right)$ directly by using a
single $G F\left(2^{m s}\right)$ array multiplier or a single look-up table. A single $\operatorname{GF}\left(2^{m s}\right)$ array multiplier would require (ms) ${ }^{2}$ AND gates and approximately (ms-1) ${ }^{2}+$ (ms-1)(L-1) two-input X-OR gates where L is the number of terms in the generating polynomial for $G F\left(2^{m s}\right)$. For the serial-parallel multiplier using $G F\left(2^{s}\right)$ array multipliers, a total of $m \cdot s^{2}$ AND gates and no more than $2 m\left[(s-1)^{2}+\right.$ $(s-1)(l-1)]$ two-input X-OR gates are needed. For large $m(m \geq 3)$, a single GF ($2^{m s}$) array multiplier requires much more AND and X-OR gates than the serial-parallel multiplier over GF(2 ${ }^{\mathbf{s}}$).

A single look-up table for direct multiplication of two arbitrary elements from $G F\left(2^{m s}\right)$ requires a ROM of 2 ms inputs, ms outputs and $2^{2 \mathrm{~ms}} \mathrm{~ms}$-bit words. However, for the serial-parallel multiplier of Figure 1 , it requires a total memory of $m\left(2^{2 s}+2^{s}\right) s$-bit words which is much smaller than $2^{2 m s}$ for $m \geq 2$.

In summary, the serial-parallel multiplication over a subfield presented in this note provides a trade-off between speed and complexity.

REFERENCES

1. F.J. MacWilliams and N.J.A. Sloane, Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977.
2. E.R. Berlekamp, "Bit-Serial Reed-Solomon Encoders," IEEE Transactions on Information Theory, Vol. IT-28, No. 6, pp. 869-874, 1982.

Figure 1 A GF(2^{ms}) serial-parallel multiplier over $\operatorname{GF}\left(2^{\mathrm{s}}\right)$

Figure $2 \mathrm{AGF}\left(2^{4}\right)$ multiplier

