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ABSTRAC

In this report, a method for multiplying two elements from the Galois field
GF(ZmS) is presented. This method provides a tradeoff between speed and

complexity.



SERIAL-PARALLEL MULTIPLICATION IN GALOIS FIELDS

1. Multiplication over Subfields

In this note, we present a method for multiplying two elements from a
Galois field over a subfield. Consider the Galois field GF(ZmS). This field
contains the field GF(ZS) as a subfield and may be regarded as an extension

field of GF(ZS). Let a be a primitive element in GF(ZmS). Then the set,

{1,a,a2,...,am-1], forms a basis for GF(ZmS) over the subfield GF(ZS). Any

element z in GF(ZmS) can be expressed as a linear sum of ao - 1,a,02,.. m-1

L ]

over GF(2S) as follows:

0 2 m-1
z =z, + z,a + z,a + ... + zZ 1 (L

s .
where z, € GF(27) for 0 = i < m. There is a one-to-one correspondence between z

and the m-tuple (ZO’zl""’zm-l) over GF(ZS) with respect to the basis

2 m-1
a

{l,e¢,a", ..., m-1

}. The basis, {(l,a,...,a ), is called the polynomial basis.

The trace of an element z in GF(ZmS) with respect to GF(ZS) is defined as

s 2s (m-1)s
Tmﬂz) 4 z + 22 + 22, + ... + 22 (2)
which is an element in GF(ZS) [p. 111, 1]. The trace has the following
properties:
1. For any a € GF(ZS) and z ¢ GF(st),
Tm(az) -aT (2);
2. For any two elements y and z in GF(ZmS),
Tm(y+z) - Tm(y) + Tm(z)
With respect to the polynomial basis {1,a,a2,...,am-1), there exists another
basis (By.By,...,B ) for cF(2™) over GF(2°) such that
0, for ixj
T (a'f.) = (3)
m J .

1, for i=j




with 0 < i, j < m. The basis (ﬂo,ﬂl,...,ﬂm_ll is called the dual (or
complementary) basis to (1,a,a2,...,am-1} over GF(ZS). Any element z in GF(ZmS)
can be expressed in either of the following two forms:
1. polynomial form
z=a;+aat a2a2 + ... ta ja
2., dual form

2= bofy * DBy Bpfy t o Ty By
where a; and bi are elements in GF(ZS) for 0 < 1 < m. These two forms can be
converted to each other as follows:

1. ai - Tm(zﬂi), and

2. bi:Tm(zai), 7
for 0 < i < m.

Now we consider multiplying two elements from GF(ZmS). If one element is
expressed in polynomial form and the other element is expressed in the dual
. form, then the multiplication can be. achieved in a serial-parallel manner over
the-subfield GF(ZS). Thié would give a trade-off between the complexity and

speed in the implementation of a multiplier. Let x and y be two arbitrary

elements in GF(ZmS). Express x and y in terms of the polynomial basis

{1,a,a2,...,am-1) and its dual basis {ﬂo,ﬁl,...,ﬂm_l} respectively.
2 m-1
X =x)+x@+xa 4.+ x g0 T, (4)
Y = YoBo t Y18y tVoPy *t - Y 1B (5)

where Xs and yi are in GF(ZS) for 0 < i < m. Consider the product z = xy and
express z in dual form,
Z = Xy

- zoﬂo + z1ﬂ1+ T Zm-lﬂm-l (6)

where



i
zi - Tm(za )

for 0 < i < m.

(7)

Next we show how the coefficients of z can be obtained from the coeffi-

cients of x and y in a serial manner. It follows from (5) to (7) that

i
z, = Tm(xya )

m-1
i
- Tm } Y % ﬂza
£2=0
i i i
- yon(xBOa ) + lem(xﬁl,a ) + ...+ Ym-1 Tm(xﬁm_la )

Setting i=0 in (8), we obtain

zy= yon(xﬁo) + lem(xﬁl) + ...+ Ym-1 Tm(xﬂm_l)

Since Tm(xﬁi) = X, for 0 < i <m, it follow from (9) that

Zo = XgYo t XYy t - v Xp Y -
In order to obtain the other m-1 coefficients of z, we define
i i
y( ) o ya© |
i+l i
S | @)
Note that y(o)- y. We express both y(i) and y(l+1) in dual forms:
i i i (1)
y( ! - yé )ﬂO + yi )ﬂl et ym-lﬂm-l ’
i+l i+l i+l) (i+1)
e R S TR e
where
(1) _ o [oC1)
SRRRA
(i+1) _ (i+D) j
73 1, [y

It follows from (12) that, for 0 < j < m ,

i+l i+1) j
yj(1+ ) _ Tm[y( )aJ]

o7 [y<1)aj+1] S

m j+1

(8)

(9

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)



Expression (17) gives a relationship between the coefficients of y(i+1) and

those of y(i). From (14) and (17), we obtain
i
I L BRI Al N Ay N (18)
where
yt - Tm[y(i)amj : (19)
The coefficient y;i) can be determined as follows
m-1
i
A S A L
£2=0
- yél)Tm[ﬂoam] + y{i)rm[ﬂlam] ...+ y;fi Tm[ﬂm_lam] . (20)

From (18) and (20), we see that the coefficients of y(l+1)

(1)

are completely deter-
mined by the coefficients of y
Now we return to the coefficients of z. It follows from (7) that, for

0<1i<nm-1

Ti+l
zi+l - Tm[za ]

- Tm[xya1+1] - Tm[xy(i)a]

m-1
(1) i+l
"t | )y
j=0
m-1
(1) _j+1
} ijm[y a . (21)
j=0
Combining (15) and (21), we have
(1) (1) (1) (1)
Zivl T XY P XY Tt PRy Y1t ¥p19n (22)
Putting (10), (17) to (22) altogether, we see that the coefficients, 2z 2qs

cer 2o of the product z = xy in dual form can be generated from the coeffi-

cients of x and y in a serial manner with m steps,

-4 -



0) , (0) ) (0)
Z0 "~ *oY0 1N c ¥ Xp2 Ym-2 t *no1 Ymed
(0) (0) (0) (0)
Z) T XN XYg e Y Xy 9 Yl Y ¥ Y
(1) (1) (1) (L
Z) = XYy XY, e ¥ Xy 9 Y1 Y ¥y Y (23)
(m-2) (m-2) (m-2) | (m-2)
Zp-1 T %01 %1Y2 R I A Xp-1 Tm
where
Wy -y, forosi<m, (24)
2) yj(i+1) §ii for 0<i<m-l and 1<j<m, (25)
3 y® =y o™ + y 01 e ¢ v yDr o o (26)

2. Serial-Parallel Multiplier

From the expressions of (23) to (26), we see that, if we multiply two elem-
ents x and y from-GF(ZmS) in'mixeq forms, the coefficients of the product z in
dual form §ver CF(ZS) can be determined from the coefficients of x (in poly-
nomial form) and y (in dual form) in a serial manner with m steps. At the i-th

step, the coefficient

(i-1) , . (G-, (i-1)
i~ X1 XY, o T X Yn

is formed. To form z;, m multiplications over GF(ZS) are required. These m

z

multiplications can be carried out in a parallel (or direct) manner using either

m GF(ZS) array multipliers or m look-up tables. The coefficients y{l-l),
yél 1), c e ;111) must be formed separately. From (26), we have
(i-1) (i-1) m (i- 1) m (1 1) m
Yo = Yo Tm ﬂoa + ¥1 ﬂla + ... n-1 Tm ﬂm-la (27)
(i-1)

To form Y , m multiplications over GF(ZS) are needed. Each of these multi-
plications involves a fixed element, Tm(ﬁiam), from GF(ZS). As a result, the

implementation is simpler. A general serial-parallel multiplier which




realizes the multiplication algorithm presented in a previous section is shown

in Figure 1. It consists of two parts, the top part forms the coefficients,

Zgs 290 oees Zp9 of the product z, which is called the zi-circuit. The lower
part of Figure 1 forms the coefficients, yéo), yél), . y;m-l), which is

called the y(i)

n -circuit. The multiplication is completed in m steps (or in m

clock times). The zi-circuit requires m GF(2S)-mu1tip11ers, each multiplying
two arbitrary elements from GF(ZS). The y;i)-circuit requires m GF(ZS)-
multipliers, each multiplying a fixed element and an arbitrary element from
GF(ZS). The overall multiplier also needs two ms-input s-output adders.

Suppose we implement the serial-parallel multiplier of Figure 1 by using
GF(ZS) array multipliers. Each,GF(Zs) array multiplier with two arbitrary
inputs requires 52 AND gates to form the partial products, (s-l)2 two-input X-OR
gates to add the partial products and then approximately (s-1)(£-1) two-input
X-OR gates to reduce the sum to a s-bit symbol in GF(2S). A GF(24) array
multiplier with generating polynomial Xh+X+1 is shown in Figure 2. A GF(ZS)
array multiplier with one fixed input requires no AND gates and less than
(s-1)2+(s-1)(£-1) two-input X-OR gates. Now consider the implementation of the
serial-parallel multiplier using look-up tables (ROMs). For multiplying two
arbitrary elements from GF(ZS), a single look-up table requires a ROM of 2s
inputs, s outputs and 225 s-bit words. For multiplying an arbitrary element
with a fixed element, the look-up table requires a ROM of s inputs, s outputs
and 2° s-bit words.

The multiplication of two elements from GF(ZmS) can be achieved by using a
single Berlekamp’s bit-serial multiplier [2]. Tﬁis implementation is extremely
simple, however it takes ms clock times to complete the multiplication, which is
s times longer than the serial-parallel multiplier over GF(ZS) of Figure 1. 1If

speed is critical, we may multiply two elements from GF(ZmS) directly by using a




single GF(2ms) array multiplier or a single look-up table. A single GF(st)
array multiplier would require (ms)2 AND gates and approximately (ms-l)2 +
(ms-1)(L-1) two-input X-OR gates where L is the number of terms in the gen-
erating polynomial for GF(2ms). For the serial-parallel multiplier using GF(2°%)
array multipliers, a total of m-52 AND gates and no more than 2m[(s-1)2 +
(s-1)(£-1)] two-input X-OR gates are needed. For large m (m = 3), a single
GF(2ms) array multiplier requires much more AND and X-OR gates than the
serial-parallel multiplier over GF(ZS).

A single look-up table for direct multiplication of two arbitrary elements
from GF(ZmS) requires a ROM of 2 ms inputs, ms outputs and 22ms ms-bit words.
quever, for the serial-parallel multipliei of Figure 1, it requires a total
memory of m(225+2s) s-bit words which is much smaller than 22ms'for mx 2.

In summary, the serial-parallel multiplication over a subfield presented in

this note provides a trade-off between speed and complexity.
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Figure 1 A GF(2™) serial-parallel multiplier over GF(2%)
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