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OPTIMIZATION OF AIRCRAFT TRAJECTORIES
THROUGH SEVERE MICROBURSTS

Mark L. Psiaki
Department of Mechanical and
Aerospace Engineering
Princeton University
Princeton, NJ

PERFORMANCE ENVELOPES, MICROBURST PENETRATION

A method of defining performance envelopes for aircraft microburst
penetration is being developed. A trajectory is computed for a given
aircraft/control law configuration and given microburst parameters (either a
downdraft or a head/tailwind type microburst). The maximum deviation from
the nominal altitude is recorded for that trajectory. Then the microburst
parameters are varied, and the process is repeated. Thus a three-
dimensional plot of maximum altitude deviation versus microburst range scale
and intensity is generated. Finally, a certain maximum altitude deviation, say
50 feet, is defined as the safe penetration limit. Then the 50 foot level
contour becomes the performance limit for safe operation as a function of
microburst intensity and range. '

Control inputs from deterministic trajectory optimization are used in the
above described calculations to define the maximal (least conservative for a
given airframe/power plant) performance limit. These limits provide targets
for the designer of practical control laws. A practical control law with
microburst performance limits near the maximal limits is a good control law
from this standpoint.
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WORK PERFORMED SINCE SEPTEMBER 1985

During the past four months work has been done in four areas. At first
attempts were made to develop faster optimization procedures for use with the
full-nonlinear-aerodynamics General Aviation (GA) model. Next, efforts were
made towards generating the maximal performance envelopes for the Jet
Transport model. Batch software for the IBM PC-XT was needed to do this
efficiently. Each trajectory optimization takes 1 to 2 hours. The batch
software allows one PC to do 10 or more optimizations overnight. The first of
several iterations began by attempting to calculate maximal performance
envelopes, having the optimization algorithm run into difficulties, and finding
a fix for the difficulties. In the process two major changes to the
optimization algorithm were incorporated. One was a switch from numerical to
analytical evaluation of the sensitivities of the discrete-time optimization
problem. The other eliminated the penalty function formulation of the control
saturation and stall limit inequality constraints. It was replaced by a
Lagrange multiplier formulation with a modified Newton's method search
procedure.

e ATTEMPT TO SPEED UP NAVION MODEL OPTIMIZATION

o GENERATION OF MULTI-OPTIMIZATION BATCH SOFTWARE

o ATTEMPTS TO CALCULATE BOEING 727 MAXIMAL PERFORMANCE ENVELOPES

o OPTIMIZATION PROCEDURE IMPROVEMENTS
ANALYTIC DERIVATIVES OF DISCRETE-TIME SYSTEM

LAGRANGE MULTIPLIER FORMULATION OF INEQUALITY CONSTRAINTS.
EXTENSION OF NEWTON'S METHOD
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ANALYTIC DERIVATIVES OF DISCRETE-TIME SYSTEM

The problem was transformed into discrete-time form in order to solve the
deterministic trajectory optimization on a digital computer. The discrete-time
nonlinear difference equation was generated from the continuous-time
differential equation by numerically solving the initial value problem (I.V.P.)
shown under the definition of the difference equation's right hand side
(RHS).

First and second derivatives of the RHS of the difference equation and the
cost function are needed in order to do trajectory optimization using Newton's
method. Previously these derivatives had been calculated numerically using a
three-point scheme. When microburst intensities got large, problems cropped
up in the convergence of the optimization algorithm near the solution. A
simple example showed that roundoff error in numerical differentiation could
be the cause. When analytic derivatives were substituted the problem went
away.

The analytic derivatives of the nonlinear difference equation were
generated as follows: The RHS of the difference equation is defined as the
solution of an I[.V.P. At each instant of time the solution to the 1.V.P.
depends on the arguments of the RHS of the difference equation.
Differentiation of the 1.V.P. -- both initial conditions and differential equation
-- any number of times with respect to the arguments of the difference
equation yields a new I.V.P. This new |.V.P. might be a matrix or a tensor
I.V.P. depending on the number of differentiations. It, too, can be solved
numerically to yield the corresponding derivative of the RHS of the difference
equation.

o DEFINITION:  xy4p = ECx 0,00

WHERE E(uuok) = X(Tiep) 5 x(1) THE SOLUTION

OF THE I.V.P. _
X(T) = E[X(T)l uK;T]

x(TK) = X

o EXAMPLE DISCRETE TIME SENSITIVITY (DIFFERENTIATE THE I.V.P.):

THE SOLUTION

X, X ’ axXg
OF THE 1.V.P, D ax(n - 3F X (1)
T (W ) = 3K [x(1), uK‘T]B_XK_
ax(TK)
S
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TRAJECTORY OPTIMIZATION WITH INEQUALITY CONSTRAINTS

The optimization problem with inequality constraints is one of picking a
control time history, u(k) for k = 1...N-1 which minimizes the cost, J,
subject to the discrete-time plant difference equation and the discrete-time
inequality constraints. Inequality constraints can be used to deal with
control saturation and to limit the angle of attack to be below stall. Proper
handling of control saturation and the stall limit is essential to maximal
performance envelope determination.

This optimization problem can be solved by the penalty function method.
A penalty cost is added to L whenever one of the inequality constraints is
violated. With this modified cost function, an unconstrained optimal trajectory
is determined. As the penalty is increased, the solution approaches that of
the original problem. In practice there is a limit to how fast the penalty cost
can be increased. Many unconstrained optima must be computed before an
answer sufficiently close to the constrained optimum is attained.

Direct necessary conditions for the inequality-constrained optimum are
attributed to Kuhn and Tucker *. According to these necessary conditions,
the inequality constraints are ignored when the optimal solution satisfies them
but does not lie on the boundary. The constraint is treated as an equality
constraint when the optimal solution does lie on the boundary. Then the
Lagrange multipliers must be non-negative, so that no better solution lies in
the admissible region. An extension of Newton's method is used to search
for a solution to the necessary conditions. These conditions are linearized
about the current guess. Then a quadratic programming problem is solved to
get the next guess for the optimal time histories. This procedure vyields
"exact" solutions to the inequality-constrained problem in as much time as is
required to solve an unconstrained problem, reducing computation by a factor
of three or more from the penalty function method.

The quadratic programming algorithm so far implemented to determine the

extended Newton's method increment has proven to be less than fully reliable.
Therefore, a new algorithm has been identified and is under development.

* Luenberger, D.G., Optimization by Vector Space Methods, John Wiley and
Sons, (New York, 1969), pp. 247-253.
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PROBLEM:

TRAJECTORY OPTIMIZATION WITH INEQUALITY CONSTRAINTS

MINIMIZE

SUBJECT TO:

0
—

J = L(xK,uK,K) + V(xN)
K

]
—

It
—

A
X+l = EQouoK) o« . N-1
X] GIVEN

g (XK:!JK;K) < O K = lo-n-N—l

PENALTY FUNCTION METHOD: ADD COST TO L(x,.,u,,k) IF CONSTRAINT IS VIOLATED

LAGRANGE MULTIPLIER METHOD: TREAT INEQUALITY CONSTRAINT AS EQUALITY CONSTRAINT

IF BETTER SOLUTION VIOLATES CONSTRAINT, OTHERWISE
IGNORE CONSTRAINT.

67



OPTIMAL TRAJECTORIES THROUGH SEVERAL MICROBURSTS

Six of the many optimal trajectories so far calculated are displayed on this
graph. These six are all Jet Transport take-off trajectories through 10,000
ft. microbursts. The engineering approximation microbursts have only
longitudinal winds: the head/tailwind varies as one period of 10,000 ft. sine
wave. The arrows represent the relative wind magnitudes and directions.
The six different curves represent optimal trajectories for the same cost
function (a cost function which weights altitude deviations from the nominal
most highly) and six different wind intensities. At the highest intensity, 120
fps maximum head/tailwind (240 fps longitudinal wind differential in 5,000
ft)., the maximum altitude deviation reaches 200 ft. Appreciable maximum
altitude deviations (greater than 40 ft.) occur at microburst intensities above
100 fps maximum head/tailwind.

SIX DIFFERENT SINUSOIDAL HEAD/TALLWIND INTENSITIES
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TAKE-OFF THROUGH SEVERAL MICROBURSTS

Time (range) histories of throttle setting, airspeed, angle of attack and
elevator angle are shown. Several features are noteworthy:

1. Full throttle is not commanded until some time after the
beginning of the optimization for the three microbursts of lowest
intensity. Full throttle is commanded immediately upon initiation of the
optimization for the other three cases. Maximum altitude deviation is
significant in the latter three cases. The optimization would have
anticipated the microburst by commanding full throttle even earlier if it
could have done so. Thus, the degree to which any controller can
anticipate the airspeed loss due to a microburst directly relates to the
degree of flight path tracking.

2. In those cases where airspeed fell below the 1-g stall limit, the
angle of attack was raised to the stall boundary at approximately the
same time. Subsequent regaining of airspeed margin above stall,
however, did not dictate coincident lowering of angle of attack below
the stall. Rather, the angle of attack remained at its stall limit for
some time after sufficient airspeed was regained for trim at the nominal
flight path angle. This was necessary to regain altitude lost during
the period of airspeed deficiency. The fact that stall angle of attack
did not precede stall airspeed indicates little or no microburst
anticipation _in the optimal pitch steering scheme. Therefore, near
optimal, practical (causal) pitch steering may be possible.

3. The plots of elevator angle indicate that constant stall angle of
attack can only be maintained through a varying command. The pilot
has to manuever to stay at this angle of attack.

OPTIMAL TIME HISTORIES ASSOCIATED WITH
SIX DIFFERENT HEAD/TAILWIND INTENSITIES
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TAKE-OFF TRAJECTORY TRACKING PERFORMANCE OF A JET TRANSPORT

The plot to the left on this figure shows actual results for maximal
microburst penetration performance during take-off of a Boeing-727. The
microbursts under consideration were the head/tailwind sine wave type. Each
triangle on the plot indicates an actual data point: for each triangle, an
optimization was run through a sinusoidal head/tailwind microburst of the
corresponding range and intensity, and the maximal altitude deviation from
nominal was recorded. Contours of equal maximum altitude deviation were
then generated via linear interpolation (extrapolation in one case) in the
microburst intensity direction and parabolic curve fitting in the microburst
range direction. The minima of the three upper contours occurred at
microburst range scales near that of the open-loop phugoid mode. If the plot
on the left were a three dimensional (3D) plot of maximal altitude deviation
(positive out of the paper) versus microburst range and intensity, then the
plot to the right would be the cross section of the 3D plot taken at the
microburst range 10,000 ft. The "knee" in this curve corresponds to the
microburst intensity where full throttle is commanded at the beginning of
optimization.
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CONCLUSIONS

The improvements to the nonlinear deterministic trajectory optimization
algorithm were significant. The use of analytic derivatives solved some
numerical problems. The extension of Newton's method to handle inequality
constraints may represent an important contribution to the general field of
deterministic trajectory optimization. In any case, it contributed greatly to
the feasibility of doing the performance envelope calculations at hand,
reducing computation time by a factor of three and higher. What would have
taken 3 hours on the IBM 3081 a year ago now takes 1.5 hours on an |IBM
PC-XT.

Examination of optimal trajectories through extreme microbursts and the
strategies employed to achieve them shed light on the control problem. A
relationship was found between anticipatory throttle activity and the ultimate

maximum altitude deviation. Therefore, the ultimate performance of an
optimized trajectory will depend significantly upon the point at which one
chooses to begin optimization. |n order to normalize for this effect, we chose

to begin our optimizations at the leading edge of each microburst. The
optimal angle of attack strategy showed a close correspondence to the optimal
airspeed policy with little anticipation, so it seems feasible to develop a
controller that would vary angle of attack to minimize the effect of airspeed
variations upon lift up to the stall saturation limit, at which point it would
hold the stall angle of attack until the aircraft was well on the way to
recovery.

e TRAJECTORY OPTIMIZATION ALGORITHM

UNIQUENESS AND EFFECTIVENESS OF NEWTON'S METHOD
APPLIED TO INEQUALITY CONSTRAINTS

FEASIBILITY OF MAXIMAL PERFORMANCE ENVELOPE CALCULATIONS

o OPTIMAL MICROBURST PENETRATION
DEPENDENCE UPON INITIAL RANGE
ANTICIPATION THROTTLE STRATEGY

FEASIBILITY OF ANGLE OF ATTACK STRATEGY
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PLANNED FUTURE WORK

The first task is to finish development of the new optimization procedure,
especially the quadratic programming portion of the extended Newton's
method. Hildreth's quadratic programming procedure * adapted to use the
Conjugate Gradient method should yield an efficient and robust algorithm.
The GA model still needs to be worked in with the new optimization procedure
in order to calculate GA performance envelopes. As software is developed
performance envelopes will be calculated for downdraft type and head/tailwind
type microbursts, landing and take-off flight phases, and Jet Transport and
General Aviation type aircraft. As time permits, practical control laws will be
developed which approach the performance of deterministic optimal microburst
penetration. '

* Luenberger, D.G., Optimization by Vector Space Methods, John Wiley and
Sons, (New York, 1969), pp. 299-300.

o OPTIMIZATION ALGORITHM
PERFECT QUADRATIC PROGRAMMING PORTION OF NEWTON'S METHOD
GET NAVION MODEL WORKING

o PERFORMANCE ENVELOPE CALCULATIONS
BOEING 727 AND NAVION AIRCRAFT
LANDING AND TAKE-OFF PHASES
HEAD/TAIL WIND AND DOWNDRAFT TYPE MICROBURSTS

o PRACTICAL CONTROL LAW DESIGN

72




