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Summary 
A method is described for calculating unsteady 

transonic flow with viscous interaction by coupling 
a steady, integral boundary-layer code with an 
unsteady, transonic, inviscid small-disturbance com- 
puter code in a quasi-steady fashion. Explicit cou- 
pling of the equations together with viscous-inviscid 
iterations at each time step yield converged solu- 
tions with computer times about double those re- 
quired to obtain inviscid solutions. The accuracy 
and range of applicability of the method are inves- 
tigated by applying it to four AGARD standard 
airfoils. The first-harmonic components of both 
the unsteady pressure distributions and the lift and 
moment coefficients have been calculated. Com- 
parisons with inviscid calculations and experimental 
data are presented. These comparisons show that the 
viscous boundary layer can have a large effect on un- 
steady pressures even though steady-flow effects are 
small. The results demonstrate that accurate solu- 
tions for transonic flows with viscous effects can be 
obtained for flows involving moderate-strength shock 
waves. 

Introduction 
Unsteady transonic flow fields are routinely cal- 

culated with computer codes using finite-difference 
methods. Many of these computer codes are based 
upon transonic small-disturbance theory (ref. 1) and 
are quite accurate, within the limits of this theory, 
if viscous effects are small (ref. 2). For example, 
Bland and Seidel (ref. 3) present extensive inviscid 
calculations for several of the unsteady transonic test 
cases recommended by the AGARD Structures and 
Materials Panel (ref. 4) and show excellent agree- 
ment between inviscid calculations and experiments 
for subcritical conditions. However, the agreement 
deteriorates as free-stream Mach number is increased 
and embedded shocks develop and move aft. For 
transonic flows with moderate or strong shocks, the 
inclusion of viscous effects is essential for accurate 
predictions of aerodynamic loading (ref. 5). 

Although Navier-Stokes computer codes are avail- 
able for viscous calculations (refs. 6 and 7), their 
cost is prohibitive for routine use. As a result, 
much effort has been directed toward coupling vis- 
cous boundary-layer models with inviscid analy- 
ses (ref. 8). As commonly implemented, the in- 
viscid outer flow solution provides the pressure 
distribution that is needed to solve the boundary- 
layer equations for the boundary-layer displacement- 
thickness distribution. This boundary-layer dis- 
placement thickness is used to modify the airfoil 
surface boundary condition for the next outer flow 

inviscid solution. This iterative process is then 
repeated until the airfoil surface pressures converge. 

For steady transonic flows over airfoils and wings 
at moderate angles of attack, this iterative solution 
technique yields solutions that show good agreement 
with experiments (refs. 5 and 9). For unsteady flow 
problems, adequate techniques for viscous-inviscid 
interactive calculations are still under development 
(refs. 10 and 11). 

Quasi-steady coupling between the integral lag- 
entrainment, steady boundary-layer model of Green 
(ref. 12) and the LTRAN2 unsteady transonic code 
(ref. 1) has been reported by Rizzetta (ref. 13). The 
resulting computer code was applied by Guruswamy 
and Goorjian (ref. 14) in a study of the effects of 
viscosity on unsteady transonic airloads. Up to 8 OOO 
time steps per cycle of oscillation were required to 
obtain reasonably accurate answers. For step sizes 
even smaller than this the computer code became 
unstable. In a similar investigation using a different 
transonic small-disturbance computer code, Houwink 
(ref. 15) obtained satisfactory solutions with 120 time 
steps per cycle. 

In reference 16, preliminary results from the 
present study were reported in which Rizzetta's 
boundary-layer method was incorporated into the 
unsteady, transonic, small-disturbance computer 
code XTRAN2L (ref. 17). Several improvements to 
the procedure of Rizzetta were described, the most 
important being a change of the viscous-inviscid cou- 
pling procedure and the inclusion of viscous-inviscid 
iterations at each time step in order to obtain con- 
verged solutions. In addition, the semiempirical 
viscous wedge was eliminated and the boundary- 
layer equations were numerically integrated from a 
specified transition point to the downstream 
computational boundary. 

'In the present paper, all modifications included in 
the viscous code of reference 16 are described along 
with the most recent improvements. The accuracy 
and range of applicability of the code are investigated 
by applying it to four of the airfoils recommended 
for transonic test cases by the AGARD Struc- 
tures and Materials Panel (ref. 4): NACA 64AOO6, 
NACA 64A010A, MBB-A3, and NACA 0012. The 
results include the calculated first-harmonic compo- 
nents of the unsteady pressure distributions and the 
Calculated lift and moment coefficients. Comparisons 
with the inviscid calculations of Bland and Seidel 
(ref. 3) and experimental data (ref. 18) are presented. 
These results extend the comparisons of reference 3 
to include viscous effects and demonstrate the im- 
provements obtained in predicting shock location and 
strength. 
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entrainment coefficient 

pressure coefficient 

critical pressure coefficient 

normalized unsteady pressure coeffi- 
cient; first harmonic of C, divided by 
oscillation amplitude 

normalized unsteady lifting pressure 
coefficient 

airfoil chord, m 

first-harmonic hinge-moment coeffi- 
cient due to flap rotation, per radian 

steady lift coefficient 

first-harmonic lift coefficient due to  
pitch, per radian 

first-harmonic lift coefficient due to 
plunge, per h/c  

first-harmonic lift coefficient due to 
flap rotation, per radian 

steady pitching-moment coefficient 

first-harmonic pitching-moment 
coefficient due to plunge, per h/c  

first-harmonic pitching-moment 
coefficient due to pitch, per radian 

first-harmonic pitching-moment 
coefficient due to flap rotation, per 
radian 

airfoil surface function 

oscillation frequency, Hz 

functions in boundary-layer equations 
defined by equations (Al) to (A3) 

boundary-layer shape factors 

plunge displacement in y-direction, m 

dynamic plunge amplitude, m 

reduced frequency, wc/2U 

freestream Mach number 

Prandtl number 

Reynolds number, U c / v  

Sutherland number 

nondimensional time, w t  

- 
t 
U 
X 

XQ 

“P 

Y 

CY 

am 
CY0 

P 
Pm 

P O  

Y* 
A( ...) 

Y 

s* 

E 

8 

t 

4 
V 

W 

Subscript: 
i 

time, sec 

free-stream velocity, m/sec 
normalized streamwise coordinate 
relative to leading edge, positive 
downstream 

pitch-axis location relative to leading 
edge 

flap-axis location relative to leading 
edge 

normalized coordinate normal to free 
stream, positive up 

angle of attack, deg 
mean angle of attack, deg 
dynamic pitch angle, deg 

flap angle, deg 
mean flap angle, deg 
dynamic flap angle, deg 
ratio of specific heats 

= 2 - ( 2 - 7 ) M 2  
indicates jump in ... 
boundary-layer displacement thickness, 
m 

airfoil thickness ratio 
boundary-layer momentum thickness, 
m 

streamwise physical coordinate 

kinematic viscosity, m2/sec 
inviscid-disturbance velocity potential 
angular frequency, 27r f ,  rad/sec 

index of grid points in x-direction 

Superscript: 
n nth time step 

All angles are positive for trailing edge down. 
Moments are positive for leading edge up. Pitching 
moments are taken about the quarter-chord in all 
cases. In all cases, hinge moments are taken about 
the hinge axis located at the three-quarter chord. 

Analysis 
The inviscid code used in this study is the 

XTRAN2L computer code developed at the NASA 



Langley Research Center by Whitlow (ref. 17). 
This code is an extensively modified version of 
the LTRAN2-NLR code developed by Houwink and 
Van der Vooren (ref. 19), which is, in turn, an 
improved version of the LTRAN2 code of Ball- 
haus and Goorjian (ref. 1). Additional details on 
the XTRAN2L code may be found in the User's 
Manual (ref. 20). 

Inviscid Analysis 

The XTRAN2L code is used to solve the complete 
two-dimensional transonic small-disturbance (TSD) 
equation 

4k2M2 4kM2 
4tt + -4xt = [(I - M 2 ) / ~ 2 / 3  &2/3 &2/3  

The disturbance velocity potential is normalized 
by o 2 l 3 ,  where c is the airfoil chord and E is the 
airfoil thickness ratio. The spatial coordinates z 
and y and the time t are normalized by c ,  c / E ' / ~ ,  
and w-l ,  respectively, where w is the frequency of 
unsteady motion. The reduced frequency (based on 
the semichord) is k = wc/2U, where I/' is the free- 
stream velocity. The free-stream Mach number is M 
and y* = 2 - (2 - y ) M 2 ,  where y is the ratio of 
specific heats. 

The boundary conditions on the airfoil and wake 
are 

4; = F$ + Ft' (0 6 z 5 1 ;  y = O f )  (2) 

(1 < z; y = O f )  (3) 

(1 I z; y = O f )  ( 4 )  

A& = 0 

A(4x + 4t) = 0 

where the superscript f refers to the airfoil upper or 
lower surface, the function F ( z ,  t )  denotes the airfoil 
surface, and A( ...) indicates a jump in the bracketed 
quantity across the wake. In the far field, nonre- 
flecting boundary conditions are used on the outer 
edges of the computational domain. The nonreflect- 
ing boundary condition for the upstream boundary 
is (see ref. 17 by Whitlow) 

For the downstream boundary, the condition is 

2 1 ( s + j @ ) O t + 4 . = 0  -A D 

At the top of the computational domain, 

BD 
A -4x + 4 y  = 0 

At the bottom of the computational domain, 

BD 
x 4 x  - 4 y  = 0 

In these equations, the coefficients are defined by 

2 213 A =  4kM / E  

B = (1 - M 2 ) ~ 2 / 3  - M2(y*  + l)+x 
c =  4k 2 M 2 / E  213 

An alternating-direction implicit (ADI) solution 
algorithm is used to obtain numerical results. Com- 
plete details are given by Whitlow in reference 17. 
The numerical results are obtained on an 80 x 61 
computational grid in x-y space. Details of the grid 
are presented in reference 21. This grid extends f20c 
in 2, f25c in y, and has 51 grid points on the airfoil. 
Converged steady inviscid solutions are obtained and 
used as starting solutions for steady viscous analyses. 
The unsteady solutions are initiated from the respec- 
tive inviscid or viscous steady solutions. 

Viscous Analysis 

The effect of a viscous boundary layer for attached 
turbulent flow is modeled in a quasi-steady man- 
ner by means of Green's lag-entrainment equations 
(ref. 12) as implemented by Rizzetta (ref. 13). This 
integral method evaluates the boundary-layer param- 
eters by the following equations (see appendix A for 
details): 

( !)x = f l  + f24xx 

8 -  
- C H x  = f 3  + f44xx 

8 
- ( c E ) x  = f 5  + f645x 
C 

The coefficients f 1  to f6 are functions of 8, E, c ~ ,  
and other parameters given in detail in appendix A. 
The function 4xx is calculated from the inviscid- 
disturbance velocity potential 4 as explained in the 
following section. The boundary-layer displacement 
thickness 6* is computed by 

6* = 8 - H(P) 
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- The equation relating the two shape factors H and 
H is given in appendix A. 

Downstream of the trailing edge, the same equa- 
tions are applied to each side of the wake surface in- 
dependently with the skin friction set to zero and the 
dissipation length scale doubled as in reference 12 to 
account for the observed far field behavior of wakes. 

Coupling between the boundary layer and inviscid 
analyses is through the boundary conditions on the 
airfoil and wake. The boundary conditions given by 
equations (2) and (3) are modified, respectively, as 
follows (see ref. 11 by Houwink and Veldman and 
ref. 13 by Rizzetta): 

Aby =A(:) 2 

(0 I z 5 1; y =Of) (5) 

(1 < 2; y = o f )  (6) 

Equation ( 5 )  is a direct extension of the airfoil bound- 
ary condition as given by Rizzetta (ref. 13) to include 
the term FF that has been added to account for 
the time dependence of the airfoil motion in the 
boundary conditions. 

Viscous-Inviscid Coupling 

A key feature of any viscousinviscid interaction 
method is the precise manner in which the boundary- 
layer calculations are coupled with the inviscid code. 
Several significant modifications to the procedures 
used by Rizzetta (ref. 13) have been incorporated 
into the present method, and these modifications are 
described in the following paragraphs. 

1. In the analysis of Rizzetta (ref. 13), the cou- 
pling between the inviscid code and the boundary- 
layer calculations is done in an implicit manner. In 
the present code, this coupling, for calculations on 
the airfoil, is made explicit in a form similar to that 
of Houwink (ref. 15). Implicit coupling is retained 
along the wake. The explicit coupling between the 
boundary layer and inviscid solution on the airfoil 
is implemented by the direct use of equation (5) in 
the expression for the airfoil downwash. That is, at 
time level t = tn+', the last term on the right side 
of equation (5) is evaluated by using values at the 
previous time step t = tn as follows: 

Although this procedure does involve a lag of the 
boundary-layer displacement thickness by one time 
step, it has been shown in reference 16 to be of 
comparable accuracy to the implicit procedure and, 

in addition, it allows a substantial increase in the size 
of the time step used in the numerical integration of 
the flow equations. 

2. The calculation of q555 for input to the 
boundary-layer equations has been modified. In the 
original method of Rizzetta, type-dependent differ- 
encing was used to calculate q555. This differenc- 
ing was included in the code described in refer- 
ence 16. Type-dependent differencing is normally 
used in modern computational fluid dynamics to 
account properly for the domain of dependence in 
solving partial differential equations by the finite- 
difference method and not for calculating the deriva- 
tives of known functions as is required in the present 
application. 

In reference 16, use of typedependent differencing 
resulted, for some applications, in spurious amplitude 
effects due to a jump in the lift and moment time 
histories when the shock moved across a grid point. 
To remove this jump, the calculation of q5z5 has been 
modified. In the present method, q55 is calculated 
using central differences. A linear least-squares fit to 
five successive values of q55 is calculated and the slope 
of this line is taken as the value of q5zz at the center 
point. To calculate &z at the two grid points nearest 
the airfoil trailing edge, the last five points on the 
airfoil are used. Calculations that show the effect of 
this modification upon the calculated unsteady loads 
are presented in appendix B. 

3. An option was added to allow for iterating the 
viscous-inviscid solutions at each time step. Note 
that iterations were not required when moderate- 
strength shocks were located near midchord and the 
reduced frequency was greater than 0.1. For low val- 
ues of reduced frequency ( I C  < 0.1) or for cases with 
strong shocks located well back on the airfoil, iter- 
ating between the inviscid and viscous solutions at 
each time step can significantly improve the accuracy 
of the calculated results. No case has been found 
that required more than two iterations. For com- 
putational efficiency, these iterations are done only 
over the y-sweep of the alternating-direction implicit 
(ADI) solution of equation (1). (See ref. 16.) 

4. In the original method (ref. 13), the vis- 
cous equations were integrated using a second-order 
Runge-Kutta algorithm with the values of q55 and &2 
specified at each inviscid-solution grid point on the 
airfoil and wake. For the computational grid used in 
this study, the integration spatial step size was found 
to be too coarse because of the rapid stretching of the 
grid in the near wake, and thus a finer step size was 
used for integration of the boundary-layer equations. 
Ten boundary-layer grid points were used between 
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each pair of inviscid-solution grid points. The re- 
quired values of q5x and q5xx at the refined viscous 
grid points were determined by interpolation. 

5. The boundary layer is calculated from the air- 
foil leading edge to a user-specified point on the 
airfoil (default value for this point is 10 percent 
chord) using the theory for turbulent flow over a flat 
plate. From this point to the downstream bound- 
ary, Green’s lag-entrainment equations are numer- 
ically integrated with a second-order Runge-Kutta 
algorithm. No special provision is made for numer- 
ically integrating through the shock. This allows a 
consistent description of the boundary layer from the 
specified point to the downstream boundary. In con- 
trast, Rizzetta (ref. 13) inserts a semiempirical vis- 
cous wedge at the base of the shock and integrates 
the boundary-layer equations from that point on. 

The computer time for the viscous code with the 
above modifications is approximately 1.8 times the 
computer time for an inviscid calculation. 

Results and Discussion 

Test Cases 

The accuracy of the present method is evalu- 
ated by selecting several test cases recommended by 
AGARD (ref. 4) and comparing the computed vis- 
cous loads with measured data and computed invis- 
cid loads from reference 3. All the AGARD cases for 
the NACA 64AOO6 and NACA 64A010A airfoils are 
included as well as calculations for six of the MBB-A3 
airfoil cases and four of the NACA 0012 cases. The 
calculated results presented herein correspond to the 
AGARD cases and have not been corrected for wind- 
tunnel test conditions. It should be noted that the 
NACA 64A010A airfoil has the coordinates of the 
section tested at the NASA Ames Research Center 
(given in ref. 4), has a small amount of camber, and 
is thicker than the symmetric design section. Pro- 
files of the airfoil sections are presented in figure 1. 
Tables I to IV give the test conditions for analysis 
of each of these cases. The reduced frequency k is 
based on the semichord. 

The modes of motion are described by the follow- 
ing equations: 

For pitch, 

For plunge, 

a(t) = a, +ao sin w t  

h(S) = ho sin wZ 

For control surface rotation, 

P(t) = Pm + Po sin w t  

In these equations, am is the mean angle of attack, 
pm is the mean angle of rotation of the control sur- 
face, and w = 2kU/c. In all cases, three cycles of 
unsteady motion are calculated in order to allow 
transients to decay. Typically, 360 time steps per 
cycle of oscillation are used for the unsteady solu- 
tions. Pressure calculations for the analytical re- 
sults use the linearized transonic small-disturbance 
approximation (ref. 20) 

For each airfoil, the steady-flow pressure distri- 
butions are first shown for each Mach number to be 
analyzed. The unsteady results for each of the 
AGARD computational test cases are then given 
with four plots grouped together on one page for 
each case. The plots on these figures show the 
following: (a) the mean pressure distribution over 
the airfoil chord during the last cycle of harmonic 
motion, (b) the lifting pressure (lower minus u p  
per surface pressure), (c) the upper surface pres- 
sure, and (d) the lower surface pressure. The un- 
steady pressures are presented as real (in phase) 
and imaginary (in quadrature) parts of the first- 
harmonic component of the pressure computed from 
the last cycle of the imposed simple harmonic mo- 
tion using a fast Fourier transform analysis. These 
first-harmonic components are normalized by the 
nondimensional amplitude of motion, i.e., angle of 
attack and flap rotation (in radians) or plunge dis- 
placement (in chords), as appropriate. Although the 
harmonic pressures plotted on each figure are shown 
to the same scale, there is some variation in the scales 
between the figures. In addition to the plotted pres- 
sure distributions, the first-harmonic components of 
the force coefficients are given in tables V to VIII. 

NACA 64A006 Airfoil 

The test cases for the NACA MA006 airfoil were 
chosen to match the experimental conditions of refer- 
ence 22. All cases involve oscillation of a flap with a 
hinge axis located at the threequarter chord, and the 
mean flap angle is zero. The cases include five Mach 
numbers, two frequencies, and two oscillation ampli- 
tudes (table I). All analytical cases used a Reynolds 
number of 2.30 x lo6. 

The steady-flow pressure distributions for the vis- 
cous and inviscid calculations are shown in figure 2 
and are compared with the measured pressures. The 
figure shows that for steady flow, the inviscid re- 
sults are quite good for subcritical Mach numbers, 
although the viscous calculations are closer to the 
experimental values near the trailing edge. As the 
Mach number is increased to 0.850, a shock wave 
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develops and the agreement of inviscid pressures with 
experiment begins to deteriorate (fig. 2(c)). The 
location and strength of the shock wave are pre- 
dicted better by the viscous theory, and the viscous 
pressures show better agreement downstream of the 
shock. As the shock becomes stronger and moves aft 
on the airfoil, agreement of the viscous calculations 
with the experiment begins to deteriorate, although 
the viscous pressures are still closer to the experiment 
than the inviscid calculations (fig. 2(d)). For a Mach 
number of 0.960 (fig. 2(e)), both the inviscid and vis- 
cous calculations place the shock at the trailing edge, 
whereas the experimental value is about z/c = 0.88. 

In this connection, it should be noted that 
potential theory is known to predict nonunique re- 
sults in certain cases with strong shocks (ref. 23). For 
conditions near the regions of nonuniqueness, poten- 
tial theory can also be seriously in error (ref. 24). 
Entropy corrections to the TSD theory have been 
developed by F'uglsang and Williams in reference 25 
and offer promise of more accurate solutions for flows 
with strong shock waves. 

The calculated boundary-layer displacement 
thicknesses that correspond to the steady cases of fig- 
ure 2 are shown in figure 3. For all the cases, the flow 
is attached with no evidence of even mild separation. 
As the figure shows, for subcritical Mach numbers the 
effect of increasing Mach number is a slight increase 
in the displacement thickness on the aft part of the 
airfoil. As the shock wave develops near midchord 
( M  = 0.850), the displacement thickness increases 
noticeably across the shock. For the strong shock 
case ( M  = 0.875), the boundary-layer displacement 
thickness doubles in value across the shock wave. As 
the Mach number is increased to 0.960, the shock 
wave moves downstream to the trailing edge, and the 
decreasing pressure gradient upstream of the shock 
results in reduced values of displacement thickness 
on the aft part of the airfoil. 

Results for the unsteady pressure distributions 
are given in figures 4 to 15, and results for the un- 
steady lift, pitching-moment, and hinge-moment co- 
efficients are given in table V. The mean pressures 
from the unsteady pressure calculations (part (a) of 
figs. 4 to 15) are very similar to the steady pressures. 
The first harmonics of the unsteady pressure distri- 
butions are shown in parts (b) to (d) of figures 4 to 
15. Figures 4 to 8 show close agreement between vis- 
cous and inviscid calculations for subcritical cases, 
with the viscous results being slightly closer to the 
experimental values except near the flap hinge line 
where the viscous theory underpredicts the pressure 
singularity. As illustrated in figures 4 and 5, better 
agreement between theory and experiment occurs at 
the higher frequency. For M = 0.825 (figs. 6 to 8), 

the calculated unsteady pressures indicate the onset 
of a shock wave near 40 percent chord, although the 
effects of viscosity relieve this significantly and it is 
not seen in the experiment. The boundary layer has 
a large effect on the unsteady pressures even when 
the steady flow effects are small. Both the calculated 
and experimental mean pressures for these cases in- 
dicate that the flow is subcritical in agreement with 
the steady results (fig. 2(b)). The calculated effect 
of increasing the amplitude of the flap motion from 
1' to 2' is to displace the shock position aft about 
5 percent chord (figs. 6 and 7). A comparison of fig- 
ures 6 and 8 provides another example that better 
agreement between theory and experiment occurs at 
the higher frequency. 

At Mach numbers of 0.850 and 0.875 (figs. 9 
to 13), a shock has developed and the viscous cal- 
culations correct about one-half of the discrepancy 
between the experiment and the inviscid shock pulse 
for both the real and imaginary components. For 
M = 0.850 the shock pulse is well upstream of the 
flap hinge line and the predicted pressures on the 
flap are in excellent agreement with the experiment 
for both frequencies. As the Mach number is in- 
creased to 0.875, the experimental shock peak (near 
z/c = 0.55) and hinge peak (z/c = 0.75) are easily 
distinguished, whereas in the calculated results the 
two peaks are merged into one. The viscous calcula- 
tions do show an indication of two peaks. Once the 
calculated shock pulse reaches the flap hinge line, the 
flap pressures predicted by the viscous theory begin 
to deviate from the experiment. At M = 0.875, the 
effect of increasing the flap oscillation amplitude from 
1' to 2' at the lower frequency ( I C  = 0.059) may be 
seen by comparing figures 11 and 12. The shock os- 
cillates over a larger distance at the larger amplitude 
with the center of the shock pulse being displaced aft 
about 5 percent chord. 

The calculated unsteady pressure results at 
M = 0.960 (figs. 14 and 15) are qualitatively differ- 
ent from the experimental data. The potential flow 
code has placed the shock wave at the trailing edge 
in contrast to the experimental value of z/c M 0.88. 
(See fig. 2(e).) Both theory and experiment show 
very small unsteady pressures ahead of the flap. 

Forces and moments from the unsteady calcula- 
tions are given in table V along with experimental 
values and linear theory. Summary plots are pre- 
sented in figures 16 and 17. As shown in figure 16 
for the low frequency cases ( I C  = 0.06), the viscous 
results correct up to 30 percent of the difference be- 
tween the inviscid results and the experiment for the 
lower Mach numbers. However, the calculated results 
still tend to diverge from the experimental values for 
the strong shock cases as shown by the imaginary 
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component of c in figure 16(b). Figure 17 
shows that the inviscid results agree better with the 
experiment for the moderate frequency case 
(k = 0.24) than for the low frequency case, and the 
inclusion of viscous effects generally improves the 
agreement. For both frequencies the viscous cor- 
rections to clp are very good at the higher Mach 
numbers. The linear theory results are competitive 
with the computational fluid dynamics (CFD) results 
for predicting the integrated forces and moments for 
most of the cases investigated for this airfoil. 

" P  

NACA 64A010A Airfoil 
The AGARD cases for the NACA 64A010A airfoil 

are listed in table I1 and detailed plots are presented 
in figures 18 to 30. The cases are for the model tested 
at the NASA Ames Research Center (ref. 26) and in- 
clude essentially two Mach numbers ( M  = 0.5 and 
0.8), two Reynolds numbers, and several frequencies 
and amplitudes of pitch oscillation about the quarter- 
chord. The airfoil has a very small amount of cam- 
ber and surface waviness, as is evident in the steady 
pressure distributions shown in figure 18. For the 
low Mach number cases (figs. 18(a) and (b)), the 
agreement between theory and experiment is excel- 
lent with virtually no viscous effects. Figures 18(c) 
to [e) present the high Mach number results with 
part (e) giving the low Reynolds number case. For 
the high Mach number cases, small viscous effects 
are evident with the viscous shock being slightly for- 
ward and weaker. In general, the agreement between 
the experiment and both the viscous and inviscid 
calculations is quite good. 

The effect of Reynolds number on calculated 
boundary-layer displacement thicknesses for the 
steady computations is shown in figure 19. The low 
Mach number results (fig. 19(a)) show a definite re- 
duction in the boundary-layer displacement thickness 
for the higher Reynolds number case even though 
the calculated pressures (figs. 18(a) and (b)) indi- 
cate no significant viscous effects. The high Mach 
number results (fig. 19(b)) show a similar reduction 
in boundary-layer displacement thickness with 
increasing Reynolds number with a noticeably larger 
reduction downstream of the shock. 

The first harmonics of the unsteady pressure 
distributions are shown in figures 20 to 29. At 
M x 0.5 (figs. 20 and 21) the viscous and inviscid 
results are virtually indistinguishable as was previ- 
ously indicated for the steady-flow calculations. The 
agreement between theory and experiment is excel- 
lent with perhaps better agreement at the higher 
Reynolds number (fig. 21). The remaining results 
are for M - 0.8. Cases 3 to 7 (figs. 22 to 26, 
respectively) illustrate frequency effects, with k 

ranging from about 0.025 to 0.3. For each of these 
cases, the viscous calculations correct more than 50 
percent of the discrepancy in the shock pulse loca- 
tion shown by the inviscid calculations. The system- 
atic decrease in calculated shock pulse width with 
increasing frequency is evident, with agreement of 
theory and experiment perhaps being somewhat bet- 
ter at the intermediate frequencies. Note particularly 
that the viscous calculations of the real and imagi- 
nary peak pressures are brought into very good agree- 
ment with the experimental values. The effect of the 
boundary layer on the unsteady pressures is large 
even though the steady-flow effects are small. Ahead 
of the shock the calculated unsteady pressures show 
a systematic trend in which the pressures are over- 
predicted at low frequencies and underpredicted at 
higher frequencies. This trend is true for both the 
real and imaginary components of the pressure and 
is affected very little by viscosity. Behind the shock 
the viscous calculations alleviate the post-shock 
reexpansion seen in the inviscid calculations at a p  
proximately 65 percent chord, leading to generally 
better agreement with experiment. 

Cases 6 and 10 (figs. 25 and 29) were chosen to 
illustrate the effect of Reynolds number, although 
the slight differences in Mach number, amplitude, 
and frequency may obscure the comparison. At the 
higher Reynolds number (fig. 25), the viscous ealcu- 
lation appears to agree better with the experiment 
than at the lower Reynolds number (fig. 29). The 
minimal effect of Reynolds number shown in the ex- 
perimental results is correctly predicted by the vis- 
cous calculations, and the viscous results agree better 
with the experiment than the inviscid results at both 
Reynolds numbers. 

The effect of oscillation amplitude is illustrated 
by comparing figures 24, 27, and 28 for a. = 1.02', 
0.51°, and 2.00", respectively, and at k = 0.101. For 
smaller amplitudes, the shock pulse is narrower ( b e  
cause of less shock motion) and higher (because of 
amplitude normalization). (Note the different scale 
in fig. 27.) Away from the shock, the plotted nor- 
malized pressures (i.e., divided by oscillation ampli- 
tude) for both theories and experiments are essen- 
tially the same for all three cases. Although not 
shown herein, higher harmonic content was evident 
in the pressure time histories and provided some ev- 
idence of the nonlinear effect of increased oscillation 
amplitudes. 

A summary of the calculated unsteady lift and 
pitching-moment coefficients is presented in table VI 
together with the experimental values and linear t h e  
ory. Summary plots are shown in figure 30. In 
general, the viscous corrections improve the agree- 
ment between the calculations and the experiment. 
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The XTRAN2L inviscid results deviate from the 
experiment at the lowest frequencies but otherwise 
show proper trends with increasing frequency. 

MBB-A3 Airfoil 

The six test cases studied for the MBB-A3 airfoil 
are listed in table 111. The selected cases are specified 
to be at the supercritical design point ( M  = 0.765, 
a, = 1.5', and cl = 0.519) given in reference 4. 
Included are cases for airfoil pitch oscillation about 
the quarter-chord and for plunge oscillation, each at 
three reduced frequencies, k = 0.1, 0.3, and 0.9. The 
Reynolds number is 6 x lo6 for all cases. The cal- 
culated cases are for the actual experimental values 
of Mach number and angle of attack rather than for 
values that have been adjusted to match flow con- 
ditions in the wind tunnel, as is frequently done in 
comparisons with these particular data. The pres- 
sure distributions are presented in figures 31 to 37, 
and the unsteady lift and pitching-moment coeffi- 
cients are presented in table VII. Calculated values 
only are presented for the six unsteady cases. 

The steady pressure distribution is shown in fig- 
ure 31. The experimental data are taken from fig- 
ure 8.2 of reference 27. The experiment shows a 
supercritical flow without a discernible shock wave 
typical of the flow at the design point. The 
region of supercritical flow terminates at about 
z/c = 0.53. The viscous calculation indicates a 
moderate-strength shock wave at nearly the same lo- 
cation with cl = 0.568. Away from the shock, agree- 
ment between the viscous calculation and the exper- 
iment is very good, although some discrepancies are 
noted near the leading edge. The viscous solution 
shows a marked improvement over the inviscid cal- 
culation, especially downstream of the region of su- 
percritical flow. For this case, the inclusion of vis- 
cous effects yields a significant improvement in the 
calculation of the steady pressure distribution. 

The calculated unsteady pressure distributions 
for the MBB-A3 airfoil are given in figures 32 to 37. 
In all cases, the viscous calculations for the upper 
surface are substantially different from the inviscid 
calculations insofar as shock location and strength 
are concerned. For the (subcritical) lower surface, 
both viscous and inviscid calculations are nearly 
coincident. The effect of varying frequency from 
k = 0.1 to 0.9 may be seen by comparing figures 32 
to 34 for pitch and figures 35 to 37 for plunge. 
For pitch, increasing the frequency to k = 0.9 leads 
to a decrease in the magnitude of the shock pulse. 
This effect is more pronounced for the inviscid 
calculations. For plunge, the most obvious effect 
is the increasing overall pressure level with increas- 
ing frequency. This increase is consistent with 

piston theory which predicts forces proportional to 
frequency. 

The calculated viscous and inviscid unsteady 
forces listed in table VI1 are plotted in figure 38. 
As the figure shows, the differences between the vis- 
cous and inviscid results decrease with increasing 
frequency. In the low frequency region, the invis- 
cid solutions seem to exhibit a nonphysical behavior 
in that the imaginary components do not approach 
zero as the frequency tends toward zero. In con- 
trast, the imaginary components of the viscous solu- 
tions are clearly tending toward zero with decreasing 
frequency. 

NACA 0012 Airfoil 

The AGARD cases investigated for the NACA 
0012 airfoil involve greater mean angles of attack 
(up to 4.86') and larger amplitude pitch oscilla- 
tions (up to 4.59') than those studied previously 
for the other airfoils. Although application of the 
small-disturbance theory to these cases may be ques- 
tionable, the results are presented here to evaluate 
further the limits of the present theory. Unsteady 
pressure distributions are compared on the basis of 
first-harmonic components only. The experimental 
pressure data presented were obtained by harmonic 
analysis of the time history data given in reference 28. 
The experiments were conducted as part of a study of 
dynamic stall, and no steady measurements were re- 
ported. The test cases are listed in table IV, and 
the results are presented in figures 39 to 44 and 
table VIII. 

Steady pressure distributions for viscous and 
inviscid calculations are presented in figure 39. The 
main viscous effects are a decrease in the leading-edge 
suction peak and a slight rise in the pressure level on 
the lower surface. For case 5 (fig. 39(d)), viscous ef- 
fects are negligible. In all cases, the numerical values 
of the boundary-layer shape parameter suggest that 
the flow is close to  separation at the trailing edge. 

The unsteady pressure distributions are shown 
in figures 40 to 43. Note that for cases 2 and 3 
(figs. 41 and 42), no viscous results could be obtained 
because of the severity of the test cases, that is, the 
probable onset of flow separation at the trailing edge. 
As shown in figure 40, for case 1 the viscous effects 
are small and the viscous calculation underpredicts 
both the inviscid method and the experiment. For 
cases 2 and 3, the inviscid calculations underpredict 
the mean pressures but the first harmonics of the 
unsteady pressures are quite accurate. In test case 5 
(fig. 43) the inviscid result slightly underpredicts the 
mean pressure and agrees well with the unsteady 
pressures. The unsteady viscous results for case 5 
indicate a viscous effect even though the steady 
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calculation (fig. 39(d)) is virtually identical to the 
inviscid result. The viscous calculation underpredicts 
both the inviscid calculation and the experiment. 

Plots of the lift and pitching-moment coefficients 
versus a for the oscillatory cases 1, 2, 3, and 5 are 
presented in figure 44. The lift coefficient compar- 
isons are from very good to good with the invis- 
cid results being closer to the experiment than the 
viscous results for cases 1 and 5.  The pitching- 
moment coefficients show a systematic difference be- 
tween the experimental and calculated values that 
may result from the underprediction of leading-edge- 
suction peak pressures on the upper surface discussed 
above. For case 1, the inviscid calculation is closer to 
the experiment than the viscous calculation, whereas 
for case 5 both the inviscid and viscous moment co- 
efficients are of comparable accuracy. The charac- 
teristic shape of the cm versus a curves is indica- 
tive of a large contribution of the second harmonic. 
In figure 44(d), the different shape of the cm ver- 
sus a curve is a result of an increased amplitude of 
the third-harmonic component. These cases demon- 
strate that the inviscid XTRAN2L code can pre- 
dict with reasonable accuracy the airloads due to 
largeamplitude pitch oscillations, whereas the vis- 
cous code (for attached flow) encounters computa- 
tional difficulties undoubtedly due to the onset of 
flow separation at the trailing edge. 

Conclusions 
A method is presented for calculating unsteady 

transonic flow with viscous interaction. The method 
uses Green’s steady-flow lag-entrainment equations 
in connection with an unsteady, transonic, inviscid 
small-disturbance computer code. The viscous equa- 
tions are explicitly coupled with the unsteady code 
in a quasi-steady manner. The method includes 
an option that allows viscous-inviscid iterations at 
each time step to ensure converged solutions. The 
method has been applied to several transonic test 
cases recommended by the AGARD Structures and 
Materials Panel. Comparisons with both inviscid 
analyses and experiments are presented. The re- 
sults demonstrate that accurate solutions to tran- 
sonic flows with viscous effects are obtained for flows 
involving moderate-strength shock waves. The fol- 
lowing general conclusions may be drawn from the 
results: 

1. For the conventional NACA 64A006 and 
64A010A airfoils with weak or moderate-strength 
shock waves, the viscous calculations compare more 
favorably with the experiments than do the 
inviscid calculations, especially in the vicinity of the 
shock pulse. The pressures downstream of the shock 

are more accurately predicted by the viscous 
calculations. 

2. For flows involving strong shocks located well 
aft on the airfoil, both the viscous and inviscid 
calculations deteriorate, although the viscous shock 
is generally somewhat forward and slightly weaker 
than the inviscid shock. 

3. For subcritical cases, viscous and inviscid cal- 
culations are in good agreement with each other and 
with experimental data. 

4. Frequency effects are well predicted, with 
agreement being noticeably better between viscous 
calculations and experiment at intermediate frequen- 
cies. The effect of increasing the oscillation frequency 
is to  narrow the shock pulse. 

5 .  The effect of increasing the oscillation ampli- 
tude is well predicted by both viscous and inviscid 
calculations with the viscous results being closer to 
the experiments. Higher amplitude motions have a 
larger unsteady shock motion with a broader shock 
pulse in the harmonic pressure distributions. 

6. Prediction of unsteady forces by the viscous 
theory is good to marginal. The unsteady moments 
from the viscous calculations show the same trends 
aa the experimental data, but some differences are 
noted in amplitude. 

7. The effect of the boundary layer on unsteady 
pressures can be large even though steady-flow effects 
are small. 

8. For the supercritical MBB-A3 airfoil, the 
steady-flow pressure distribution calculated by the 
viscous theory is in excellent agreement with the ex- 
periment, whereas the inviscid results are quite dif- 
ferent. Calculated unsteady results show substantial 
viscous effects. 

9. Results for the NACA 0012 airfoil are calcu- 
lated at high mean angles of attack and large oscilla- 
tion amplitudes that may be outside the limits of the 
small-disturbance theory. The inviscid XTRAN2L 
code predicts the airloads with reasonable accuracy, 
whereas the viscous code (for attached flow) encoun- 
ters computational difficulties, undoubtedly due to 
the onset of flow separation at the trailing edge. 

10. The results presented demonstrate that vis- 
cous solutions computed with the present algorithm 
can provide predictions of pressure distributions for 
unsteady transonic flow involving moderatestrength 
shock waves that correlate better, sometimes signifi- 
cantly better, with experimental values than do the 
inviscid solutions. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
June 5, 1987 
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Appendix A 

Summary of Boundary-Layer Equations 
The boundary-layer equations used in the present analysis are based upon the integral method of Green 

(ref. 12) as implemented by Rizzetta (ref. 13). The displacement thickness S* is computed as a function of the 
boundary-layer momentum thickness 8 and the shape factor H :  

The functions 0 and H in this equation are determined, together with the entrainment coefficient CE 
from Green's lag-entrainment equations. In the nondimensional variables consistent with equation (1), these 
equations are (ref. 13) 

d e  Cf e 
- (-) = f 1 +  f 2 d X x  = 2 - ( H  + 2 - M,2)2l3 -4xx dx c C 

dz e 
- f 3  + f 4 4 ~ ~  = + H1(H + l ) - ~ ~ / ~  dH1 -dXx  C 

e d f 7  
c dx 
-- - 

e d c E  2.8 - f 5  + f64xx = F { + H 1  [(CT)k& - AC,'/'] 

+ ' t "Mz]  E2/3B4xx C 

c dx 

+ ("") ue dE EQ } - F [1+0.075@ 1 + 0.1MZ 

The subscript e in these equations refers to quantities evaluated at the boundary-layer edge, the subscript 
EQ denotes the equilibrium conditions, and the subscript EQO denotes the equilibrium conditions in absence of 
secondary influences on the turbulence structure. The various dependent variables and functions are evaluated 
from the following expressions: 

m 

C, = (1 + 0.lMZ) (0 .024C~ + 1.2Cg + 0.32Cf0) 

A = {  1 (on airfoil) 
1/2 (on wake) 
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Fr = 1 + 0.056M,2 

1 
1'12) 

- 0.00075 
0.01013 

lOglo(FrN~~,@) - 1.02 

(on wake) 
1 -1 

- 0.4) - 0.5 (on airfoil) 

rMZ) - 1 

0.01(H - 1)2 
1.72 

H1 = 3.15 + w - 
H - 1  

d z  - ( H -  1)2 

dHi 1.72 + 0.02(H - 1)3 

C = ( C 7 ) ~ ~ 0 ( 1  + O.lMz)-l - 0.32Cj0 

The additional parameters required to specify the boundary-layer equations completely, together with the 
default values in the code (in parentheses), are the freestream chord Reynolds number N R ~  (lo'), the free 
stream temperature T in degrees kelvin (300 K), the turbulent Prandtl number Npr,t (0.9 for air), and the 
Sutherland law viscosity constant Nsu in degrees kelvin (110 K for air). With the exception of the Reynolds 
number, the default values were used in all the calculations presented herein. 

With these definitions, and the inviscid velocity potential 4 from the inviscid solution algorithm, the lag- 
entrainment equations are fully defined. The values of 8 , H ,  and CE at the initial streamwise station are 
determined from the equations for turbulent flow over a flat plate. Downstream of the initial station, equations 
(Al),  (A2), and (A3) are numerically integrated to obtain the viscous parameters. 
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Appendix B 

Effect of Upwind Switch in Boundary-Layer 
Calculations 

A test case for the NACA 64A010A airfoil has 
been calculated both with and without the type  
dependent differencing in the boundary-layer calcula- 
tions to  demonstrate the improvement that has been 
obtained. The parameters for this test case come 
spond with those of case 3 in table 11: M = 0.796 
and am = 0'. A converged steady viscous so- 
lution was used as a starting solution for the 
airfoil undergoing harmonic oscillations in pitch. 
Although both the lift and pitching moment cal- 
culated with typedependent differencing have the 
spurious amplitude effect, only the pitching-moment 
result is shown here since it is the more sensitive pa- 
rameter. A plot of the calculated pitching-moment 
time history is shown in figure 45. The jump due to 
upwind switching can be clearly seen. The pitching- 
moment time history calculated with the present 
code (no switching) oscillates harmonically with no 
indication of the jump. 

The present method (no switching) is further 
evaluated for the same airfoil by recalculating some 
results of Berry et al. presented in reference 29, which 
used the method with typedependent differencing 
and showed significant amplitude effects. In these 
calculations, the airfoil is given a small prescribed 
pulse motion in pitch, and a fast Fourier transform 
is used to calculate the aerodynamic forces. For this 
case, the Mach number is 0.796 and am = -0.21". 
The pulse computations presented by Berry et al. 
(see fig. 5 of ref. 29) showed that the magnitude of 
the unsteady viscous lift coefficient increased as the 
pulse amplitude increased from 0.1" to 1.0'. This 
calculation was repeated with the present code for 
pulse amplitudes from 0.1' to 4.0'. The results are 
shown in figure 46, which presents plots of the lift 
coefficient as a function of reduced frequency for 
pulse amplitudes of 0.1' and 4.0". As the figure 
shows, for reduced frequencies less than 0.8, no am- 
plitude effects are indicated. At reduced frequen- 
cies greater than 0.8, the results for 4.0' deviate 
slightly from those at 0.1'. Berry et al. also pre- 
sented aeroelastic calculations including viscous ef- 
fects that showed significant amplitude effects, very 
likely due to inclusion of type-dependent differencing 
in the viscous boundary-layer calculation. 
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Table I. Analytical Test Cases for NACA 64A006 Airfoil 

[am = a. = Pm = 0'; X ~ / C  = 0.751 

Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

M NRe 

.800 
325 
325 
.825 
350 
350 
375 
375 
375 
960 
.960 " 

0.800 2.30 x lo6 

7 

9 c 10 

Po, deg 
1 
1 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 

f, Hz 
30 

120 
30 
30 

120 
30 

120 
30 
30 

120 
30 

120 

Table 11. Analytical Test Cases for NACA 64A010A Airfoil 

[a, = 0'; za/c = 0.251 

M 
0.490 

.502 

.796 

.796 

.796 

.796 

.796 

.796 

.797 

.802 

NRe 
2.5 x lo6 

10.0 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
3.4 

a o ,  deg 
0.96 
1.02 
1.03 
1.02 
1.02 
1.01 
.99 
.51 

2.00 
.94 

10.4 
10.8 
4.2 
8.6 

17.2 
34.4 
51.5 
17.1 
17.2 
33.2 

k 
0.064 

.254 

.062 

.062 

.248 

.060 

.242 

.059 

.059 

.235 

.054 

.217 

k 
0.100 

.loo 

.025 

.051 

.101 

.202 

.303 

.101 

.101 

.200 
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Table 111. Analytical Test Cases for MBB-A3 Airfoil 

[ Z a / c  = 0.25; N R ~  = 6 x lo6] 

Case 
3 
4 
5 

11 
12 
13 

M a m ,  deg Qor deg h o l c  k 
0.765 0.50 0 0.100 

.50 0 .300 

.50 0 .goo 
0 .01 .loo 
0 .01 .300 
0 .01 .goo 

Table IV. Analytical Test Cases for NACA 0012 Airfoil 

[ z a / c  = 0.251 

Case M U, m/sec NRe 
1 0.601 197 4.8 x lob 
2 * 599 197 4.8 
3 .599 197 4.8 
5 .755 243 5.5 

am, deg QO, deg f, Hz k 
2.89 2.41 50 0.081 
3.16 4.59 50 
4.86 2.44 50 
0.02 2.51 62 1 
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Table V. NACA 64A006 Airfoil Harmonic Forces 

Inviscid Viscous Experiment Linear 

Case Real Imaginary Real Imaginary Real Imaginary Real Imaginary 

Lift-curve slope due to flap rotation, clA 
r 

-0.817 
-1.238 
-2317 

-1.508 
-.873 

-1.731 
-1.247 

-1.505 
.261 

4.474 
2.404 
4.629 
4.636 
2.218 
4.783 
1.682 
3.858 
3.831 
1.648 
1.566 
1.553 

-1.858 
- 1.600 
-2.203 
-2.232 
-1.787 
-2.930 
-1.796 
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-3.434 
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-5.726 
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.543 
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-1.483 
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- 1.600 
-2.074 
-1.709 
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-1.790 
-3.797 
-1.574 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Pitching-moment-curve slope due to flap rotation, cmR 
r 
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.030 
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.lo1 
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.231 

.099 
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-0.042 
.032 
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.163 

.074 
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-.010 
.017 
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-1.341 
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-1.444 
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-1.549 
-2.610 
-1.239 

-0.060 
-.055 
- .059 
-.059 

.004 
-.056 

.097 
-.048 
- .048 

.245 

.45 1 

.699 

1 -1.248 
2 -1.368 
3 -1.383 
4 - 1.405 
5 -1.526 
6 -1.703 
7 -1.460 
8 -2.079 
9 -2.062 

10 - .902 
11 - .963 
12 - .956 

-0.052 
.024 

- .043 
- .036 

.172 

.lo3 

.685 
1.655 
1.835 
.644 

-.013 
.004 

-1.005 
-1.188 
- 1.070 

-1.352 
-1.150 
-1.450 
-1.360 

-1.189 
- .280 

Hinge-moment-curve slope due to flap rotation, chn 
I-, 
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-.lo1 
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-.020 
- .005 
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-.002 

.004 
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-.062 
-.075 
- .057 

-.087 
-.016 
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- .02 1 

.001 

.001 
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.001 
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.001 

.001 
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.005 

.015 

-.018 
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-.009 
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-.016 
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Table VI. NACA 64A010A Airfoil Harmonic Forces 

CaSe 

Inviscid Viscous Experiment Linear 

Real Imaginary Real Imaginary Real Imaginary Real Imaginary 

1 
2 
3 
4 
5 

5.767 
5.802 

12.552 
9.836 
7.342 
5.635 
4.942 
7.370 
7.247 
5.496 

-0.186 
-.189 

.169 

.039 
-.160 
- .472 
-.631 
- .195 
-.014 
-.310 

-1 
9 

10 

-0.023 
-.032 
-.637 
-.535 
-.478 
-.540 
- .694 
-.465 
-.538 
-.595 

-0.052 
-.054 
-903 
- .709 
- .600 
- .648 
-.793 
-.583 
-.674 
-.744 

-0.561 
-.581 

-4.202 
-4.092 
-3.446 
-2.157 
-1.341 
-3.384 
-3.731 
-2.421 

5.565 
5.649 

11.141 
9.094 
7.033 
5.487 
4.862 
7.053 
6.965 
5.313 

-0.521 
-.549 

-3.183 
-3.338 
-2.918 
-1.886 
-1.157 
-2.892 
-3.029 
- 1.976 

- 

6.139 
6.136 
9.316 
8.622 
6.790 
4.887 
4.635 
6.795 
6.141 
5.308 

-1.149 
-1.036 
-1.378 
-2.479 
-3.387 
-2.521 
- .905 

-3.403 
-3.113 
-2.471 

Pitching-moment-curve slope due to pitch, Cma 

-0.178 
-. 183 

.059 
-.035 
-.207 
- .494 
- .665 
-.231 
-.113 
-.374 

0.165 
.167 
.ooo 

-.005 
-.061 
-.189 
-.374 
-. 195 
-.239 
-.384 

-0.163 
-.201 
-.lo2 
-.232 
-.338 
- .653 

-1.023 
-.314 
-.302 
- .546 

5.765 
5.790 
9.020 
7.920 
6.639 
5.585 
5.265 
6.639 
6.639 
5.605 

-0.003 
-.004 
-.013 
-.038 
-.081 
-. 162 
- .265 
-.081 
-.081 
-.172 

-0.612 
-.634 

-1.621 
-1.972 
-1.793 
- .952 
-.227 

-1.793 
-1.793 
-1.005 

-0.196 
-.199 
-.095 
-.196 
- .360 
-.665 
-362 
- .360 
-.360 
-.669 
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Table VII. Calculated Harmonic Forces for MBB-A3 Airfoil 

Inviscid 

Case Real I Imaginary 

Viscous Linear 

Real I Imaginary Real I Imaginary 

3 6.460 -5.352 
4 4.362 - .954 
5 4.791 2.136 

6.757 -2.770 6.548 -1.581 
4.539 -.783 5.220 -.054 
4.709 1.998 5.424 1 .998 

18 

3 -0.835 0.909 
4 -.346 -.233 
5 -.847 - 1.686 

-0.376 -0.251 -0.058 -0.325 
-.412 - .539 -.180 - .896 
- .754 -1.656 - 1.082 -2.000 

11 -1.173 -1.147 
12 -1.135 -2.203 
13 .131 -6.690 

-0.687 -1.268 -0.220 -0.629 
- 1.032 -2.318 -.386 -1.368 
.079 -6.532 -. 128 -3.700 

11 0.228 0.144 -0.013 0.069 -0.020 
12 .092 .lo8 -.081 .178 -.136 
13 -1.011 1.156 -1.060 1.061 -.592 

0.007 
.068 
.780 

Case 

1 

1 
Real Imaginary Real Imaginary Real Imaginary Real I Imaginary I 

Inviscid Viscous Experiment Linear 

Lift-curve slope due to pitch, 9, 
1 6.531 - 1.055 5.858 -0.801 6.797 -1.306 6.273 -0.938 
2 6.638 -1.111 6.616 -.891 6.266 - .932 

5 7.838 -3.031 6.875 -1.999 7.896 -3.217 6.863 -1.619 
3 6.845 -1.235 6.372 -.803 6.266 -.932 

Pitching-moment-curve slope due to pitch, cma 
1 0.004 -0.198 0.122 -0.191 0.207 -0.232 -0.010 -0.185 
2 .059 - .223 .224 -.244 -.010 -.185 

5 -.153 -.317 .110 -.354 -.090 -.262 - .042 -.261 
3 .174 -.272 .303 -.287 -.010 -.185 

, 
1 

1 

1 

1 
I 



9 
NACA 6 4 A 0 0 6  

9 
NACA 6 4 A 0 1 0 A  

MBB-A3 

NACA 0012 

Figure 1. Airfoil sections studied. 
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Figure 2. Steady pressure distribution for cases 1 to 12 for NACA 64A006 airfoil. cr, = 0'; N R ~  = 2.3 x lo6. 
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Figure 2. Concluded. 
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Figure 3. Effect of Mach number on boundary-layer displacement thickness for NACA 64A006 airfoil. 
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Figure 4. Unsteady pressure distribution for case 1 for NACA 64A006 airfoil. = 0.800; bo = 1'; k = 0.064. 
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Figure 5. Unsteady pressure distribution for case 2 for NACA 64A006 airfoil. M = 0.800; Po = lo; k = 0.254. 

24 



Viscous 
Inviscid ---- 

0 Experimental upper 
0 Experimental lower 

Viscous 
Inviscid ---- 

0 Experimental real 
0 Experimental imag 

Viscous 
-Inviscid --- 

0 Experimental real  
0 Experimental imag 

&Ep 

-151 I I I I I 
0 .2 .4 .6 .I) 1 .o 

x/c 

(h)  Lifting. 

Viscous 
Inviscid ---- 

0 Experimental r ea1 
0 Experimental imag 

5 

E P  E P  

0 0 

-5 

(c) Upper surface. (d) Lower surface. 

Figure 6. Unsteady pressure distribution for case 3 for NACA 64A006 airfoil. M = 0.825; bo = 1’; k = 0.062. 
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Figure 7. Unsteady pressure distribution for case 4 for NACA 64A006 airfoil. M = 0.825; Po = 2'; k = 0.062. 
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Figure 8. Unsteady pressure distribution for case 5 for NACA 64A006 airfoil. A4 = 0.825; ,Bo = 1'; k = 0.248. 
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Figure 9. Unsteady pressure distribution for case 6 for NACA 64A006 airfoil. M = 0.850; ,Bo = 1'; k = 0.060. 
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Figure 10. Unsteady pressure distribution for case 7 for NACA 64A006 airfoil. M = 0.850; Po = 1'; k = 0.242. 
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Figure 11. Unsteady pressure distribution for case 8 for NACA 64A006 airfoil. M = 0.875; ,Bo = 1'; k = 0.059. 
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Figure 12. Unsteady pressure distribution for case 9 for NACA 64A006 airfoil. M = 0.875; Po = 2 O ;  IC = 0.059. 

31 



Viscous 
Inviscid ---- 

0 Experimental upper 
0 Experimental lower 

bCN, 

-.4 
0 .2 .4 .6 .I 1 .o 

x/c  
(a) Mean. 

Viscous 
Inviscid ---- 

0 Exper imen tal real 
0 Experimental irnag 

"c 20 

10 

E P  

0 

-1  0 

Viscous 
Inviscid ---A 

0 Experimental real 
0 Experimental im aq  

20 "c 
10 

0 

- 1  0 

-20 

0 .2 .4 .6 .I 1 .o 
x/c  

(b) Lifting. 

Viscous 
Inviscid ---- 

0 Experimental real 
0 Experimental imag 

20 "[ 
10 I 

E P  

0 

-1  0 

-20, -30 0 .2 .4 .6 .I 1 .o 

x/c  
(d)  Lower surface. 

-20 t 
-301 I I I I I 

0 .2 .4 .6 .a 1 .o 
x/c  

(c) Upper surface. 

Figure 13. Unsteady pressure distribution for case 10 for NACA 64A006 airfoil. M = 0.875; Po = lo; k = 0.235. 
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Figure 14. Unsteady pressure distribution for case 11 for NACA 64A006 airfoil. M = 0.960; ,Do = lo; k = 0.054. 
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Figure 15. Unsteady pressure distribution for case 12 for NACA 64A006 airfoil. M = 0.960; ,& = 1'; k = 0.217 
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Figure 16. Comparison of unsteady forces for NACA 64A006 airfoil with k = 0.06. Po = lo. 
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Figure 24. Unsteady pressure distribution for case 5 for NACA 64A010A airfoil. A 4  = 0.796; Q, = 1.02'; 
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Figure 28. Unsteady pressure distribution for case 9 for NACA 64A010A airfoil. M = 0.797; a, = 2.00'; 
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Figure 30. Comparison of unsteady forces for NACA 64A010A airfoil. M = 0.796; a. = lo. 
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Figure 32. Unsteady pressure distribution for case 3 for MBB-A3 airfoil. M = 0.765; a, = 1.5'; a, = 0.5O; 
I k = 0.1. 
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Figure 33. Unsteady pressure distribution for case 4 for MBB-A3 airfoil. M = 0.765; CY, = 1 . 5 O ;  CY, = 0.5'; 
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Figure 34. Unsteady pressure distribution for case 5 for MBB-A3 airfoil. M = 0.765; am = 1.5'; a, = 0.5'; 
k = 0.9. 

59 



1.2 

.a 

.4 

- C P  
a 

-.4 

-.a 

-1.2 

Viscous 
-Inviscid --- 

I I I I I 
.2 .4 .6 .8 1 .o 

x i c  

(a) Mean. 

Viscous 
-Inviscid --- 

par t  

I- 
c"P lo/ O 

Imaginary pa r t  _I 
- 1  0 

-301 I I I I I 
0 .2 .4 .6 .8 1 .o 

x/c 

(c) Upper surface. 

Figure 35. Unsteady pressure distribution for case 
h,/c = 0.01; k = 0.1. 

60 

Viscous 
Inviscid ---- 

20 "F 
7 Imaginary pa r t  

O t  

O t  I '  

II 

I I 1 I I 
0 .2 .4 .6 .8 1 .o 

x/c 

(b) Lifting. 

Viscous 
-Inviscid --- 

30L 20 

10 c 
I Real pa r t  

I Imaginary pa r t  

-20 -lo[ 

-301 I I I I I 
0 .2 .4 .6 .8 1 .o 

x/c 

(d) Lower surface. 

11 for MBB-A3 airfoil. M = 0.765; a, = 1.5'; 



Viscous 
Inviscid ---- 

1 . 2 ~  

c"P 

-10-  

-C, 

Real p a r t  
0 ,  - 

Imaginary p a r t  
I 
- 

F -.8 

-1.2) I I I I I 
0 .2 .4 .6 .8 1 .o 

x/c 

(a) Mean. 

Viscous 
inviscid ---- 

, O r  

c"P 

20 

10 

0 

- 1  0 

-20t---- -30 0 .2  .4 .6 .8 1 .o 

x /c  

(c) Upper surface. 

Figure 36. Unsteady pressure distribution for case 
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Figure 37. Unsteady pressure distribution for case 
ho/c  = 0.01; k = 0.9. 
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(a) Lift due to pitch oscillation. 

Figure 38. Unsteady forces for MBB-A3 airfoil. 
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(b) Pitching moment due to pitch oscillation. 

Figure 38. Continued. 
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( c )  Lift due to plunge oscillation. 
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Figure 38. Concluded. 
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Figure 39. Steady pressure distribution for cases 1, 2, 3, and 5 for NACA 0012 airfoil. 
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Figure 40. Unsteady pressure distribution for case 1 for NACA 0012 airfoil. M = 0 . 6 0 1 ; ~ ~  = 2.89O; 
a. = 2.41'; k = 0.081; N% = 4.8 x 10 6 . 
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Figare 41. Unsteady pressure dist,ribution for case 2 for NACA 0012 airfoil. M = 0.599; am = 3.16’; 
a, = 4.59’; k = 0.081; N R ~  = 4.8 x lo6. 
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Figure 42. Unsteady pressure distribution for case 3 for NACA 0012 airfoil. M = 0.599; a, = 4.86"; 
a. = 2.44'; k = 0.081; N R ~  = 4.8 X lo6. 

70 1 
I 



- C P  

Viscous 
_-- -Inviscid 

0 Experimental upper 
0 Experimental lower 'F 1.2 

A E ,  

(a) Mean. 

Viscous 
---- inviscid 

0 Experimental rea l  
0 Experimental imag 

40 

-201 I I I I I 
0 .2 .4 .6 .8 1 .o 

x /c 

Viscous 
-Inviscid --- 

O /  

10-  

/ I  
0 

--- 
- l o g  

Imaginary pa r t  

/ I  
0 

0 .2 .4 .6 .8 1 .o 
x/c 

(b) Lifting. 

Viscous 
---- inviscid 

0 Experimental r ea1 
0 Exper im en tal  im ag  

4 o r  

20 

E P  

-1 0 c 

(c) Upper surface. (d) Lower surface. 

Figure 43. Unsteady pressure distribution for case 5 for NACA 0012 airfoil. h.l = 0.755; am = 0.02O; 
l aO = 2.51°; k = 0.081; N R ~  = 5.5 x lo6. 
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Figure 44. Comparison of unsteady forces versus angle of attack for cases 1, 2, 3, and 5 for the NACA 0012 
airfoil at k = 0.081. 
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Figure 45. Pitching-moment time histories showing effect of upwind switch in boundary-layer calculation. 
NACA 64010A airfoil; M = 0.796; a, = 0'. 
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Figure 46. Effect of pulse amplitude on lift coefficient for NACA 64A010A airfoil. M = 0.796; a, = -0.21'. 
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