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UWSTEADT HYBRID VORTEX TECAAIQUE FOR TRMSOAIC VORTEX FLOWS 
AND FLUITER APPLICATIORS 

BY 

Osama A. Kandil f  

This r e p o r t  covers the  progress o f  research work performed under t h i s  grant 

i n  the  per iod of January 1, 1987 t o  July 31, 1987. 

seven months, t he  f o l l o w i n g  papers which r e p o r t  on the  accomplishments and 

r e s u l t s  have been presented and published (copies of some o f  these papers 

are attached t o  t h i s  repo r t ) :  

During t h i s  pe r iod  of 

I. Integral .  Equation Solut ion o f  the Ful l-Potenti-a1 Equation fo r  Steady and 

Unsteady Transonic Flows: 

A.  

B. 

C. 

" I n teg ra l  Equation Solut ion F o r  Transonic And Subsonic Aero- 

dynamics." Kandil, 0. A.  and Hu, H., presented a t  t h e  Thi rd  GAMM- 

Seminar on Panel Methods i n  Mechanics, K ie l ,  West &many, January 

16-18, 1987. Published i n  "Notes on Numerical F l u i d  Mechanics". B. 

"Ful l -Potent ia l  I n t e g r a l  Solut ion f o r  Transonic Flows With And 

Without Embedded Euler Domains," Kandil, O.A. and Hu, H., A I A A  87- 

1461, Honolulu, Hawaii , June 8-10, 1987. 

t o  A I A A  Journal. 

"Transonic A i r f o i l  Computation Using t h e  I n t e g r a l  Equation With and 

Without Embedded Euler Domains," Kandil, O.A. and Hu, H., 9 th  

In te rna t i ona l  Conference on "Boundary Element Methods i n  

Engineering, U n i v e r s i t y  o f  Stut tgar t ,  S tu t tga r t ,  West krrnany, 

Submitted f o r  p u b l i c a t i o n  

*Professor, Department o f  Mechanical Engineering and Mechanics, 01 d Dominion 
Univers i ty ,  Norfolk, V i r g i n i a  23508 



E. "Inf luence of Numerical D i  ss ipat ion on Computational Euler Equations 

fo r  Vortex-Dominated Flows ,'I Kandi 1, O.A. and Chuang, A.H., A I A A  

Journal, Vol. 25, No.9, September 1987. 

111. The f o l l o w i n g  abstracts have been submitted f o r  presentations: 

A. "Unsteady Vortex-Dominated Flow Around Maneuvering Wings Over a Wide 

Range of Mach Nunbers," Kandil, O.A. and Chuang, A.H., submitted f o r  

presentat ion a t  A I A A  26 ASM, Reno, Nevada, January 11-14, 1988. 

8. "Unsteady Transonic A i r f o i  1 Computation Using t h e  I n t e g r a l  Equation 

Solution," Kandil, O.A. and Hu, H., A I M  27 SDM Conference, 

Williamsburg, V i rg in ia ,  A p r i l  19-21, 1988. 

I V .  The fo l lowing t a l k s  w i l l  be given a t  t h e  ICASE, Nasa Langley: 

A. "Fu l l -Potent ia l  I n teg ra l  Solut ions f o r  Steady and Unsteady Transonic 

A i r f o i l  computations With and Without Embedded Euler Domains," Hu, 

H. and Kandil, O.A., August 18, 1987. 

"Steady and Unsteady Euler Computations o f  Various Flow Regimes Past 

Del ta Wings," Chuang, A.H. and Kandil, O.A., August 27, 1987. 

8 .  

V. The P r i n c i p a l  I nves t i ga to r  has chaired and organized the  f o l l o w i n g  

sessions and conferences o f  t he  AIM,: 

General Chairman and organizer, F l u i d  Dynamics Sessions (29 Sessions), 

A I A A  25th Aerospace Sciences Meeting, Reno, Nevada, January 12-15, 

1987. 
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6. Chairman and organizer, Incompressible Navier Stokes 11, AIAA 8 t h  Compu- 

ta t ional  F l u i d  Dynamics Conference, Honolulu, Hawaii, June 9-11, 1987. 

C.  Chairman and organizer, Leading-Edge Vortex Flows, A I A A  9th F l u i d  

Dynamics, Plasma Dynamics and Lasers, Honolulu, Hawaii, June 8-11, 

I 1987. 

I D. Chairman and organizer, Vortex Flow 11, AIAA 25th Aerospace Sciences 

Meeting, Reno, Nevada, January 12-15, 1987. 
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TRANSONIC AIRFOIL COMPUTATION USING THE INTEGRAL EQUATION W I T H  
AND WITHOUT EMBEDDED EULER DOMAINS 

Osama A. Kandil and Hong Hu 

Department of Mechanical Engineering and Mechanics, 
Old Dominion Univers i ty ,  Norfolk, VA 23508, USA 

INTRODUCTION 

Computation of the t ransonic  flow around a i r f o i l s  and wings 
using f in i t e -d i f f e rence  and finite-volume methods r equ i r e s  
f i n e  g r i d s  and l a r g e  computational domains around the  source 
of disturbance. '  The o u t e r  boundary of the computational 
domain is usua l ly  placed a t  several  chord l eng ths  away from 
the inner  boundary. Moreover, spec ia l  t reatment  is required 
a t  the o u t e r  boundary to approximately s a t i s f y  the f a r f i e l d  
boundary condi t ions.  Using d i f f e r e n t  levels of 
approximations,  i n v i s c i d  computational schemes have been 
developed based on the Transonic Small Pe r tu rba t ion  (TSP) 
equat ion  (Murman and Cole'; Edwards, Bland and Siedel'),  F u l l  
P o t e n t i a l  (Fp) equat ion (S teger  and L0max3 Garabedian and 
Korn ; Jameson ) and Eu le r  equation (Jameson 1. These schemes 
r equ i r e  l a r g e  capac i ty  of computer memory t o  handle the l a r g e  
number of g r i d  po in t s  and the associated flow va r i ab le s .  They 
a l s o  r equ i r e  l a r g e  CPU time to obtain converged so lu t ions  due 
t o  the l a r g e  number of i t e r a t i o n  cyc les  - usua l ly  i t  is  of 
o rde r  a thousand. 

4 5 6 

The p o t e n t i a l  equat ions can be used f o r  flows with weak 
schocks s ince  the entropy increase and v o r t i c i t y  production 
a c r o s s  these  shocks are small. For s t rong  shocks, the 
i r r o t a t i o n a l  and i s en t rop ic  flow assumptions are inva l id  and 
one cannot use the p o t e n t i a l  flow equat ions ac ross  or behind 
the shocks. For these flows, one has to c o r r e c t  the p o t e n t i a l  
equat ions i n  order  to include t h e  entropy jump across  the 
shock wave. Methods of t h i s  type have been developed by Hafez 
and Lovell', Fuglsang and Williams8 and Whitlow, Hafez and 
Osher- . Al te rna t ive ly ,  one has to u s e  ' t h e  computationally 9 



more expensive Eu le r  equations.  

The I n t e g r a l  Equation Formulation (IEF) us ing  the  TSP 
( P i e r s  and Sloofl'; Tseng and Morinoll) or the FP (Kandil  and 
Ya tesl* Oskam13 ; Erickson and S trande14 ; S i n c l a i r l '  ; Kandil 
and Hu ) equat ions r ep resen t s  an alternative to  the f i n i t e  
d i f f e r e n c e  and f i n i t e  volume methods to  treat transonic flows 
wi th  weak shocks. With the IEF, the f a r f i e l d  boundary condi- 
t i o n s  are automat ica l ly  s a t i s f i e d  and only a small computa- 
t i o n a l  domain is needed around the source of dis turbance .  
Moreover, the accuracy of the method depends on the eva lua t ion  
of i n t e g r a l s  r a t h e r  than de r iva t ives  and heace coarse g r i d s  
can be used wi th in  the small computational domain. Because of 
these  obvious advantages of the methods which are based on the 
IEF, it  is highly d e s i r a b l e  to f u l l y  develop these methods and 
extend them to treat t ransonic  flows over a wide range of Mach 
numbers. 

1'6 

I n  t h i s  paper ,  w e  p re sen t  a t ransonic  i n t e g r a l  equat ion 
method which i s  based on the f u l l  p o t e n t i a l  equat ion ,  and 
couple  the method w i t h  embedded E u l e r  domains to  treat s t rong  
shocks. The method i s  ex tens ive ly  appl ied  to d i f f e r e n t  
a i r f o i l  s e c t i o n s  and Mach numbers. The results are compared 
with experimental  d a t a  and o t h e r  r e s u l t s  which were obtained 
by using f i n i  te-dif f erence and f in1 te-volume methods w i  th  TSP, 
FP and E u l e r  equations.  

FORMULATION 

F u l l  Po ten  t i a l  Equation 
For t r anson ic  flows wi th  weak shocks, the dimensionless 
governing equat ions of the  two-dimensional, B teadg, p o t e n t i a l  
flow a r e  given by 

-1 
G = -  (px ax + p 

P Y Y  

uhere @ is the t o t a l  v e l o c i t y  po ten t i a l ,  p the dens i ty ,  Mm 
t he  f rees t ream Mach number, y the r a t i o  of s p e c i f i c  heats and 
the  s u b s c r i p t s  x and y r e f e r  to the de r iva t ives .  I t  should be 
noted t h a t  G represents  the t o t a l  compress ib i l i ty  i n  the flow; 
The c h a r a c t e r i s  t i c  parameters are the f r ees  tream v e l o c i t y  
(Um) and dens i ty  (pa) and the a i r f o i l  chord length  (1). 

2 
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The boundary condi t ions  on the a i r f o i l  g, away from g and a t  
the t r a i l i n g  edge TE are given by 

0 

V 4  + e, away from g ( 5 )  

h C  * o  
PlTE 

0 n 

where Ls a u n i t  vector parallel t o  E, and 
AC is the  pressure jump. The pressure c o e f f i c e n t  is given by 

P 
n - Vg/ lVgl , e, 

The formal so lu t ion  of Eq. (1) in  terms of the v e l o c i t y  f i e l d  
CQ with e x p l i c i t  con t r ibu t ion  of the shock sur face  S is 
obta ined  as 

are the a i r f o i l  sur face  d i s t r i b u t i d n s  of where q and 
sources  and vor i c i t y ;  respect ively,  and qs i s  the source 
s t r e n g t h  of the  shock sur face .  In the shock-capturing scheme, 
t he  l a s t  i n t e g r a l  term i n  Eq. ( 8 )  is dropped, s ince  t h i s  term 
is included i n  the th i rd  i n t e g r a l  term of the  equation. In 
t he  shock cap turing-shock f i t t i n g  scheme, the l a s t  i n t e g r a l  
term corresponding to  the shock surface is re ta ined  when shock 
f i t t i n g  is used. For shock f i t t i n g ,  the following equat ions 
are used to  determine the shock s t rength qs, p rope r t i e s  behind 

ye g 

3 
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t he  shock 
forming the shock sur face  @: 

p2,  V2n, V 2 t  and the o r i e n t a t i o n  of the segments 

1 L Y  In 
qs - - (Vln - V2J = - - (1 - 7) 

'In 
, Mln > 1 ( 3 )  Y + l  

= v  V 2 t  I t  

1 /2 
@ = s i n  (13) 

where the subsc r ip t s  1 and 2 r e f e r  to  the condi t ions  ahead and 
behind the shock, respec t ive ly ,  whi le  n and t r e f e r  t o  the 
normal and t angen t i a l  d i r e c t i o n s  to the shock su r face  S ,  
r e s p e c t i v e l y ,  and 8 is the r e l a t i v e  d i r e c t i o n  of the flow 
behind the shock to t h a t  ahead of  the shock. 

E u l e r  Equations 
For  s t rong  shocks, an embedded computational domain i s  
cons t ruc t ed  around the shock which has been p r e l i m i n a r y  found 
by the  I n t e g r a l  so lu t ion  with shock captur ing  only. With the 
boundary and i n i t i a l  condi t ions  found from the I n t e g r a l  
s o l u t i o n ,  the unsteady conservative form of the  E u l e r  
equat ions  a r e  solved i n  t h i s  l imited domain with psuedo time 
marching. The dimensionless conservative form of these 
equat ions  is given by 

% + a E + a F , )  
a t  ax ay 

- - 
where the flow vector  f i e l d  q and the flux components E and 

4 



- 
F are given by 

The t o t a l  energy and enthalpy p e r  u n i t  mass are given by 

e -,e-+ (u2 + v2)/2, h = e + p /p  
Y+l  )P 

Since  w e  are i n t e r e s t e d  i n  the steady flow s o l u t i o n  only,  the 
energy equat ion [ l a s t  elements i n  Eqs. (16)-(18)],  which is a 
d i f f e r e n t i a l  equation, is replaced by the a l g e b r a i c  s teady 
form which states t h a t  the t o t a l  enthalpy is constant .  Hence, 
t h e  energy equat ion is replaced by 

METHOD OF SOLUTION 

Shock-Capturing Shock-Fitting (SCSF) Scheme 
The b a s i c  d i f f e rence  be tween t h e  incompress lble I n t e g r a l  
Equation Solu t ion  and the t ransonic  I n t e g r a l  Equa tlon Solu t ion  
are the  a d d i t i o n a l  t h i rd  and fourth i n t e g r a l  terms of Eq. (8) .  
In the shock captur ing part  of the scheme, the f o u r t h  i n t e g r a l  
term is dropped while in the shock f i t t i n g  p a r t  of the scheme 
t h i s  term is taken i n t o  account. 

The SCSF-scheme i s  an  i t e r a t i v e  scheme due to  the 
n o n l i n e a r i t y  of the th i rd  and fourth i n t e g r a l  terms. The 
i t e r a t i v e  scheme is described below: 

Neglecting the four th  in t eg ra l  term and s e t t i n g  G = 0, a 
s tandard  panel computation is used t o  obta in  qg and/or  y . 

are piecewise l i n e a r  d i s t r i b u t i o n s  on each The q and 
s u r f a c e  panel and they are define$ i n  terms of t h e i r  nodal 
va lues .  I n i t i a l  values of G a r e  ca lcu la ted  a t  the cen t ro ids  
of the f i e l d  elements by using the l i n e a r  compress ib i l i ty  

where ux 1s the x-derivative of the x- r e l a t i o n  G = M- ux,  
conponent of the veloci ty .  The cent ro ida l  value C represents  

g 
yg g 

2 
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the  G va lue  f o r  the f i e l d  element. Equation (8) is then used 
to  enforce the sur face  boundary condi t ions,  Eqs. ( 5 )  and ( 7 )  

The dens i ty  p and non l inea r  t o  f i n d  new qg and/or  
compress ib i l i t y  G are ca l cu la t ed  by using Eqs. (3) and (2 ) .  A 
type f in i t e -d i f f e rence  expression i s  used to  c a l c u l a t e  p and 

depending on the type of the cen t ro ida l  point-subsonic o r  
supersonic.  Once the G va lues  are obtained,  the  s u r f a c e  
boundary condi t ions  are sa tisf ied again.  The i t e r a t i v e  
procedure is continued u n t i l  the shock l o c a t i o n  is  f ixed.  
This is the shock captur ing  p a r t  of the scheme. 

yg 

X 

pY 

Shock panels  are then introduced a t  the shock l o c a t i o n ,  
the fou r th  i t e g r a l  term of Eq. (8)  is now taken i n t o  account ,  
Eqs. (9 )  and (13) a r e  used to  c a l c u l a t e  qs and p and Eqs. 
(10)-(12) are used to c ros s  the shcok panel. The i t e r a t i v e  
procedure is continued as before  wi th  the except ion of dea l ing  
with the shock panels a s  explained. Convergence is achieved 
once the  su r face  pressure converges. This  is the shock 
f i t t i n g  p a r t  of the scheme. 

I n t e g r a l  Equation With Embedded Euler (IEEE) Scheme 
I n  t h i s  scheme, the shock captur ing p a r t  of the SCSF-scheme is  
used to l o c a t e  the shock. Once the shock is captured,  a f i n e  
g r i d  is constructed wi th in  a small computational .region around 
the  shock where a finite-volume E u l e r  scheme is used. The 
b a s i c  f i n i  te-volume equat ion is obtained by i n t e g r a t i n g  Eq. 
( 1 5 )  over x and y to obta in  

//sdA+$ ( E d y + F d x )  - 0  

Equation (21) is  then appl ied  to each cel l  of the embedded 
g r i d  of the Euler  domain. The r e su l t i ng  d i f f e r e n c e  equat ion  
i s  

4 (2) A A  + C ( E A y r + F A x r ) = O  (22) 
i j  i j  rl 

where AA is the c e l l  a r ea ,  r r e fe r s  to the ce l l - s ide  +number 
and the in t ege r  subsc r ip t s  i, j r e f e r  to  the  c e n t r o i d a l  
va lues .  The E u l e r  so lve r  is a cent ra l -d i f  f erence f i n i t e -  
volume method which uses f o u r s  tage Runge-Ku t ta  t i m e  s tepping  
w i t h  e x p l i c i t  second- and fourth-order d i s s i p a t i o n  terms. The 
de ta i l s  of t h i s  so lve r  are given i n  re fe rence  (171. _- 

The boundary and i n i t i a l  conditions f o r  the Eu le r  domain 
a r e  obtained from the I n t e g r a l  equation s o l u t i o n  which i s  
i n t e r p o l a t e d  on the Euler domain g r i d .  The Euler so lve r  i s  

6 



then uszd to capture  the shock and c a l c u l a t e  the flow vec to r  
f i e l d  q. It  should be emphasized here  t h a t  the downstream 
boundary condi t ion mus t be- updated while Euler  c a l c u l a t i o n s  
are excuted. Fixing the q values of the Euler  domain, the 
IE c a l c u l a t i o n  is used t o  update the boundary condi t ions  f o r  
the E u l e r  domain. The iterative procedure is repeated u n t i l  
convergence is achieved. 

COMPUTATIONAL EXAMPLES 

I n  t h i s  sec t ion ,  w e  p r e s e n t  app l i ca t ions  of the  SCSF- and 
IEEE-schemes to the NACA 0012 and 64A010A. According to  the 
convergence s tudy us ing  d i f f e r e n t  s i z e s  of the  IE 
computational domain, which was p r e s e n t d  by the au thor s  
(Kandil  and Hu 1, a computational domain of 2 x 1.5, i n  the x 
and y d i r e c t i o n s ,  has been used around the a i r f o i l  i n  a l l  the 
fo l lowing  app l i ca t ions .  A rectangular  g r i d  of 64 x 60 has 
been used f o r  the IE computation. Th.t g r i d  is c l u s t e r e d  i n  
t h e  l ead ing  edge, the shock region and nea r  the  a i r f o i l  
sur face .  Since the t h i r d  i n t e g r a l  term of Eq. (8) is  
conpu ta t i o n a l l y  expensive,  i t s  computation w i  t h  cons t a n t  G 
d i s t r i b u t i o n  has been restricted t o  the n e a r f i e l d  computation. 
For  the f a r f i e l d  computation, this term is replaced by the 
equ iva len t  lumped source term a t  its cent ro id .  With 
s u f f i c i e n t  accuracy, i t  has  been computationally determined 
t h a t  the n e a r f i e l d  d i s t ance  from.the cen t ro id  is < 0.5. 

16 

Figure 1 shows the r e s u l t s  of the SCSF-scheme f o r  NACA 
0012, along wi th  comparisons wi th  the 
computational r e s u l  ts of Garabedian, Korn and Jameson18, and 
the  experimental da t a  taken from re ference  19. The SCSF 
scheme took 12 i t e r a t i o n  cyc les  of shock captur ing  (SC) and 13 
cyc le s  of shock f i t t i n g  (SF) to achieve convergence. 

Ma = 0.8 and a = Oo , 

Figure  2 shows the r e s u l t s  of the IEEE-scheme f o r  the 
same case along with a comparison with the computational 
r e s u l t s  of Jameson6 who a l s o  used the finite-volume Euler  
scheme with f o u r s t a g e  Runge K u t t a  t i m e  stepping. I n  the 
p r e s e n t  IEEE-scheme, the embedded Euler  domain has a s i z e  of 
0.5 x (3.6 around the shock region with a g r i d  of 25 x 30. 
T h i s  case took 10 i t e r a t i o n  cycles of SC, 250 time cycles  of 
Euler  i t e r a t i o n s  to achieve a res idua l  e r r o r  of and 5 IE 
c y c l e s  to update the E u l e r  domain boundary condi t ions.  

Figures  3 and 4 show the r e su l t s  of t h e  SCSF- and IEEE- 
schemes f o r  NACA 64A010A, M Lp - 0.796, a = 0' along wi th  
comparisons with the computational results of Edwards, Bland 
and Seide12 who used the TSP equation, and the experimental  
data taken from reference  2.' With the SCSF-scheme, t h e  

7 



numbers of SC and SF i t e r a t i o n  cycles  to  achieve convergence 
are the same as those of the case presented i n  Fig. 1. With 
the  IEEE-scheme, the embedded E u l e r  domain has a s i z e  of 0.7 x 
0.6 with a g r id  s i z e  of 35 x 30. This  case, Fig. 4, took 10 
i t e r a t i o n  cyc les  of SC, 130 time cycles of E u l e r  i t e r a t i o n s  to 
achieve  a r e s idua l  e r r o r  of loo3 and 3 IE cycles  to  update the 
E u l e r  domain boundary condi t ions.  

F igures  5 and 6 show the results of the SCSF- and IEEE- 
schemes f o r  the l i f t i n g  case of NACA 0012, M, = 0.75 and 
a = 2' along with the computational resul ts  of S teger  and 

tomax , and the  experimental  data taken from the  same 
reference. The s ize  of the g r i d s  and the number of i t e r a t i o n  
c y c l e s  used t o  achieve convergence are the same as those of 
the cases given i n  Fig. 1 and 2. 

3 

Figure  7 shows the r e s u l t s  of the IEEE f o r  NACA 0012, 
= 0.812 and a = 0' along with the experimental  data of 

r e fe rence  18. In Fig. 8, the r e s u l t s  of the IEEE f o r  NACA 
0012, M, = 0.82 and a = 0' are show? along with the three- 
dimensional s o l u t i o n  a t  the wing r o o t  chord of Tseng and 
Morino'l, who use  the I E  f o r  the TSP, and the experimental  
r e s u l t s  of re ference  20. The size of the embedded E u l e r  
domain f o r  these cases is 0.8 x 0.8 and the computational g r i d  , 

is 40 x 40. 

CONCLUDING REMARKS 

Two t r anson ic  computational schemes which are based on the 
I n t e g r a l  Equation Formula t i on  of the full p o t e n t i a l  equat ion 
have been presented. The f i r s t  scheme is a Shock Capturing- 
Shock F i t t i n g  (SCSF) scheme which uses the f u l l  p o t e n t i a l  
equa t ion  throughout with the exception of the shock wave where 
the  Rankine-Hugoniot r e l a t i o n s  a r e  used to cross  and f i t  the  
shock. The second scheme is  - a n  I n t e g r a l  Equation wi th  
Embedded Euler  (IEEE) scheme which uses the f u l l  p o t e n t i a l  
equa t ion  wi th  an embedded region where E u l e r  equat ions are 
used. The two schemes are appl ied to several t ransonic  
a i r f o i l  flows and the r e s u l t s  have been compared with numerous 
computational r e s u l t s  and experimental data  . The two schemes 
are never the less  e f f i c i e n t  as compared to  the o t h e r  e x i s t i n g  
schemes which use  f i n i  te-dif ference or f i n i  te-volume methods 
throughout l a r g e  compu-ta t i o n a l  domains with f i n e  g r ids .  The 
SCSF-scheme is r e s t r i c t e d  t o  flows w i t h  weak shocks, while the  
IEEE-scheme can handle s t rong  shocks. Current ly ,  the IEEE 
scheme is appl ied to  o the r  transonic flows with s t rong  shocks 
as v e l 1  as t o  unsteady p i t ch ing  osc i l l a t ions .  

8 
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OUTLIN€ OF THE TALK 

. 

1. M O T I V A T I O N  AN0 ORJECT 

2 .  ~ O R M U L ~ A T I O H  

- C L A S S I C A L  AND Z E R O -  

V E S  

O T A L - P R E S S U R E - L O S S  S E T S  

- SUPERSONIC CONICAL FLOW EQUATIONS 

- R E L A T I V E  f’lOTlON I N  A R O T A T I N G  FRAME OF R E F E R E N C E  

3. HIGHLIGHTS OF RETHOO OF SOLUTION 

4 .  APPLICATIONS:  

Nur&CS - C O N I C A L  FLOW, ROUND-EDGED WINGS ( C L A S S I C A L  AND ZTPL S E T S )  h-p~, (0 

MJur.r;d 
Ex.* le S C W  

I - CONICAL FLOW, SHARP-EDGED WINGS ( C L A S S I C A L  AND zirL SETS) 

- T H R E E - D I M E N S I O t i A L  FLOWS; TRAt8SONlC AND LOW-SPEED FLOWS 

- UNIFORM ROLLING IN A CONICAL FLOW 1 - ROLLING O S C I L L A T I O N  IN A LOCALLY C O N I C A L  FLOW 

5.  CONCLUDING R F M A R K S  

1 

1 

ClA5SiCal 
Vortex 
Separation 
Bubble with 
No Shock 
NO Shock/ 
NO Separation 
Shock with no 
Separation 
Shock-indoccd 
Separation 
Separation 
Bubble with 
Shock 

I ,  . 
0 1.0 

Lk 

7 Vortex with 3 *.’ Shock 

Figure 1. M i l l e r  and Wood’ C l a s s i f i c a t i o n  Diagram. 

. 

, 



CLASSICAL EULER EQUATIONS 

CONSERVATION FORM OF EULER EQUATloNs I N  A SPACE-FIXED FRAME OF R E F E R E N C E  

CONICAL VARIARLES 

2 
[PUB P U  + p .  puv .  puw. p u h I t  

= [ P V .  P U V .  p v 2  + P. P V W .  p v h I t  

SUPERSONIC CONICAL FLOW EOUATIONS 

c = x .  TI = y / x .  c = z i x  

. C O N I C A L  FLOW kQUATlONS 
. . . -  

WHERE 
I 

F = P - C l Z  

I 

E = E - c f  
, 



. 

Zero- To tal - Pressur e -Loss Eul er Equations 

Replace the energy equation by e i t h e r  
one o f  the isent rop ic  gas equations 

pipy = const. or at ( P S I  + V.(psV) = 0 

Rep1 ace the x-momen turn equation (second 
elements i n  the vectors given i n  Eqs. 
( 2 )  ’and ( 3 ) )  by the steady energy 
equation (total constant enthalpy) 

h = const  =-- ‘yp + 1 ( u * + , 2 + w  7 2 1 
Y I P  

Replace the continuity equation ( f i r s t  
elements I n  the vectors given in Eqs. 
( 2 )  and ( 3 ) )  by the steady energy 
equation given i n  Set (1) 

EXPLAWAT ION OF TOTAL-PRESSURE CHANCE 
FOR CLASSICAL AND ZTPL SETS OF EULER EOUATIONS 

DEFINITION OF ENTROPY CHANGE 

TO 

PT P T 
b . S = R I n - - + C  I n -  

0- 

( A )  UJCAL SE T 

a &  
STEADY FLOW bf 0, h C o n s t  AND 

pTI 

PT 1 v S = x i ,  A S = R I n  

/ 

FOR A FREE-SHEET G IS PARALLEL TO Q! V S  = o + P = pT + ZERO-TOTAL-PRESSURE L O S S  

( R )  ZERO-TOTAL-PRESSURE-LOSS SET (SHOCK-FREE AND WEAK SHOCKS) 

h - c o n s t .  V S  = 0 



COHPUTATONAL F w  FQUATIONL 

CROCCO'S  THEOREM 

T A S = ; x t t g t V h  - 1 V e VISCOUS-FORH OF THE EOUATION 

I -  

I -  

DEFINITION OF ENTROPY CHANGE 

P 
TI TO 7 'p I n  7 A S = R I n  

* 

a i  FOR STEADY FLOW bf 0 .  h c o n s t  AND 

pL 
5- T 0 S = x + N u m e r i c a l  D i s s i p a t i o n ,  A S - R I n  

( 1 )  

EVEN IF IS PARALLEL TO 9, v S * 0 + P * P, * NON-ZERO TPL T* 

(R) ~ - T o T A L - P ~ - I  nss SET (S~OCK-FIEE AND WEAK S H O ~  

I 
h c o n s t ,  A S - 0 AND 

- 
= P T  + Zero T P L  pL 0 = o x V t N u m e r l c a l  D l s s i p a t i o n .  

CLASSlCAL EULER EQUATIONS FOR THE RELATIVE HOTION I N  A ROTATING 
FRME OF REFtRENCE 

THE CONSERVATION FORM OF THE CLASSICAL EULER EOUATIONS FOR THE ABSOLUTE MOTION 

OF THE FLOW I N  A SPACE'FIXED FRAME OF REFERENCE 

~ t V * ( p i ) = D  

X L ! L t v  ( p i V + p T )  = O  a t  

.dt 8 ( p  e )  t V ( p  h 7) = 0 

Y 2  e = p/p(y-I) t 

h = e t p / p  

( 2 )  

( 3 )  

( 4 )  

, 
( 5 )  



0 To express these equations i n  terms o f  a 
moving frame of reference, we use the f o l l o w i n g  
r e l a t i o n s  o f  the substant ia l  and ,local 
der ivat ives f o r  a scalar "a" and a vector " A " :  

Da I D'a 
E F  

aa a l a  - 
E=-- Vt Va 

03 = O ' i  + 

m a t T  

a i  aiX - - a t  =atT- V t  v i  + ;xi 

(6.a 1 

(6 .b)  

(7.a) 

(7.b) 

0 The transformat ion v e l o c i t y  it i s  a func t i on  of  
the 'moving frame o f  reference t r a n s l a t i o n  and 
rota t i o n  

(8 1 
- -  

it = 7 - ir = i 0 + o x r  

0 R e s t r i c t i n g  the motion o f  the frame o f  reference to  the 

r o t a t i o n a l  motion, 

Q + V  ( p i r )  = 0 a t  ( 9 )  

where 

..2 n 



( 1 4 )  

s =  

Since 

term 
only  the r o l l i n g  motion f s  solved . the source 
5 has been w r i t t e n  for - . -  = 0 G x l s  and w = i3 e x # .  

HICHLI6HTS OF AETHOD OF SOLUTION 

1. ME USE THE CENTRAL-DIFFERENCE FINITE-VOLUME SCHEME WITH FOUR-STAGE RUNGE KUTTA 
T I M E  S T E P P I N G  AND E X P L I C I T  SECOND' AND FOURTH'ORDER D I S S I P A T I O N  TERMS- 

2. FOR STEADY FLOWS, LOCAL-TIME STEPPING IS USED,AND FOR UNSTEADY FLOWS MINIMUM 

CLORAL T I M E  S T E P P I N G  IS USED-  

3. A THREE'DIMENSIONAL COMPUTER PROGRAM IS USED TO SOLVE FOR: 

- CONICAL FLOWS (USING 3 CONICAL PLANES,WE ENFORCE THE ABSOLUTE FLOW VECTOR TO BE 
EOUAL ON THESE PLANES)  

- D I R E C T  S O L U T I O N  O f  THE THREE'DIMENS I O N A L  FLOW PROBLEM. 

5. DEPENDING ON THE PRORLEM 'UNDER CONSIDERATIONI  D I F F E R E N T  SURFACE, F A R F I E D  AND 

S Y M M E T R Y - C O N D I T I O N S  ARE USED. FOR SUPERSONIC FLOWS, THE OUTER ROW SHOCK IS 
CAPTURED AS PART OF THE SOLUTION. 



SHARP-EDGED MI NGS (CLASS I CAL EULER €OS 8 ZERO-TOTAL-PRESSURE-LOSS SETS) 

ROUND-EDGED WINGS (CLASSICAL EURER EOS- g ZERO-TOTAL-PKESSURE-LOSS SETS) 

- NUHLRICAL BOUNDARY CONDITION (COARSE AND F INE 6RIDS) 

- CLOSED FORR BOUNDARY CONUITION (COARSE AND FINE GRIDS) 

THREE-DIRENSIOIAL TRANSONIC AND SUBSOYlC FLOWS 

, 



Ffgure 1 .  Standard Euler Set, Sharp-edged Wing, 64x64 Cell, 
Mor 2.01 d o o ,  P=7O0, 02=0.12, c~=O.OOS, 1. Surface Pressure, 2. 
Crossflow Mach number, 3. Crossflow Velocity. 

ORIGINAL PAGG IS 
OF POOR QUALITY 

2 3 1 

Figure 2. Zero-Total-Pressure-Loss Euler. Set (1) , Sharp-edged Wing, 64x64 
Cell , Ms2.0, a = l O o ,  p=7Oo, r2=0.12, e4-0.005,1. Surface Pressure. 
2. Crossflow Mach number,, 3. Crossflow Velocity. 
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