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c . 
Development of a Zonal CFD Code f o r  Hypersonic Flows 

INTRODUCTION: 

As detailed models of the National Aerospace Plane become avail- 
able, CFD codes will be required to accurately model flows over 
those models at Mach numbers up to 25. No current CFD code can 
handle both the high Mach number conditions and the complex 
geometries which will be required. 

Codes do exist which can produce Navier-Stokes solutions about 
simplified body shapes in the hypersonic regime. Four such codes 
have recently been compared by Edwards, et al., using a bicone 
shape and a generic elliptical all-body vehicle(1). While all of 
these codes are fairly accurate, they will become increasingly 
difficult to apply as model geometries become more complex. 

TNS (Transonic Navier-Stokes) is a CFD code which has been 
successfully applied to geometries as complex as the F-16A (2). 
The zonal capability of TNS allows a complex body to be modeled 
as an assemblage of relatively simple zones, with appropriate 
boundary conditions between zones. TNS was developed for 
transonic flow simulation over bodies which are best modeled 
using several zones, either due to the complexity of the geometry 
or to central memory limitations. The flow solver it uses is a 
diagonalized Beam-Warming method ( 3 ) .  While results in the 
transonic regime are very good, attempts to apply TNS to 
hypersonic flows have shown that this flow solver is probably a 
poor choice for hypersonic cases. 

This situation suggests that a synthesis of the TNS geometry 
capability with a more appropriate flow solver might produce a 
code capable of modeling detailed hypersonic vehicle designs. 

One flow solver selected for testing is that of F3D(4), which 
has been applied to STS at a Mach number of 7.9 and to a generic 
wing-body hypersonic configuration at Mach 25 (5). F3D was also 
included in the four-code comparison mentioned above. 

The work described here is based on a version of F3D provided by 
Y. Rizk, and a version of TNS which was modified for high-sweep 
cases by Jeff Cordova. 

TNS Testing: 

The existing TNS code has been tested to determine the highest 
Mach number at which solutions can be obtained. 

A generic elliptical all-body configuration was selected as a 
test case, since it represents the overall shape of a hypersonic 
vehicle in a simple way. A 2-D elliptic grid generator developed 
by Cordova was used to create Y - 2  cross sectional grids about the 
body, and the grids were simply stacked in the X (streamwise) 
direction to create a three-dimensional grid. A more optimal 
grid could have been generated with a true three-dimensional 
method, but this was not done, since the flow solver will be 
required to tolerate some imperfections in grid orthogonality and 
smoothness as models become more complex. 



. 
Once the grid was obtained, tests were made at increasing Mach 
numbers. Table 1 lists the cases which were run. The number of 
iterations shown reflects the time required to select effective 
time step and dissipation parameters, and may be much greater 
than the number of steps which would be required f o r  another run 
of the same case. In all cases, the Reynolds number was 0.75E+06. 

For Mach numbers up to about 4, it proved fairly easy to obtain 
solutions. Each run was started from freestream conditions. A 
moderate increase in the fourth-order artificial dissipation was 
sufficient to maintain stability in the early steps, and the 
dissipation could be reduced to 0.01 or less after one order of 
magnitude convergence had been achieved. This value is the same 
as is used in transonic cases. 

When the Mach number reached 6, the dissipation parameter had to 
be set more carefully. It was found that the stability of the 
code peaked sharply when the correct dissipation was used (Figure 
1). Unfortunately, the correct value varied with Mach number and 
with the number of time steps which had been made, so the 
optimization must be repeated several times f o r  each case. 

At a Mach number of 7.4, there was no longer a stability peak for 
any positive value of the dissipation parameter (Figure 1). The 
solution could no longer be obtained from free stream conditions. 
Instead, the Mach 6 solution was used as a starting solution, and 
the outer boundary conditions were ramped slowly up to Mach 7.4 . 
Solutions for positive angles of attack were obtained by similar 
slow changes in the boundary conditions. At 4 degrees, a 
solution was obtained, but at 6 degrees an instability in the 
wake region prevented convergence. 

Solutions were not obtained for Mach numbers greater than 7.4, 
even at zero angle of attack. While such solutions are not 
impossible, the increasing computational effort required seems 
prohibitive. 

CNS Development: 

In order to obtain solutions at higher Mach numbers, and to 
improve shock capturing in both supersonic and hypersonic 
conditions, a new code is being developed. The new code will be 
called CNS (Compressible Navier-Stokes). It will retain the 
zonal geometry capability of  TNS, while incorporating a flow 
solver more suited to high Mach number cases. 

One of the flow solvers under consideration for CNS is the 
partially flux-split flow solver of F3D. The solver provides 
upwinding along one coordinate direction. In order to test this 
option, the F3D solver has been included as an option in the 
existing high-sweep TNS code. So far, no solutions have been 
generated with the new code. 



RESULTS : 

The solutions whic-h have been obtained with TNS on the all-body 
do not correspond in Mach number, Reynolds number, and angle of 
attack to any published results obtained by other methods. 
Edwards, et al.(l) provide comparisons of results from four codes 
which have been validated on a bicone configuration and applied 
to the all-body geometry. To date this is the only data 
available, since no experimental results have been released for 
publication. Extensive validation will begin only after a flow 
solver has been incorporated which can give solutions over a 
wider range of Mach numbers. 

Figures 2 and 3 are included as examples of the data to be used 
for validation. Figure 2 shows boundary layer profiles at 3 X 
stations along the body centerline (symmetry plane) the 
conditions are I4 = 7.4, Re - 0.75e+06, alpha = 0 degrees. Figure 
3 shows the pressure coefficient along the centerline, above and 
below the body. The conditions are the same as f o r  Figure 2, 
except at 4 degrees angle of attack. 

CONCLUSIONS: 

While the zonal grid system of TNS provides excellent 
modeling of complex geometries, improved shock capturing, and a 
higher Mach number range will be required i f  flows about 
hypersonic aircraft are to be modeled accurately. 

A new CFD code, CNS (Compressible Navier-Stokes), is under 
development to combine the required high Mach number capability 
with the existing TNS geometry capability. One of several 
candidate flow solvers for inclusion in CNS is that of F3D. This 
upwinding flow solver promises improved shock capturing, and more 
accurate hypersonic solutions solutions overall, compared to the 
solver currently used in TNS. 
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-. Table 1 

Cases tested using the Pulliar-Chaussee diagonalized algorithm in TNS 
with the all-body configuration. 

Freestream Alpha Grid Size Iterations Convergence 
Mach Number (degrees) (total) (orders of magnitude drop 

in L2 norm of the residual) 
inner zones outer zones 

7.4 6.0 114 , 324 735 0.2-2.2 0.8-3.6 
7.4 4.0 114,324 1200 3.0 2.-5. 
7.4 4.0 114,324 1702 4.0 3.-6. 
7.4 2.0 114,324 900 1.5-2.6 0.0-3.9 
7.4 0.0 114,324 3000 4.-6. 7. 
7.4 0.0 114,324 115 - - 
6.0 0.0 114,324 2300 4.-6. 2.-5. 

4.0 0.0 348,595 1200 5. 2.4-5.2 

2.0 
2.0 

2.0 348,595 1550 4.5 2.3-4.4 
2.0 114,324 900 3.9-4.5 2.-3.6 
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figure 3. Zero-Total-Pressure-Loss EUler, Set (2) Sharp-edged Hfng. 64x64 
C e l l  , ~-=2.0,  a=tOo, 8=70°, E24.12, c4=0.005,1. Surface pressure, 
2. Crossflow Mach number, 3. Crossflow Velocity. 

1 2 3 
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Ffgure 5. Standard W e t  Set, numcrlcal b.c., Round-edged Wing, 64x64 Cel l ,  
~-=2.0, P ~ o " ,  B=7OU, y 0 . 2 5 ,  c4=0.01, 1. Surface pressure, 2. 
Crossflow Mach number, 3. Crossflaw Velocf ty. 

2 3 1 



Figure 6. Zero-Total-Pressure-Loss Euler, Set (11, numerical b.c. , round- 
edged Wing, 64x64 Cell, M -2.0, a=1Ou, F70U, ~ ~ 0 0 . 2 5 ,  ~ ~ = 0 . 0 1 , 1 .  

Velocity. 
Surface Pressure, 2. Crossflow - Mach number, 3. Crossflow 

2 3 

-- 

Figure 7.' Standard Euler % t D  C.f. b.c., round-edged Wing, 64x64 cel l .  
Md2.0, a = l O u ,  @=7OuB ~ ~ ' 0 . 2 5 .  c =0.01, 1. Surface pressure, 2. 
Crossflow Mach number, 3. Cross f law velocity. 

1 3 



Figure 8. Zero-Total-Pressure-Loss Euler, Set (1) , C.f. b.c., round-edged 
wing, 64x64 ce l l ,  H-=Z.O, a = l O u ,  fi=7OU, E =0.25, E =0.01, 1. 
Surface pressure, 2. Crossflow Mach numb&, 3. dossflow Velocity. 

Figure 9. Standard Euler Set, nwrfca l  b.c., round-edged wing, 96x128 ce l l ,  
Hb2.0, -IOu, p 7 O 0 ,  4 . 2 5 ,  c4=0.01,1. Surface pressure, 2. 
Crossflaw Mach number, . Crossflow velocf ty.  
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Figure 10. Zero-Total-Pressure-Loss Euler, Set [l), numerical b.c. , round-edged 
wing, 96x128 cell, M t 2 . 0 ,  a= lOo,  p 7 O o ,  c2=0.25, c ~ = O . O ~ ,  1. Surface 
pressure, 2. Crossflow Mach number, 3. Crossflow velocity. 

Figure 11. Standard Euler Set, C.f. b.c., round-edged wing, 96x128 ce l l ,  
Mb2.0,  a= lOo,  F70°. c2=o.25, ~~4.01, 1. Surface pressure, 2. Cross 
flow Mach number, 3. Crossflow velocity. - 
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Figure 12. Zero-Total-Pressure-Loss Euler, Set (11, C .  f. b.c. , round-edged wing, 
96x128 cel l  , H1=2.0. a=lOo, 8=70°, C 2 4 . 2 5 .  ~ ~ = 0 . 0 1 .  

LSurface pressure, 2. Crossflow Mach number, 3. Crossflow velocity. 

-. 
. .  

Figure 14. Three-Dirmsi&l Transonic F l m .  Standrrd Euler kt. Sbrp-cdged delta 
wlng, 80X38X48 c e l l .  M-=0.7. s l S o ,  AR-1.5. cz-0.12, c,=O.W5. 
(&b.) 1. Surface Presswe, 2. Stat ic  Pressure Contours. 3. Crossflor 
vclocity 

(c,L)t.Strtic pressure Contours. 2. Crossflou velocity 
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Flgure 14. T h r e r - O l ~ n s l w l  Transonic Fl&. Standard Eulrr  Srt. Shrpldgcd delta 
ulng. 8OX38X48 cr l l .  H-4.7, c l S o .  AR-1.5, c2.0.12. c,=O.W5, 
(a.b.1 1. S ~ t r h c r  h s s w r .  2. Statlc Pressure Contours. 3. C r o r r f l a  
w l o c l t y  

fc.~ll.Statrc ~ r w e  Contours. 2. C r o s s t l a  w l o c l t y  

I 

e. x=1.01 

d. X=1.25 

Figure 15. Three-Dimnrional Transonic flow, Standard Euler Set, Sharp-edged delta . 
wing, 80X38X48 c e l l ,  M-10.7, . ~ 1 5 ~ .  AR11.5, t2=0.12, c4=0.005, 
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b. X = 0.01 
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Figure 16. 

1 
n 
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. *rxprClmt" Eulor 

Threedlmenslonal subsonic flaw, isentroplc Eulcr set, sharp-edged 
delta wing, 80x38~48 ce l l ,  M, = 0.3, a = 20.So, AR = 1, c2 = 
0.12, t~, 0.005, (a . ,b . )  1. surface pressure, 2. statlc presure 
contours. %, 3. crossflow velocfty 

0. x= 0 . 5 2  

c.x= 1.02 



uo - 0.35 emax 4 1 2 ,  k = 1.337, M, = 2 ,  a =loc and p = 70° 
r = 4.699 

Fig. 1 Steady symmetric flow around a d e l t a  
wing, M,=2, a=lOo, p=7Oo 

2. cross-flow v e l o c i t y  



3. cross-flow Mach 
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Fig. 2. Uniform r o l l i n g  o f  a del ta  wing, 
M,=z, a=Oo, 8-700, W=O.S 

1 2. cross-flow velocity 
.m I - 

, 
1. surface pressure 



Ffg. 2. Unfforrn rolling of I delta wfng. 
M = 2 .  a=Oo, P97ff. w0.5 

3. cross-flow Mach 
4. s t a t i c  pressure 

Fig. 3 Roll angle, angular speed and angular 
acceleration of the r o l  11 ng osci 1 l a  ti on 
motion. 
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Fig04 Rolling oscillation o f  a delta wfng,  
M,,,=2, a=lOo , $170' , ~ 0 . 3 5 ,  k11.337.  

I 

1.  surface pressure 

2. cross-flow velocity 

F l g . 4  . Rolling oscillation o f  a delta wing, 
?4-=2. a=lOo, e-700, w-0.35, k.1.337, 
ema,=ifJ, t=o-1.07. e+( -14850 

- - - -  ~ _____ 

3. cross-flaw Mach 4 .  s tat ic  pressure 
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1. surface pressure 2. c ross- f lw  velocity 

Fig. S. Rolling oscillation o f  a delta wing. 
H-=Z. 0.100. B-7d. w-0.35, k-1.337. 
emx =is0 , t= 1.07+-2.16, e = ~ 4 . 8 5 0  - 
(-3.7601 

4. static pressure 

, 

3. cross-flow Mach 



., I- 2. cross-flow velocity 

1. surface pressure 

3. cross-flow Mach 4. static pressure . 
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Fig. 7 .  Rolling oscillation of a delta wing, 
Mm=2, a=lOo, f3=7Oo', wt0.35, k=1.337, 
emX=lS0, t=3.19+-4.31, 0=(+13.5*)- ( + 7 . e 0 )  

1. surface pressure 
2. cross-flow velocity 

F i g .  '1. Rolling o s c i l l a t i o n  o f  a delta wing. 
M-=2, a=lOo. 8.700. ~ 0 . 3 5 .  k-1.337. 

, 

3. cross-flow Mach 4. s tat ic  pressure 



Fig .  8 .  R o l l i n g  o s c i l l a t i o n  o f  a d e l t a  w i n g ,  
Mo=2, (x=10", 8=70", (J-0.35, kz1.337,  
%la x =15", t=4 .31+-5 .35 ,  9=(+7.q63)- ( - 1 1 . 4 6 . )  

ORIGINAL ?AGE 
OF POOR QUALITY 

-.6 -.'1 -2 

2. cross-flow velocity 

1. s u r f a c e  pressure 

Fig. a ,  Rolling o s c i l l a t i o n  of a delta wing, 
Mo=2. a=lOo. ~ 7 0 0 .  ~ 1 0 . 3 5 .  k.1.337. 
e =15O, t=4.31+-5.35. e = ( + 7 . 4 0 ) -  
(%.46*) 



0 lr.55H1.1 

" .  2. cross-flow ve loc i ty  1 
1. surface pressure 

Fig. 9. Rollfng oscillatfon of a delta wing. 
H-92, a=lOo, 8=7@, ~10.35. k.1.337. 

3. cross-flow Mach 4. s t a t i c  wessure 



Fig.  1O.Rolling o s c i l l a t i o n  o f  a delta wing. 
MB=2. a=lOo . @=70° . ~0.35. kz1.337. 
BM ,=15' . t=6.46+-7.48 . 9 =( 10.63' ) - (+8 . I7 '  

2. cross-flow ve loc i ty  

1. surface pressure 

Fig. 1O.Rolling osct l la t lon  of  a delta wing. 
H-=Z. ==le. e-700, 0.0.35. k.1.337. 

f 3:17') 
0 =1S0, t=6.46*-7.48, 0=(10.63')- 

3. cross-flow Mach 4. s t a t i c  pressure 



Fig. 11 Rolling oscillatjons from t = 7..48+ 
to t = 15.0. steady s t a t e  oscll la- 
tion i s  reached. 
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Fig. 11 Rolling osclllrtlons from t = 7.48+ 

tlon it reached. 
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FIGURE 14- TIME HISTORY OF TtIE LIFT AND ROLLING-MOMENT COEFFICIENTS 
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CONCLUDING REMARKS 

1. 

2- 

. 3. 

4- 

5. 

6- 

7. 
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WE HAVE PRESENTED APPLICATIONS OF THE CLASSICAL AND ZERO-TOTAL-PRESSURE-LOSS SETS 
OF EULER EOUATIONS TO SHARP- AND ROUND-EDGED DELTA WINGS- 

WE HAVE EXPLAINED THE ORIGIN OF THE TOTAL PRESSURE LOSS IN THE CLASSICAL SET # 

FOR SHARP-EDGED DELTA WIN6S, ALL  SETS OF EULER EOUATIONS PRODUCE THE S A R  
SEPARATED FLOW SOLUTIONS. THE SOLUTIONS REPRESENT REAL FLOW SOLUTIONS. 

FOR ROUND-EDQD M L T A  WIWCS AND FOR COARSE GRIDS, THE SOLUTION M P t N D S  ON (1) THE 
LEVEL OF DISSIPATION, (2 )  THE ACCURACY OF THE SURFACE BOUNDARY CONDITION, AND ( 3 )  
THE TYPE OF EULER €OS. SET. ONE CAN CET SCPARATED, PARTIALLY SEPARATED, OR 
ATTACHED FLOW SOLUTIONS- 

FOR ROUND-EDGED DELTA WINGS AND FOR F I N E  GRIDS, ATTACHED FLOY SOLUTIONS ARE 
OBTAINED- 

YE HAVE ALSO PRESENTED THREE-DIRENSIONAL FLOW SOLUTIONS AND ASYRRETRIC FLOW 
SOLUTIONS INCLUDING UNSTEADY FLOWS FOR SHARP-EDGED DELTA WINGS. 

EULER EOS. SHOULD BE RESTRICTED TO SHARP-EDGED Y l N 6 S  FOR REAL FLOW SOLUTIONS- 
FOR ROUND-EDGED WINGS, NAVIER-STOKES EOS* RUST BE USED. 

, 


