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Development of a Zonal CFD Code for Hypersonic Flows

INTRODUCTION:

As detailed models of the National Aerospace Plane become avail-
able, CFD codes will be required to accurately model flows over
those models at Mach numbers up to 25. No current CFD code can
handle both the high Mach number <conditions and the complex
geometries which will be required.

Codes do exist which can produce Navier-Stokes solutions about
simplified body shapes in the hypersonic regime. Four such codes
have recently been compared by Edwards, et al., wusing a bicone
shape and a generic elliptical all-body vehicle(l). While all of
these codes are fairly accurate, they will become increasingly
difficult to apply as model geometries become more complex.

TNS (Transonic Navier-Stokes) 1is a CFD code which has been
successfully applied to geometries as complex as the F-16A (2).
The zonal capability of TNS allows a complex body to be modeled
as an assemblage of relatively simple zones, with appropriate
boundary conditions between zones. TNS was developed for
transonic flow simulation over bodies which are best modeled
using several zones, either due to the complexity of the geometry
or to central memory 1limitations. The flow solver it uses is a
diagonalized Beam-Warming method (3). While results in the
transonic regime are very good, attempts to apply TNS to
hypersonic flows have shown that this flow solver is probably a
poor choice for hypersonic cases.

This situation suggests that a synthesis of the TNS geometry
capability with a more appropriate flow solver might produce a
code capable of modeling detailed hypersonic vehicle designs.

One flow solver selected for testing is that of F3D(4), which
has been applied to STS at a Mach number of 7.9 and to a generic
wing-body hypersonic configuration at Mach 25 (5). F3D was also
included in the four-code comparison mentioned above.

The work described here is based on a version of F3D provided by
Y. Rizk, and a version of TNS which was modified for high-sweep
cases by Jeff Cordova.

TNS Testing:

The existing TNS code has been tested to determine the highest
Mach number at which solutions can be obtained.

A generic elliptical all-body configuration was selected as a
test case, since it represents the overall shape of a hypersonic
vehicle in a simple way. A 2-D elliptic grid generator developed
by Cordova was used to create ¥Y-2Z cross sectional grids about the
body, and the grids were simply stacked in the X (streamwise)
direction to create a three-dimensional grid. A more optimal
grid could have been generated with a true three-dimensional
method, but this was not done, since the flow solver will be
required to tolerate some imperfections in grid orthogonality and
smoothness as models become more complex.




Once the grid was obtained, tests were made at increasing Mach
numbers. Table 1 lists the cases which were run. The number of
iterations shown reflects the time required to select effective
time step and dissipation parameters, and may be much greater
than the number of steps which would be required for another run
of the same case. In all cases, the Reynolds number was 0.75E+06.

For Mach numbers up to about 4, it proved fairly easy to obtain
solutions. Each run was started from freestream conditions. A
moderate increase in the fourth-order artificial dissipation was
sufficient to maintain stability in the early steps, and the
dissipation could be reduced to 0.0l or less after one order of
magnitude convergence had been achieved. This value is the same
as is used in transonic cases.

When the Mach number reached 6, the dissipation parameter had to
be set more carefully. It was found that the stability of the
code peaked sharply when the correct dissipation was used (Figure
l1). Unfortunately, the correct value varied with Mach number and
with the number of time steps which had been made, so the
optimization must be repeated several times for each case.

At a Mach number of 7.4, there was no longer a stability peak for
any positive value of the dissipation parameter (Figure 1). The
solution could no longer be obtained from free stream conditions.
Instead, the Mach 6 solution was used as a starting solution, and
the outer boundary conditions were ramped slowly up to Mach 7.4 .
Solutions for positive angles of attack were obtained by similar
slow changes in the boundary conditions. At 4 degrees, a
solution was obtained, but at 6 degrees an instability in the
wake region prevented convergence.

Solutions were not obtained for Mach numbers greater than 7.4,
even at zero angle of attack. While such solutions are not
impossible, the increasing computational effort required seems
prohibitive.

CNS Development:

In order to obtain solutions at higher Mach numbers, and to
improve shock capturing in both supersonic and hypersonic
conditions, a new code is being developed. The new code will be
called CNS (Compressible Navier-Stokes). It will retain the
zonal geometry capability of TNS, while incorporating a flow
solver more suited to high Mach number cases.

One of the flow solvers wunder consideration for CNS 1is the
partially flux-split flow solver of F3D. The solver provides

upwinding along one coordinate direction. In order to test this
option, the F3D solver has been included as an option in the
existing high-sweep TNS code. So far, no solutions have been

generated with the new code.




RESULTS:

The solutions which have been obtained with TNS on the all-body
do not correspond in Mach number, Reynolds number, and angle of
attack to any published results obtained by other methods.
Edwards, et al.(l) provide comparisons of results from four codes
which have been validated on a bicone configuration and applied
to the all-body geometry. To date this 1is the only data
available, since no experimental results have been released for
publication. Extensive validation will begin only after a flow
solver has been incorporated which can give solutions over a
wider range of Mach numbers.

Figures 2 and 3 are included as examples of the data to be used
for validation. Figure 2 shows boundary layer profiles at 3 X
stations along the body centerline (symmetry plane) the
conditions are M = 7.4, Re = 0.75e+06, alpha = 0 degrees. Figure
3 shows the pressure coefficient along the centerline, above and
below the body. The conditions are the same as for Figure 2,
except at 4 degrees angle of attack.

CONCLUSIONS:

While the zonal grid system of TNS provides excellent
modeling of complex geometries, improved shock capturing, and a
higher Mach number range will be required if flows about
hypersonic aircraft are to be modeled accurately.

A new CFD <code, CNS (Compressible Navier-Stokes), 1is under
development to combine the required high Mach number capability
with the existing TNS geometry capability. One of several
candidate flow solvers for inclusion in CNS is that of F3D. This
upwinding flow solver promises improved shock capturing, and more
accurate hypersonic solutions solutions overall, compared to the
solver currently used in TNS.
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Table 1

Cases tested using the Pulliam-Chaussee diagonalized algorithm in TNS
with the all-body configuration.

Freestream Alpha Grid size Iterations Convergence

Mach Number (degrees) (total) (orders of magnitude drop
in L2 norm of the residual)
inner zones outer zones

7.4 6.0 114,324 735 0.2-2.2 0.8-3.6

7.4 4.0 114,324 1200 3.0 2.-5.

7.4 4.0 114,324 1702 4.0 3.-6.

7.4 2.0 114,324 900 1.5-2.6 0.0-3.9

7.4 0.0 114,324 3000 4.-6. 7.

7.4 0.0 114,324 115 - -

6.0 0.0 114,324 2300 4.-6 2.-5.

4.0 0.0 348,595 1200 5. 2.4-5.2

2.0 2.0 348,595 1550 4.5 2.3-4.4

2.0 2.0 114,324 900 3.9-4.5 2.-3.6
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»1. Surface pressure,

Sharp-edged Wing, 64X64

005

c4=0

» Set (2),
Crossflow Velocity,

2=0.12.

2.0, a=10°, =709, ¢

Crossflow Mach number, 3.

Zero-T;tal-Pressure-Loss Euler

Cell,
2.

Figure 3.
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.¢., Round-edged Wing, 64X64 Cell,

2-0.25. e4=0.01. 1. Surface pressure, 2.

Crossflow Velocity.
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Crossflow Mach number, 3.
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=0,01, 1. Surface pressure, 2.

.C., round-edged wing, 64X64 cell,
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=0,01, 1.
ossflow velocity.

¢

c.f. b.c., round-edged
c

=0.25, ¢
r, 3.

&

Loss Euler, Set (1),
_=2.0, a=10Y, 8=70Y, ¢
Crossflow Mach numb

Surface pressure, 2,
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wing, 64X64 cell, M

Figure 8.
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- 1), numerical b.c., round-edged
Fiqure 10. Zero-Total-Pressure-Loss Euler, Set {1), m : .
? wing, 96X128 cell, M_=2.0, a=10°, =707, €,=0.25, €4=0.01, 1. Surface

pressure, 2.

Crossflow Mach number, 3. Crossflow velocity.

Pesssseasncsssnnes

Figure 11. Standard Euler Set, C.Ff. b.c., rc;und-edged wing, 96X128 cell,
M_=2.0, a=10°, g=700. €,%0.25, €,20.01, 1. Surface pressure, 2. Cross

flow Mach number, 3. Cros_sf'low velocity.
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Figure 12. Zero-Total-Pressure-Loss Euler, Set (1), ¢. f. b.c., round
J6X128 cell, M_s2.0, =107, B=70°, ¢,=0.25, ¢,=0.01,
LSurface‘pressure. 2. Crossflow Mach number, 3

-edged wing,

« Crossflow velocity.
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Figure 14, Three-Dimensional Transonic Flow, Standard Euler Set, Sharp-edged delta
wing, 80X38X48 cel), M 0.7, a=15%, AR=1.5, ¢,°0,12, ¢,=0.005, :
(a,n.) 1. Surface Pressure, 2. Static Pressure Contours, 3. Crossflow

1
(:“?f;_;yuuc pressure Contours, 2. Crossflow velocity
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Fiqure 14. Three-Oimensfonal Transonic Flow, Standard Euler Set, SMrp-edged delta

wing, 80X38X48 cell, M_s0.7, «=15%, ARsL.5, ¢,*0.12, ¢,=0.005,
1. Surface Pressure, 2. Static Pressure Contours, 3.

(a,p)

Crossflow

velocity
Crossfiow velocity

(e.d)1.Static pressure Contours, 2.
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Figure 15. Three-Dimensional Transonic Flow, Standard Euler Set, Sharp-edged delta .
wing, 80X38X48. cell, M_=0.7, a=150, AR=1.5, cz-O.lz. €4=0.005,

8. X=0.52

b. X =0.81
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Figure 16, Three-dimensional subsonic flow, isentropic Euler set, sharp-edged
delta wing, 80x38x48 cell, Mg, = 0.3, a = 20.5°, AR = ], €, =
0.12, €, » 0,005, (a.,b.) 1. surface pressure, 2. static presure
contours, Cp, 3. crossflow velocity
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Figure 16. Three-dimensional subsonic flow, isentropic Euler set, sharp-edged
delta wing, 80x38x48 cell, Ma = 0.3, a = 20.5°, AR = 1, ¢; =
0.12. ¢, = 0.005, (c.d.) 1. experimental

static pressure contours, Cp, (normal to wind direction),

2. static pressure contours, Cp, (normal to wing surface),

3. crossflow velocity.
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Numerical Examples (2)
flat- plate sharp-edged delta wing

e Symmetric Conical Flow(Classict Euler Eqs.)
M_ =2, a=10° and B = 70°

e Uniformly Rolling Wing a Conical Flow (Classical Euler E4s.)
o
u=-ﬁ—‘£—=0.5,n‘.:2’a= Ooandag 700

* Rolling Oscillatfon of a Wing in a Locally- Conical Flow (Classiaal Euler Eys.)
w = = w cos kt e, and 6= - emax sin kt

where
k™2
Opax = wolk K =g
= n/12' k = 1.3377 M. =z 2 . a 3106 and B = 700

w = 0.3519
0 max v = 4,699
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Fig. 1 Steady symmetric flow around a delta
wing, M_=2, a=10°, B=700
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Fig. 1 Steady symmetric_flow around a delta (@) .
wing, M_=2, a=10°, ga7 RIGIN, 'L

3. cross-flow Mach

4. static pressure

Fig. 2. Uniform rolling of a delta wing,
M, =2, a=00, B=70°, w=0.5

1.surface pressure

b Upper
‘s“\\ b Lower 'f"\
v /
g\ d
\ A= P/
N\ o
“““;;gausnhk°“°“‘“ﬁ |
. T—_.,li—?:]ﬁm"!‘.]i; s srshig 53
NS
e "
. sl -
d‘t\
&8 v
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Fig. 2. Uniform rolItngup. 0s0.5
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3. cross-flow Mach

f a delta wing,

4.
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static pressure

Fig. 3 Roll angle, angular speed and ar_rgu'lar
acceleration of the rolling oscillation

motion.

wy/K

\€

%i‘su

3
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|
|

Time 80 Sense  Figure

1 1.07 -14.85 CCw 4
2 2.16 -3.76 CW 5

3 3.19 13.5 CW 6
4 4.31 7.46 CCW 7

5 5.35 © -11.46 CCw 8

6 6.46 , -10.63 Cw 9

7 7.48 8.17 CHW 10

8 8.59 13 CCW 11.1
9 9.69 -5.69 CCW 11.2
10 10.7 -14.79 CW 11.3
11 11.8 1.03 CW 11.4
12 12.8 14.8 CW 11.5
13 13.9 32.93 CCHW 11.6
14 15.0 -14.01 CCw 11.7
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Fig.4 . Rolling oscillation of a delta wing,
M=2, a=107, B=70°, w=0.35, k=1,337.
8rax=15%, t=0-1.07, 620-(-14859)
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2. cross-flow velocity

1. surface pressure

Fig.4 . Rolling oscillation of a delta wing,
M_=2, a=100, B=70%, w=0.35, k=1.337,

=160 - a0)={« 0
emx 15, t=0-1.07, 6=0-(-1485°)

4. static pressure

3. cross-flow Mach
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. =160 = - =
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1. surface pressure

2. cross-flow velocity
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Fig. $. Rolling oscillation of a delta wing,
M_=2, a=10°, p=70°, w=0.35, k=1.337,

0ax15 t=1.07%-2.16, 8=¢14.85%)-
(-3.76°)
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Fig. g. Rolling oscillation of a delta wing,
Mo=2, a=10, B=70°, w=0.35, k=1,337
Omax=15%, 1=2.16"-3.19, ox(-3.760)-
(413

.50) (‘Q: 5y .
4 'GII\T(‘!I/ Pl‘ ":74‘ Ig
- !
OF P()(}f{ AR TY
i
ST o 1eamma
O 1225081
A0 1T
a4 1:.2%E0
[ QPN IL 40

3 4 n!!l!!t.lw— ."" .

(7% ‘aia:::“a
or=--y R
8:135° 1

Lk 2. cross-flow velocity

1. surface pressure

Fig. g. Rolling oscillation of a delta wing,
M =2, a=10°, B=70%, w=,3s, k=1,337,

Oy 150, t=2.16%-3.19, 8(-3,789)-
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Fig. 7. Rolling oscillation of a delta wing,
M_=2, a=109, a=79°'. w=0.35, k=1,337,
Omax =157, t=3.197-4.31, 0=(+13.5%)- (+7.46°)

W ©:=746"

2.cross-flow velocity
1. surface pressure
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Fig. 7. Rolling oscillation of a delta wing,
M =2, a=10°, =70%, w=0.35, k=1.337,
8 ax 150, 1=3.197-4.31, 6x(+13.5°)-
(+7.46%

3. cross-flow Mach 4, static pressure




i i cillation of a delta wing,
Fio- 8. B M tee. B=700, w=0.35, k=1,337,

o =150, t=4.317-5,35, 83(+7.46°)- (-11.46")
ma x ’
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Fig. 8. Rolling oscillation of a delta wing,
M_=2, a=10°, p=7g°, w=0.35, k=1.337,
Oax~15%, t=4.317-5.35, 0=(+7.46%)-
(H1.46%)
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Fig. eo. Rolling oscillation of a delta wing
"2, a=10°, B=70%, w=0.35, ka1 337,
Omax=15%, t=5.35%-646, 0=(-11.460)- (-10.63°)
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Fig. 9. Rolling oscillation of a delta wing,
M =2, a=109, B=70°, w=0.35, k=1.337,
8 ay=15°, t=5.357-646, 02(-11.46%)-
(*16.63°)
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Fig. 10.Rol1ling oscillation of a delta wing,
M =2, a=10°, =70, w=0.35, k=1.337,
8,ax=15", t=6.46%-7.48, 6=(10.637)-(+8.17")
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Fig. 10.Rol1ing oscillation of a delta wing,
M =2, a=10°, p=70°, w=0.35, k=1,337,

0., ~15%, t=6.46%-7.48, 0x(10.630)-
(4817
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Fig. 11 Rolling oscfllatjons from t = 7.48%
to t = 15.0, steady state oscilla-
tion is reached.
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Fig. 11 Rolling osciliations from t = 7.48*
to t = 15.0, steady state oscilla-
tion is reached.
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FIGURE 14. TIME HISTORY OF THE LIFT AND ROLLING-MOMENT COEFFICIENTS
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CONCLUDING REMARKS

WE HAVE PRESENTED APPLICATIONS OF THE CLASSICAL AND ZERO-TOTAL-PRESSURE-LOSS SETS
OF EULER EQUATIONS TO SHARP- AND ROUND-EDGED DELTA WINGS-

WE HAVE EXPLAINED THE ORIGIN OF THE TOTAL PRESSURE LOSS IN THE CLASSICAL SET . .

FOR SHARP-EDGED DELTA WINGS, ALL SETS OF EULER EQUATIONS PRODUCE THE SAME
SEPARATED FLOW SOLUTIONS. THE SOLUTIONS REPRESENT REAL FLOW SOLUTIONS.

FOR ROUND-EDGED DELTA WINGS AND FOR COARSE GRIDS, THE SOLUTION DEPLNDS ON (1) THE
LEVEL OF DISSIPATION, (2) THE ACCURACY OF THE SURFACE BOUNDARY CONDITION, AND (3)
THE TYPE OF EULER EQS. SET. ONE CAN GET SEPARATED, PARTIALLY SEPARATED, OR
ATTACHED FLOW SOLUTIONS. ’

FOR ROUND-EDGED DELTA WINGS AND FOR FINE GRIDS, ATTACHED FLOW SOLUTIONS ARE
OBTAINED.

WE HAVE ALSO PRESENTED THREE-DIMENSIONAL FLOW SOLUTIONS AND ASYMMETRIC FLOW
SOLUTIONS INCLUDING UNSTEADY FLOWS FOR SHARP-EDGED DELTA WINGS-.

EULER EQS. SHOULD BE RESTRICTED TO SHARP-EDGED WINGS FOR REAL FLOW SOLUTIONS.
FOR ROUND-EDGED WINGS, NAVIER-STOKES EQS- MUST BE USED.




