
Annual Report

Grant No. NAG-1-349

DIGITAL CONTROL SYSTEM FOR
SPACE STRUCTURE DAMPERS

Submitted to:

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665

Attention: Dr. Garnett C. Horner
SDD, PIS 230

Submitted by:

J. K. Haviland
Professor

Department of Mechanical and Aerospace Engineering

SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

(RASA-CR-181253) D I G I T A L C C L I I C L SYSTEl! POB 387-27704
SFACE SIEUCTU6E C I B P E l i S Annual &€port
(V i r g i n i a U n i v .) 96 5 A v a i l : NlIIS HC
A02/HF BO1 C S C L 220 Unclas

63/18 0093175

Report No. WA/528224/MAE86/105

September 1985
- Copy No.

https://ntrs.nasa.gov/search.jsp?R=19870018271 2020-03-20T10:12:08+00:00Z

ABSTRACT

This is the final report of a two-year study of digital
control systems for space structural dampers, or more
specifically, for proof-mass dampers or actuators. Previously, a
proof-mass actuator had been developed, of which twelve had been
delivered to NASA, and analog and digital control systems had been
developed in prototype form. Under the first year of the present
study, a 280 controller was developed, slaved to a TRS80 microcom-
puter. During the final year, which is covered in this report, a
digital controller was developed using an SDK-51 System Design
Kit, which incorporates an 8031 microcontroller. As part of this
study, the necessary interfaces were installed in the wire-wrap
area of the SDK-51 and a pulse-width modulator was developed to
drive the coil of the actuator. Also, control equations were
developed, using floating- point arithmetic. The design of the
digital control system is emphasized in this report, and it is
shown that, provided certain rules are followed, an adequate
design can be achieved. It is recommended that the so-called
w-plane design method be used, and that the time elapsed before
output of the up-dated coil-force signal be kept as small as pos-
sible. However, the cycle time for the controller should be
watched carefully, because very small values for this time can
lead to digital noise.

ACKNOWLEDGEMENT

The gift by the INTEL Corporation of an SDK-51 System Design
Kit is gratefully acknowledged. Without this gift, much of the
work reported here could not have been attempted.

ii

TABLE OF CONTENTS

INTRODUCTION

Discussion
Equ i pme n t
Work on the 8051 Series

SDK-51 DEVELOPMENT BOARD

Description
Comparison of 8051 with 280

Advantages of 8051 Series
Advantages of 280

DERIVATION OF CONTROL EQUATIONS

Floating Point Subroutines
Digital Program by Rectangular Rule

Difference Equations for P1-D
Implementation of Program
Plots of Real Damping and Response Amplitude
Timing

Digital Program by w-Plane Analysis
Design in the w-Plane
Derivation of the Difference Equations

System with Minimum Delay
Numerical Accuracy
Minimum Delay
Difference Equations for Minimum Delay Case
Plots of Real Damping

SUMMARY

Controller Design
Digital Control Equations
Floating-point Calculations
Pulse Width Modulation
Word Length
Future Development

CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDM A - EXPERIMENTAL PROGRAM FOR SDK-51 BOARD

APPENDM B - SCHEMATICS

Page 1

Page 1
Page 1
Page 4

Page 4

Page 4

Page 7
Page 7

Page 8

Page 9

Page 9
Page 1 2
Page 19
Page 20
Page 2 2
Page 22

Page 33
Page 37
Page 40

Page 42
Page 4 2
Page 44
Page 46
Page 47

Page 5 2

Page 5 2
Page 5 2
Page 5 3
Page 5 3
Page 5 3
Page 5 4

Page 55

Page 56

Page 5 8

Page 81

iii

LIST OF FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figilre
Figure
Figure
Figure
Figure
Figure
Figure

1.
2.
3.
4.
5.
6.
7.
8 .
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Proof-Mass Actuator Section
Proof-Mass Actuator with Proximeter
Proof-Mass Actuator. Digital Logic
Proof-Mass Actuator Controls: Analog
Bode Plots of Synthetic Spring: Analog
Real Damping, etc: Low Synthetic Stiffness
Norm. of Response, etc: Low Synthetic Stiffness
Real Damping, etc: Low Accelerometer Gain
Norm. of Response, etc: Low Accelerometer Gain
Real Damping, etc: Default Values
Norm. of Response, etc: Default Values
Real Damping, etc: High Accelerometer Gain
Norm. of Response, etc: High Accelerometer Gain
Real Damping, etc: High Synthetic Stiffness
?!or=. of Respoiise, etc: High Synthetic Stiffness
Digital Filter with Analog Plant. Effect of Delay
Proof-Mass Actuator Controls: Digital
Bode Plot of Synthetic Damper: Digital
Bode Plots of Synthetic Spring: Digital
Digital Filter with Analog Plant: Immediate
Real Damping, etc: (c=lONs/m, mTo=O)

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

2
3
5

1 4
1 8
2 3
2 4
25
26
27
2 8
29
30
3 1
3 2
34
36
38
39
4 5
48

Figure 22. Real Damping, etc: (c=lONs/m, mTO=4096 musecs Page 49

Figure 23. Real Damping, etc: (c=80Ns/m, mTo=O) Page 50

Figure 24. Real Damping, etc: (c=80Ns/m, mTO=4096 musecs) Page 5 1

Figure B1. Sheet 1: Drivers
Figure B2. Sheet 2: A/D Converter
Figure B3. Sheet 3: A/D Trigger and Clock
Figure B4. Sheet 4: Channel Select
Figure B5. Sheet 5: Analog Input Port (Typical)
Figure B6. Sheet 6: PWM Board

Page 8 2
Page 83
Page 84
Page 8 5
Page 86
Page 8 8

iv

DEFINITIONS

= Coefficients of polynomial "0' al
%,AF = Structural acceleration

bl = Coefficient of polynomial

c = Design damping (Ns/m)
D(s), etc. = Transfer function
F = Coil force
g = Acceleration of gravity (9.81 m/s)
G = Analog gain
G* = Digital gain
H(s), etc. = Transfer function
Hc(s), etc. = Complex damping

In = Integer form of n

k = Integer time-interval variable
kA, etc. = Digital gain terms

k

ks = Synthetic stiffness (N/m)

K = Analog gains used in calibration of system
m = Integer time-count for data output
M = Proof-mass (kg)
n = Integer cycle-time count for calculation cycle
Rc(s) = Response amplitude ratio

s = Laplace variable
t = Time variable
T = Calculation cycle time
To = Basic time interval (256 microseconds)

u,U = control state or output variable
w = Transform variable
x,X = Input variable
a = Transform variable
Z() = a-transform equivalent of a Laplace transform
+M = Phase margin

y = Lag to lead frequency ratio
f = Accelerometer gain parameter
Y = w-Plane frequency
o = s-Plane frequency

2

= Maximum synthetic stiffness max

Subscripts:

A = Accelerometer
B = Component of damping equation
c = Relating to damping
C = Coil

V

D = Relative proof-mass motion
L = LVDT
P = Proximeter
s = Relating to stiffness
V = Component of synthetic stiffness equation

vi

Page 1

INTRODUCTION

Discussion: This report covers the second year of a study of

space structure damping under NASA Grant No. NAG-1-349, following

Proposal No. MAE-NASA-2548-83 (1). Earlier, a general study of

possible damper configurations had been reported under NASA Grant

No. NAG-1-137-1 (2). Following that work, purchase order No.

L46164B had been received from NASA for the design and construc-

tion of twelve proof-mass actuators, also referred to as space

structure dampers. A sectioned assembly drawing for this design

is shown as Figure 1. During these last two years, Mr. Michael

Mallette, a doctoral candidate, has worked on the development of

control laws under a NASA student fellowship. His dissertation is

imminent. Under the present two-year grant, earlier reports (3,4)

have covered design of the proof-mass actuator, and development of

analog and 280 controllers. The work reported here covers

development of an 8051 series controller exclusively.

Equipment: The work on the 8051 series controllers was aided

considerably by the donation of an SDK-51 System Design Kit from

the INTEL Corporation. Also, two of the twelve NASA owned proof-

mass actuators were obtained on loan, and were modified to take

Bentley-Nevada Model 190 proximeter probes. This required two new

cases, and tapered sleeves on the proof-masses, so that their

position could be determined by proximeters. One of these

actuators has been used by Mr. Mallette, thi-s is shown in Figure

2 with an accelerometer which is also on loan from NASA. The

other was used in the present study. It has a Sunstrand Model QA-

900 accelerometer, a Bentley-Nevada 3106-2800-190 amplifier, and a

Page 2

z

-' Page 3

Figure 2. PROOF-MASS ACTUATOR WITH PROXIMETER

Page 4

home-made pulse-width modulator (PWM) attached. A control system

was built in the wire-wrap area of the SDK-51 board, as described

later.

Work on the 8051 series: Work on the 8051 series controllers,

which is literally an 8031, which has no internal program memory,

was limited mainly to development of the system described above,

and to the requisite SDK-51 programs, including two versions of

the P1-D control realization first discussed in Reference 4 .

Sehavior of the system was largely checked by shple ebservation,

relying on Mr. Mallette’s experience for further insight into its

behavior. The following report covers a description of the

controller hardware which was developed, and of the control

program, together with computer predictions of the real damping

vs. frequency, and of the relative amplitude of motion of the

proof-mass within its case. The long general purpose SDK-51

program which was used is listed in Appendix A.

SDK-51 DEVELOPMENT BOARD

Description

An SDK-51 Development Board was obtained as a gift from the

INTEL Corporation. Although it is designed for teaching the 8051

language, a wire-wrap area is provided for user experiments. This

area was used to configure a controller for the proof-mass damper.

Components in this area include four analog input ports (two

populated), an A/D converter, and pulse-width modulated (PWM) out-

puts. An overall schematic of this system is shown in Figure 3,

I
I _
I
I
I
I
I
I
I
I
I
I
I

r------- - - - * - 2

0 0 L UPI

I

a

k a
u

k al
a E u 0
al k a

4
E
r(
x -aj
0 U
k
PI 3

Page 6

and logic diagrams are given in Appendix B.

As presently configured, 12 pins on two ports of the 8031 are

used. These are all eight pins of port 1, and pins 3.3,4, and 5

of port 3. In addition, pin 3.0has been programmed temporarily

to indicated completion of digital calculations as an oscilloscope

signal, but this could easily be discontinued. Pins 1.0,1,2, and

3 are connected to a transceiver, and can be used for output,

otherwise, port 1 is used to read the A/D. Pin assignments are as

L. - -

Port 1 (Input)

Pin 1.0 (Output)
Pin 1.1 11

Pin 1.2 I1

Pin 1.3

Pin 3.0 (Output)

Pin 3.3

Pin 3.4

Pin 3.4

11

I1

II

Read A/D

Input channel selection

I 1 11 I 1

Trigger A/D

Enabie A/’D

Temporary oscilloscope signal.

Sets transceiver to output when high.

Sets L.H. end of coil to high voltage.

Sets R.H. end of coil to high voltage.

Four analog inputs were originally designed, but two will not

be populated (LVDT and signal generator) until requirements for a

slaved 8031 have been determined. The two which have been

populated are #0, proximeter, and #1, accelerometer. The four

inputs are selected by the outputs of Pins 1.0, and 1, through

half of a 74LS139 decoder, and an LF13332 analog switch, with a

TL087 high speed operational amplifier to improve output

impedance. The selected signal is converted directly to 2’s com-

Page 7

plement eight-bit form using a DAC0800 D/A and a DM2502 successive

approximation register, with a LM361 high speed comparator to com-

pare the two signals. Timing comes from the 12MHz crystal on the

SDK-51 board, divided by powers of two in a 74LS163, as selected

by jumpers. Signals are synchronized by a dual D-flip-flop, in a

one-and-one-only configuration. A 75451 driver is used for the

PWM output; the actual PWM function is carried out on a separate

board attached to the proof-mass damper. This board consists of

two pairs of Darlington transistors (NTE261 and NTE262), one pair

is attached to each end of the coil, their bases are driven by

2N3904 transistors, which are themselves driven by 4N28 opto-

electrical transistors from the PWM signals. With this

arrangement, about +1 to -1 Amperes can be produced in the 8.5 Ohm

coil. However, an important feature of this arrangement is that

there is no coil current when both pwivi signals are equal. Thus

the coil does not heat up when the proof-mass damper is quiescent.

Comparison of 8051 with 280:

The work reported here, in conjunction with the work reported for

the previous year in Reference 4, affords an opportunity to com-

pare the 8051 with the 280, in the following ways:

Advantages of 8051 Series:

Multiplication: Only available on the 8051 series.

Division: Only available on the 8051 series, but of dubious

value because it only produces the integer part of the

quo t i en t .

Page 8

On-Board Timer: There are two onboard timers on the 8051

series, both with interrupts, whereas the same functions have

to be provided by hardware with the 280 (the 8052 series has

an additional timer).

Interrupt Priority: There are two levels of interrupt

priority, with a total of five interrupts (two timer, two

general, and one serial). Again, this arrangement must be

provided by hardware for the 280.

Internal RAM: Internal RAM is provided on the 8051 series,

with one page of byte addresses, plus another page of bit

addresses covering part of the same field. One half page is

devoted in each case to special function registers. This

provides computing power unique to the 8051 series.

Internal UART: An internal UART on the 8051 series makes

master-slave arrangements relatively simple. A third timer

can be used to provide the needed Baud rate, or very high

speed serial data exchange can be obtained using the clock-

timer. In the master-slave arrangement, several slaves can

be addressed individually.

Advantages of 280:

16-Bit Arithmetic: Many operations can be carried out with

16 bits, compared to only 8 bits on the 8051 series.

BUSREQ: This feature of the 280 permits a single slave

arrangement in which the memory space of the slave is

relatively easy to address. This proved to be a great

Page 9

advantage in the development of the 280 system.

Vectored Interrupts: The 280 can receive address vectors for

interrupts, which simplifies the selection of different

programs when running as a slave.

IN/OUT: The separate mapping of in/out memory space was an

advantage, because these instructions could be decoded, and

could be used to trigger operations such as read A/D. The

same functions are obtained on the 8051 series by SETB and

CLR instructions to the port pins.

The 280 is Used in Small Computers: The fact that the 280 is

a well- known and popular computer chip was to its advantage

in last year’s work because it was relatively simple to use

the Radio Shack Model 1 computer as a development system. A

comparable system for the 8051 series, although considerably

better, costs about ten times as much.

DERIVATION OF DIGITAL CONTROL EQUATIONS

Floating Point Subroutines

Since the INTEL 8051 series controller can only execute eight

bit arithmetic, unlike the 280 which can handle many sixteen bit

operations, an early decision was made to use a sixteen (16) bit

floating point format, with a signed seven bit mantissa and

exponent, as follows:

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign of man t i s sa sign of exponent

Page 10

mantis sa exponent

Thus +1 becomes .4OXO1, and -1 becomes .8OXOO, where X stands

for exponent, and the decimal point means that the mantissa is

fractional. We cannot use E for the exponent, as with decimals,

because it is a hexadecimal digit.

The following subroutines are available:

ADD

SLBTRACT

MULTIPLY FIXED TO FLOATING- FROM MEM.

STORE ABOVE RESULTS FIXED TO FLOATING- FROM ACCUM.

IN MEMORY FLOATING TO FIXED

These subroutines are identified in the listing supplied in

the Appendix. Results of all operations except FLOATING TO FIXED

are normalized by shifting ones into positive numbers and zeros

into negative numbers, thus:

. OOXOO becomes .7FXF9

.3FX00 11 .7FXFF

. FFXOO 11 .80XF9

. cox00 11 .80XFF

Sometimes, the application of an operation and its inverse,

such as ADD and SUBTRACT, or NEGATE NEGATE, results in a change in

the last bit. Also, if exponent overflow occurs, it is replaced

by X7F or X80, as appropriate, but the mantissa is meaningless.

Further, the difference of two equal numbers leaves a zero

mantissa, which is then normalized as a positive number. Thus the

Page 11

final result has a mantissa of .7F, while the exponent is reduced

by 7.

The program in Appendix A includes a floating point cal-

culator simulation program, similar to the reverse Polish system

on the Hewlett-Packard calculators. The program includes all of

the subroutines listed, with the exception of FIXED TO FLOATING,

which is covered by the NORMALIZE operation. In addition, numbers

can be entered into the display on the SDK 51 board, and the com-

mand E?!TER cail ther; er;ter t h e m i n t ~ a three tier stack, while READ

can bring them back into the display. Operations on two numbers

involve the SDK 51 display and the first number on the stack, the

result is displayed, and the stack is moved down by one. The cal-

culator program was written to permit development of the floating

point subroutines, and to make it easier to calculate parameters

to be used in experimental programs. It includes provisions for

inserting floating-point parameters into data memory for use in

the control programs.

Often it is necessary to find the floating point equivalent

of a decimal number for insertion into the controller program.

The following procedure was found to be useful:

E (a) Express in form M x 2

(EH+7) (b) Convert to form .MH x 2

(c) Write in form .MHX(EH+7) for entry onto board.

(d) Write in form MH,(EH+7) for entering into memory.

Note: M,E are decimal integers, with M between 63 and 127,

Page 12

while MH and EH are hexadecimal equivalents to 2

places.

Example: Convert 0.0287

-12 (a) .0287 = 117 x 2

FBH = .75H x 2 -12+7 = .75H x 2

(a = 75H,FBH

To find the decimal equivalent , this process is reversed:

EH-7 (a) Express in form MH x 2

E-7 (b) Convert to form M x 2

(c) Evaluate

Example: Convert .75XFB

F4H (a) .75XFB = 75H x 2 FBH-7 = 75H x 2

-12 = (7 ~ 1 6 + 5) ~2 -12 = 117 x 2

(4 = 117/4096 = 0.0286

Digital Program by Rectangular Rule

The program shown in Appendix A is based on the rectangular

rule of integration, but such refinements as zero-order-hold and

computational delay have been omitted. The program corresponds

very closely to the P1-D program of Reference 1 , except that the

Page 13

16-bit arithmetic of the 280 has been replaced by the floating

point arithmetic described in the preceding paragraph, and the

divide by powers-of-two operations have been replaced by full mul-

tiplications.

The system to be investigated is shown in block diagram form

in Figure 4 . Some changes in notation have been made relative to

Reference 4 , mainly the replacement of number subscripts to avoid

confusion with state-space notation, and a redefinition of HA.

From Figure 4:

while, from the dynamics of the proof mass

2 F (S) = UF(S) + MS xD(S)

The signal generator input, xs, has not been included in

these equations. We can now develop two functions which are of

considerable importance in the evaluation of damper performance:

2 RC(S) = xD(s)/AF(s)

= - (1 - HA(s)/M)/(l + HP(s)/Ms2)

where HC is the complex damping, whose real part must be positive

at any frequency at which energy is to be absorbed, and RC is the

ratio of the proof-mass amplitude to that of the structure. For

example, if its norm is 2, then the proof mass will just hit the

..
cn
GI
0

z
0
U

E

U

Page 15

stops of a one inch stroke damper when the structural double-

amplitude reaches a half inch.

It has been found that satisfactory values for Re{HC} and

Norm(Hc} can be obtained if the following rules are followed:

(1) There is a positive input to the A/D (this may mean a

negative voltage, because most A/D’s invert) when there is an

acceleration directed from the structure to the damper, i.e., a

positive acceleration.

(2) There is a positive input to the A/D when the proof-mass

is against the structure, i.e., a negative displacement.

(3) A +/- lg accelerometer range exactly covers the full

input range to the A/D. (referred to as +/- 1 here, rather than

to a range of voltages).

(4) The full range of proof-mass travel exactly covers the

full input range to the A/D.

(5) The force exerted on the proof mass, when the

accelerometer is attached, exactly balances its weight component.

(6) The synthetic spring stiffness, ks, is a fraction of the

maximum available value, k chosen to give suitable centering

behavior.

max ’

(7) At high frequency, HA should approach the real value, c,

of the required design damping.

(8) At high frequency, Hp should approach zero.

(9) The open loop gain, Hp/Ms2, of the synthetic spring cir-

cuit should have an adequate phase margin.

Rules 1 and 2 ensure the correct polarity, and permit a sim-

ple evaluation of the damper using the DEMO modes described in the

Page 16

Appendix. When this polarity is correct, the damper exhibits sim-

ple spring behavior or a tendency to remain centered when the dam-

per assembly is tilted, according to which DEMO program is selec-

ted.

Rules 3 and 4 permit calibration of the system by one of the

following methods:

(a) Direct monitoring of the A/D inputs with a voltmeter.

(b) Use of the DISPLAY subroutine described in the Appendix

which displays the input in 2 ’ s complement hexadecimal form on the

SDK-51 board.

(c) Use of the appropriate DEMO program together with

monitoring of the output to the coil.

Applying these rules, we have:

2 KA = l / l g = 1/9.8 = 0.1020 s /m

Kp = (40 ins/m)/(l/2 inch amplitude) = 80 m-l

Rules 3 and 7 are satisfied if HA has the form:

with

(= c/2MwA

while rule 5 is satisfied when {=1/2.

Rules 4 , 6 and 8 are satisfied if Hp(s) has the form:

Hp (s) = ks (l+s/ov) / (l+s/~p)

Page 17

so that the open-loop transfer function is:

where :

and :

ks < kmax = KpKC

From several measurements on the present damper design, when

the current is adjusted to range from -1 to +1 Amps. over the

full range of digital input:

KC = 1.92 N

thus :

= KpKc max k

-
= (80 m ') (1.93 N) = 155 N/m

Rule 9 is satisfied if suitable values are picked for the two

Using the Bode plot of Figure 5 , and break frequencies in Hp(s).

designing for a phase margin of $M:

y = w / o P V

= l/(tan(45 - $M/2)) 2

where, from the geometry of the figure 5:

Page 18

FIGURE 5. BODE PLOTS OF
SYNTHETIC SPRING: ANALOG

I f I I I L

I

C w N w

Page 19

Difference Equations for P1-D: From Figure 4 , the difference

equations must provide the two filters:

The digital equations for the realizations of these filters

are derived using the rectangular rule as follows:

up(k) = (l-opT)uP(k-l) -GpTxp(k)

- G+p (k) -xp (k-1) >

It may be noted that the second and third equations could be

written as the two equations:

where uv is essentially a state variable. Note that these

Page 20

equations include the input xs from the signal generator, and

alternative position signal xL from the LVDT.

the

Implementation of Program: Appendix A describes a program with

two modes of input. They are:

Program P: This program has default parameters, as shown below in

parenthesis.

be restarted

determined as

n I

T

WA

GA

New parameters can

as Program Q.

follows:

= Integer value

(= .lox00 = 16)

be entered, and the program can

Values for these parameters are

of n used to count cycles.

= Time interval, musecs.

= 256n

(= .43XF9 = 4096 musecs)

= Accelerometer break frequency, rads/sec.

= c/2(M

(= .48X06 = 36 rads/sec.)

= Proximeter (or LVDT) break frequency, rads/sec.

(= .5EX07 = 9 4 . 4 rads/sec)

= Accelerometer gain.

= c/KAKC

Page 21

(= .66X06 = 50.8)

= Proximeter gain. GP

= y3/4MoN3/KpKC

(= .5EX05 = 23.6)

= Proximeter feedforward gain. GV

= G /o P V

= y1/4Gp/oN

(= -40x03 = 4.0)

The above equations assume that the design damping, c Ns/m,

and the required synthetic spring frequency, oN rads/sec., are

known. Also, n must be chosen so that the program has time to

complete a cycle of calculations. As for the default parameters,

values for KA, Kp, and KC are assumed as discussed earlier, the

proof mass M is 0.278 kg., J is 1/2, and y is 16, corresponding to

a phase margin ,c$ of 62 degrees. Default values for n, c, and

uN are the same as for Program T discussed below.
M'

Program T: In this program, default values are included for the

following parameters, and the remainder are calculated from them.

They can be entered, and the program can be restarted as Program

U:

n = Integer value for n in floating-point format.

C

(= .4OXO5 = 16)

= Design damping, Ns/m.

(= .50X04 = 10 Ns/m)

= Synthetic spring natural frequency, rads/sec. ON

= SQRT{ks/M}, where k =design stiffness, N/m.
S

(= .5EX04 = 11.8 rads/sec, i.e., ks=38.7 N/m)

Plots of Real Damping and Response Amplitude: Plots of the real

damping, Re{HC}, and the amplitude of the response ratio,

Norm{RC}, are supplied as Figures 6 to 15 for five values of the

and design damping, c, three values of the design stiffness,

three values of (. Note that the real damping goes negative at

low frequencies when (> 1/2. Otherwise, the damping is positive

ks ,

over the range of frequencies shown, and is asymptotic to the

design damping, c. Although the design stiffness, ks, was varied

over a 16:l range, it had relatively little effect on the damping

curves. Previous investigations, using much lower values for the

phase margin, have shown resonance peaks in both curves.

Unfortunately, due to the choice of program for the 280, adequate

phase margins could not be used, however, the problem of resonance

peaks has been solved since the introduction of floating-point

arithmetic.

Timing: The P and T programs described in the Appendix use the #O

and #1 timer interrupt modes available on the 8051 series. The #O

Page 23

Proof Mass (m) = .278 kg
Zeta (?3 = .5
Gamma (Y) = 16
S y n t h e t i c S t i f f n e s s (k) = 9 . 7 N/m

- kxnax/ 1 6
Des ign Damping (c) = 5, 10, 2 0 , 4 0 , 80 N.s/m

-
bP /

kf 40.00 60.00 80.00 100.00 120.00
1

Figure 6. REAL DAMPING FOR PROOF-MASS
WITH ANALOG CONTROLLER:

LOW SYNTHETIC S T I F F N E S S

F i g u r e 7 . NORM O F RESPONSE RATIO
FOR PROOF-MASS ACTUATOR
WITH ANALOG CONTROLLER:
LOW SYNTHETIC S T I F F N E S S

,I -- Proof Mass (m) = .278 kg 1

Zeta (5) = .5 ,
Gamma (Y) = 1 6
S y n t h e t i c S t i f f n e s s (k) = 9 . 7 N/m

- - kmax/ 1 6

D e s i g n D a m p i n g (c) = 5, 10, 20, 4 0 , 80 N.s/m I

Page 25

F i g u r e 8. REAL DAMPING FOR PROOF-MASS
ACTUATOR WITH ANALOG CONTROLLER:
LOW ACCELEROMETER GAIN

1
Proof Mass (m) = .278 kg

Gama (Y) = 1 6
S y n t h e t i c S t i f f n e s s (k) = 38.7 N/m

Design Damping (c) = 5 , 1 0 , 20, 40, 80 N.s/m ,

Zeta (6) = . 2 5 -

-
- kmax/ 4

120.c
- L

100.00
'REQ R A D / S E C

60 I * 00 8 0 . 0 0 2 0 . 0 0 40.00 IO
1

Page 26

Figure 9. NORM OF RESPONSE RATIO FOR
PROOF-MASS ACTUATOR WITH ANALOG
CONTROLLER: LOW ACCELEROMETER GAIN

Proof Mass (m) = .278 KG
Zeta (G I = .25
Gamma (Y) = 16
Synthetic Stiffness (k) = 38.7 N/m

kg
I

- - kmax/4
Design Damping (c) = 5, 10, 20, 40 , 80 N.s/m

c = 5 N.s/m

-
0

20.00 40.00 6 0 . 0 0 8 0 . 0 0 100.00 120.00
FREQ. R A D I S E C .

I

0

Page 27

F igu re 1 0 . REAL DAMPING FOR PROOF'-MASS
ACTUATOR W I T H ANALOG CONTROLLER:
DEFAULT VALUES

Proof Mass (m) = .278 kg

Gamma (Y) = 16
Synthetic Stiffness (k) = 38.7 N/m

Design Damping (c) = 5, 10, 20, 40 , 80 ~.s/m

Zeta (c) = .5

- - kmax/ 4 I

00

0
03 Figure 11. NORM OF RESPONSE RATIO FOR PROOF-MASS

ACTUATOR WITH ANALOG CONTROLLER:
DAFAULT VALUES

I
1

7 Proof Mass (m) = .278 kg
Zeta = .5
G a m m (Y) = 16
Synthetic Stiffness (k) = 38.7 N/m

Design Damping (c) = 5, 10, 20, 40, 80 N.s/m

- - kmax/ 4

Page 29

Proof Mass (m) = .278 kg

Gamma (Y) = 16
Synthetic Stiffness (k) = 38.7 N/m

Design Damping (c)

= 1 . c Zeta (5) 1

- kmax/ 4 ,

a

I

-

= 5, 10, 20, 4 0 , 80 N.s/m

m

0 co.00

0 co

-1
0
CD

c

0 *
c

.-

:E + '
W'
N

0 -
4 a .
E-

L
cn
O L .

C
LL
0

t
cK=

Z C

w:

OU

C
7

C

C
c

C

C
C

C

F i g u r e 1 3 . NORM OF RESPONSE RATIO FOR PROOF-MASS
ACTUATOR W I T H ANALOG CONTROLLER:
HIGH ACCELEROMETER GAIN

Proof Mass (m) = ,278 kg I

GaIN-na (u) = 16
Synthetic Stiffness (k) = 3 8 . 7 N/m 1

Design Damping (c) = 5, 10, 20, 4 0 , 80 N.s/m

Zeta (5) = 1.0

-
- kmax/ 4

20.00 40.00 6 0 . 0 0 8 0 . 0 0 100.00 12c
FREQ. R A D / S E r / .

I Proof Mass (m) = .278 kg
Zeta (< I = .5 '

Gamma (Y) = 16
Synthetic Stiffness (k) = 155 N/m

Design Damping (c) = 5, 10, 20, 40, 80 N.s/m

-
- kmax

Figure 14. REAL DAMPING FOR PROOF-MASS ACTUATOR
WITH ANALOG CONTROLLER: HIGH SYNTHETIC
STIFFNESS

Page 32
Figure 15. NORM OF RESPONSE RATIO FOR PROOF-MASS

ACTUATOR WITH ANALOG CONTROLLER:
HIGH SYNTHETIC STIFFNESS

Proof Mass (m) = .278 kg

Gamma (Y) = 16
Synthetic Stiffness (k) = 1 5 5 N/m

Design Damping (c) = 5, 10, 20, 4 0 , 80 N.s/m

Zeta (5) = 05

- - krna*
-

Page 33

interrupt is encountered every 256 musecs, and is used to reset

the pulse-width-modulator (PWM), while the #1 interrupt is used to

set the pulse width of the PWM. The counter n is used to set the

value for T, which is equal to 256n musecs. Typically, n has been

16, resulting in a value for T of 4096 musecs. Lower values, such

as 3072 musecs, have been used, but, according to Reference 5 , an

excessively small value for T can cause problems with round-off

noise, even if the digital calculations are completed in time.

Both the P and T programs update their output at the end of their

cycle, so that there is a full-cycle time-delay of T.

Digital Program by w-Plane Analysis

The control equations described in the preceding paragraphs,

and contained in the program described in Appendix A , do not allow

for a zero-order-hold, or for the time delay T which is inherent

in the method of calculation. Typically, an analog plant driven

by a digital filter can be represented by Figure 16a, if there is

no time delay , and by Figure 16b if there is a time delay, fol-

lowing methods described in the literature, such as for example,

in References 5 or 6. The zero-order hold has a z-transform equal

to (z - l) / z , thus the open l o o p transfer functions are:

for no delay:

and for a delay of T:

Page 34

h

v
N

n
N

X
W I

h
(d
rl
a, n

(It
W

$
4 w
Frr
0
I3
V w
Frr
b4 w

n

c3
0

Page 35

where Z represents the z-transform equivalent of a Laplace trans-

form. A block diagram of the damper, corresponding to Figure 4 ,

but incorporating the concepts shown in Figure. 16, is shown in

Figure 17. The input is represented as an acceleration ap, so

that the z-transform derived below represents F (z) /AF (z) , which

can be readily converted to the form HC. First, two equations are

derived from Figure 16:

so that the overall transfer-function can be written as:

Note that:

3 2 3 Z(l/s } = T ~(~+1)/2(~-1)

then :

Dp(z) = Hp(z) ((z-l)/z2)Z(1/Ms3)

2 2 = Hp(z) (T /2M) (z+l)/z(z-l)

The w-transform maps the z-plane into a space which more

nearly resembles the s-plane. In fact, as s moves along the

imaginary axis from zero to the Nyquist frequency, as represented

by s=jo, w moves along the real axis from zero to infinity, as

represented by w=jv. The substitution for 2; is:

..

..
m

i

I

z = (1 + wT/2}/(1 - wT/2}

while Y is given by:

Y = (2/T)tan{oT/2}

the inverse being given by:

o = (2/T)arctan(vT/2}

so that the D(w) transfer functions become:

DA(w) = HA(w){l - wT/2)/{l + wT/2}

2 2 Dp(w) = Hp(w)(l - wT/2) /Mw (1 + wT/2}

Design in the w-Plane: The rules for designing in the w-plane are

almost identical to those for designing in the s-plane. The

familiar Bode plots can be made, the only difficulty being that

the w-transfer functions are often not of minimum phase form.

This means that the phase cannot be inferred from the Bode plot

alone, but this is not a problem of any significance. The Bode

plots for D,(w) and Dp(w) are shown in Figures 18 and 19. In the

following discussion, T=4096 musecs, so that the Nyquist frequency

is T/T= 767 rads/sec in the s plane. Proceeding with the design

in the w-plane, using almost identical methods to those used in

the s-plane, but taking [=1/2, we find that:

Using the previous default values of n (=16), c (=lo Ns/m),

FIGURE 18. BODE PLOT OF SYNTHETIC
DAMPER: DIGITAL

FIGURE 1 9 . BODE PLOTS OF SYNTHETIC
SPRING: D I G I T A L

Page 40

and ks (=38.7 N/m), and taking y = 1 6 , we find values for "A' "p,

and which are numerically equal to the corresponding o values

found for the analog design case. Thus the actual o values have

decreased according to the transformation law given above.

vv

The apparent -1 break at v=2/T=488.3 rads/sec in the Bode

plot of Dp(w) is misleading, because it is a multiple phase break

and introduces additional phase lags of 90 degrees in the case of

D and 135 degrees in the case of Dp. For DA to have the high

frequency performance characteristic of a d m p e r , it s h o d d lag 90

degrees. However, calculations show that the lag is 180 degrees,

so that real damping is zero, at v= 525 rads/sec, corresponding to

a true frequency of 401 rads/sec. Again, although the value for

the gain at the design crossing frequency v (= 23.6 rads/sec.)

of the open-loop transfer function Dp is calculated to be 0.9996,

the phase margin is found to be 8.4 degrees less than the design

value of 62 degrees, because of the triple phase break at T/2

A

C

Derivation of the Difference Equations: To transform back to the

z-plane, we apply the transformation: -

w = (2/T) (~-l)/(a+l)

From Figure 16, the difference equations must provide two

filters which, on transformation to the a-plane, become:

Values for the new terms are as follows, with numerical

default values in parenthesis:

G*A = (cT/2KAKC) / (1 t vAT/2)

(= 0.194/2)

kV = (1-vVT/2)/(1+~VT/2)

(= 0.976)

kp = (1-vpT/2)/(l+upT/2)

(= 0.676)

The difference equations derived from the above are:

up(k) = kpup(k-l) - G*p(1-kv)(~p(k)+~p(k-1)}/2

uA(k) = kAuA(k-l) + G*A(xA(k)+xA(k-l)}

These can be compared with the equations obtained by the rec-

tangular rule from the analog design;

Page 42

It will be noted that the w-plane design method directly

implies use of the trapezoidal rule. It is easier to compare the

two approaches if the default values are substituted for the

coefficients. For the w-plane design, we get:

up(k) = 0.676up(k-1) - 0.0814{~~(k>+~~(k-1)}/2

- 3.35{xp(k)-xp(k-1)}

uA(k) = 0.863uA(k-1) +O. 194(xA(k)+xA(k-1))/2

which can be compared with the results of the rectangular rule

design:

up(k) = 0.613up(k-1) - 0.0967xp(k) - 4.0{~~(k)-~~(k-l)}

UA(k) = 0.853uA(k-1) + 0.208xA(k)

The worst difference between the coefficients used in the two

sets of equations is about 20 percent, so that, evidently, there

is no serious loss of performance with the rectangular rule. The

difference equations for the w-plane design can be put into more

useable form, and the damping can be calculated readily from its

w-transform. However, we shall look into another point first.

System with Minimum Delay

Numerical Accuracy: Consider first, that only the accelerometer

circuit is active. the

channel is calibrated, should result in a force on the proof-mass

of Mg = 2.72 N, or an output from the computer of Mg/Kc = 1.42,

Then a +1 input, representing 9.8 m/s2 if

Page 43

which is out of the range of the system. As a check on numerical

accuracy, let uA(k-1) equal 1.42, and let xA(k) equal 1.0, then:

uA(k) = (0.863) (1.42) + (0.194)
= 1.42

= uA(k-l)

However, the output is quantized to only 256 values, so that

the maximum input of +1 is equivalent to (0.194) (256) = 49

quantized values. In other words, there are only 49 possible

values for the coil force in the static case, and one third of

them are out of range. Looking at the synthetic spring from the

same approach, an input of -1, representing the proof mass against

the structure, should result in an output of 0.25, representing

one quarter of kmax. Taking uV(k-1) equal to 0.25, and xp(k)

equal to -1, we get:

up(k) = (0.676) (0.25) - (.0814) (-1)

= 0.25

= up(k-l)

In this case, however, the inpu, is equivalent to

(0.0814)(256) = 20 values, so that the restoring force is limited

to 20 quantized values. It is somewhat surprising that the

synthetic spring appears to be smooth to the touch, however, it

might prove impossible to obtain a very small spring value, equal

to a few percent of kmax. This quantization effect would be

reduced if T were increased, but the phase margin might also be

reduced at the same time.

Page 44

Minimum Delay: Figure 20 shows an analog plant driven by a

digital filter in which the time delay is kept to a minimum by

timing the output to occur immediately after the calculations are

completed. basic period To is assumed to be 256 musecs, but

calculations are repeated every T (=nTo) musecs, while output

occurs at mTo, with m<n. We now have the open-loop transfer func-

tion:

The

U(zn)/X(zn) = H(an) ((zn-l)/z n+m) Z n { G (s) / s }

The delay and zero-order hold blocks of Figure 17 can be

modified accordingly, so that the overall transfer function

becomes :

where :
DA(zn) = HA/z m

Dp(zn) = Hp(zn) ((~~-l)/z~+~>Z~{l/Ms~}

= Hp(zn) (T2/2M) (an+l)/zm(zn-l)2

The w-transform is now:

an = (l+wT/2) / (l-wT/2)

with its inverse:

w = (2/T) (en-l)/(zntl)

also:

o = (2/T) arctan (vT/2)

Page 45

Page 46

and :

v = (2/T)tan(oT/2)

The D(w) transfer functions now become:

Thus, apart from a change in output timing, and possible

redesign for improved phase m a l - g l r i , the difference equations are

essentially unchanged when the output is speeded up. However,

there should be an improvement in the real damping as m/n is

decreased, which would partially offset the effect of increasing n

to obtain longer cycle times.

Difference Equations for Minimum Delay Case: Assuming that the

HA(w) and Hp(w) filters are essentially the same as before, we

find that on applying the inverse w-transform we have H (zn) and

Hp(zn). However, in obtaining the difference equations from

these, we obtain expressions for uV(nkTo)=uV(kT) , etc., so that
the final equations are the same as before. The form in which the

equations were left is not the most convenient, but note that the

first order transfer function:

A

u (2) /x (2) = a. (1+z-lal) / (l+z-'bl)

can either be written as:

u(k) = -blu(k-1) + aox(k) +aoalx(k-1)

or as the pair of equations:

Page 47

where the additional variable, u1 is essentially a state variable.

Using this representation, the complete set of equations can be

written as:

where u v, uB are the corresponding state variables.

Plots of Real Damping: The real damping can be calculated as:

H C = REL{jwF(z)/AF(z)}

This is shown in Figures 21 to 24 for four cases each. One

represents the analog approximation obtained by taking T=O and is

identical to the results shown in Figure 9 for the same

parameters, while the remaining three cases are for T=4096, 8192,

and 16,384 microseconds. The other parameters which are varied

are the output time delay, which is 0 and 4096 microseconds,

(m=0,16), and the design damping, which is 10 and 80 Ns/m. The

cases where T and the time delay are both 4096 microseconds

..
: e , * :

: ’ . .

0
0

Page 48

FIGURE 21

Real Damping for Proof-Mass Actuator with Digital Controller

Proof-Mass (m) = .278kg
Synthetic Stiffness = 38.7 N/m
Design Damping (c) = 10 Ns/m
Computation Delay (mT,) = 0

FIGURF: 22

R e a l Damping for Proof-Mass Actuator with Digital Controller

Proof Mass (m) = .278kg
Synthetic Stiffness = 38.7 N/m
Design Damping (c) = 10 Ns/m
Computation Delay (mTo) = 4 0 9 6 ~ s

0
0

F I G U R E 23

Real Damping for Proof-Mass Actuator with Digital

Proof Mass (m) = .278kg
Synthetic Stiffness (k) = 38.7 N/m
Design Damping (c) = 80 Ns/m
Computation Delay (mT,) = 0

Controller

///\T = 1 6 , 3 8 4 ~ ~

1
FREQ

2 4 0 00
.

\

320 00 400 00 480 00 560
1

Page 51

FIGURE 2 4

Real Damping for Proof-Mass Actuator with Digital Controller

Proof-Mass (m) = .278kg
Synthetic Stiffness (k) = 38.7 N/m
Design Damping (e) = 80 Ns/m
Computation Delay (mTo) = 4 0 9 6 ~ s

560 .

Page 52

corresponds to the P- and T-programs listed in Appendix A.

As might be expected, better agreement with the analog

approximation is shown when the time delay is 0. Otherwise,

agreement is best when T is a minimum. However, at low

frequencies, the higher values for T show increased damping,

presumably because of greater phase lags. It must be emphasized

that two of the timing cases, where the time delay is zero or

equal to T, have accurate solutions. The remaining cases

intrduce add i f , i sna l -rr* -n - -x im~t icns - cf uncertain ~alidity.

SUMMARY

Controller Design: The third in a series of controllers for the

W A Proof-Mass Actuator has been designed, built in prototype

form, and demonstrated. The present design uses an INTEL 8031

microcontroller mounted in an SDK-51 System Design Kit.

Previously, an analog controller had been breadboarded, and a 280

controller had been developed as a slave to a TRS80 computer.

References 7 and 8 are essential for working with the SDK-51, and

Reference 9 is of great help.

Digital Control Equations: A procedure for developing digital

control equations has been developed, which meets specific

requirements:

* A given design damping value.
* Insensitivity to steady acceleration, including gravity.

* A given design centering stiffness.

* A specified phase margin.

Equations based on rectangular integration have been

demonstrated. Improved equations, based on w-transform theory,

have been developed, which show small changes from the

demonstrated values. Finally, real damping vs. frequency has

been calculated for both sets of equations, and results of these

calculations have been presented in this report.

Floating-point Calculations: The demonstrated equations used

floating-point subroutines which were developed for the 8051

series microcontrollers.

Pulse Width Modulation: A pulse-width modulator (PW) was

developed for the proof-mass a c t u a t o r . This draws no current and

therefore develops no heat when the actuator is in a quiescent

state.

Word Length: It is recognized that four factors determine the

accuracy of the control program, they are:

* Possible loss of accuracy due to limited word length in

input and output.

* Possible loss of significance due to overflow or underflow

during internal calculations.

* Digital noise due to inadequate word length.

* Long computational time due to arithmetic complexity.

Experience with the 280 and the current 8051 series control

programs gave no indications of problems due to input or output

word length. For example, when programmed as a pure spring, the

Page 54

proof -mass appears to behave smoothly, without any apparent

'stair-step' feel when operated manually. However, with the 16-

bit 280 system, there were definite indications of internal number

overflow. Possibly, these could have been corrected by shifting

to the middle 8 bits for input and output. However, the 8051

series is not well adapted to 16-bit arithmetic, and this is why

the floating-point approach was tried. Several other schemes

could have been used, overall, one might consider any of the fol-

lowing :

* Signed 7-bit arithmetic (8-bit total).
* Signed 15-bit arithmetic (16-bit total).
* Signed 15-bit arithmetic with shift (16-bit total).
* Signed 7-bit mantissa and exponent (16-bit total).

* Signed 11-bit mantissa and signed 3-bit exponent (16-bit

total).

* Signed 15-bit mantissa and signed 7-bit exponent (24-bit

total).

Since the 8031 chip was used, requiring two ports dedicated

to memory access, the SDK-51 system was limited to an 8-bit A/D.

Also, but for different reasons, the PWM was limited to 8 effec-

tive bits. Since no advantage was seen in going to more bits in

either case, the extra hardware which would have been required did

not have to be used.

Future Development: This report concludes work under the NASA

grant, so that any future work will be carried out on internal

funds. However, the development of a slave-master system is of

Page 55

particular interest, because it will make it possible to change

the gains on individual controllers, as might be required in

operation. Presently available development systems make this a

difficult task, because only a single 8051 can be simulated at any

one time. Specifically, the proposed development would include

the following:

* Installing a slave 8031
51.

in the wire-wrap area of the SDK-

* 1r;stalling 2K of FLL? SG that it can be prcgrmed fro= the

SDK-51, but can be used to run programs on the slave.

* Provision for installation of a 2K EPROM in the RAM slot.

* Provision for programming the EPROM in place.
* Interconnection of the serial lines on the two 8031’s.

* Use of the four high address bits on the slave 8031 to

control A/D and other board functions.

This system would be used to develop slave controller

programs on EPROM which would be used in building separate

controller boards. The EPROM programming capability would also be

used to develop additional library programs for the SDK-51.

CONCLUSIONS AM) RECOMMENDATIONS

* The 8051 series microcontrollers are capable of controlling
the proof-mass actuator.

* Eight-bit input and output appears adequate, however, with

the availabilty of the additional ports on the 8751, A/D’s

and D/A’s with more bits pose no problem and would require

Page 56

little extra time.

* Although the floating-point arithemetic gave good results,

other arithmetic schemes might require less computing time.

The question requires more investigation than was given in

the present work.

* The parallel realization design procedure described in this
report worked well and appears to be adequate.

* The recommended design procedure requires a fair amount of

calculation, especially if the phase margin is to be optimal.

For best results, it might be advisable to write a computer

program to determine parameters for the difference equations.

REFERENCES

1. Haviland, J.K., "Digital Control System for Space Structure

Dampers," University of Virginia, Department of Mechanical and

Aerospace Engineering, Proposal No. MAE-NASA-2548-83 to the NASA

Langley Research Center, January 1983.

2. Pilkey, W.D., and Haviland, J.K., "Large Space Structure Damp-

ing Design," University of Virginia, Department of Mechanical and

Aerospace Engineering, Report No. WA/528201/MAE83/101. February

1983.

3. Haviland, J.K., "Digital Control System f o r Space Structural

Dampers," University of Virginia, Department of Mechanical and

Aerospace Engineering, Semi-Annual Report No.

WA/528224/MAE84/101, January 1984.

4. Haviland, J.K., "Digital Control System for Space Structural

Page 57

Dampers,11 University of Virginia, Department of Mechanical and

Aerospace Engineering, Report No. WA/528224/MAE85/102, July

1984.

5. Katz, P, "Digital Control Using Microprocessors,

Prentice/Hall, 1981.

6. Kuo, B.C., "Digital Control Systems," Holt, Rinehart and

Winston, Inc, 1980.

7. "Microcontroller Haiidhck," INTEL Cerperation, Order No.

210918-002, Intel Literature Department, 3065 Bowers Ave., Santa

Clara, CA 95051, 1984.

8. "SDK-51 MCS-51 System Design Kit User's Guide," Order No.

121588-002, Intel Literature Department, 3065, Bowers Ave., Santa

Clara, CA 95051, 1981.

9. Boyet, H, and Katz, R., "The 8051: Programming, Interfacing

Applications," Microprocessor Training Publications Inc., New

York.

Page 58

APPENDIX A

EXPERIMENTAL PROGRAM FOR SDK-51 BOARD

This program was written to assist in the overall development

of the wire-wrapped controller added to INTEL’S SDK-51 development

board. It is loaded from a cassette tape, titled ABCS, and

responds to the keyboard command ’GO FROM 0’, by executing a

program called DEMO1. While executing this or any other program,

it continuously polls the keyboard, and responds to any inputs

with ASCII values of 20H to 5FH by a subroutine call to the

appropriate location in a table. If it encounters RET, it simply

returns to the current program, but, if it encounters JMP addr.,

it jumps to a new program. The following is a list of keyboard

entries which cause jumps to new programs, the number in

parenthesis is the address of the program:

C=COIL (0568H): The program waits for two hex charac-

ters in 2’s complement form, which is output to the

coil. Used to measure coil force output.

D=DISPLAY (01A8H): Displays four hex bytes, in 2’s com-

plement form, indicating readings of the four analog

input ports. Used for calibration of analog inputs.

E=ENTER (0454H) : Enters floating-point contents of

06,07 into first stack location, moves two stack

contents up, and loses contents of third stack location.

F=FM (04EOH): Fixed-point equivalent of floating-point

Page 59

number in 06,07 is stored in 06 (and displayed).

N=NEGATE (0448H): Floating-point contents of 06,07 are

negated and replaced in 06,07 (and displayed).

P=P1-D Program (0300H): The P-Program, as described in

the test, is run.

Q=continue P1-D Program (0308H): The P-Program is

restarted with current parameters (i .e., default values

are net read).

R=READ (0470H): First floating-point number on stack is

read into 06,07 (and displayed). Remainder of stack is

moved down, and third stack location is left unchanged.

T=T version of P1-D Program (0330H): The T-Program, as

described in the text, is run.

U=continue - T version (0338H): The T-Program is

restarted with current parameters (i.e., default values

are not read).

X=EXPONENT (0424H): The program waits for two hex

characters, representing the exponent, and enters them

into 07 (and displays them). This must follow the

mantissa entry, which writes over the current exponent.

Z=NORMALIZE (043CH) : The floating-point contents of

06,07 are normalized and replaced in 06,07 (and

displayed).

Space Bar, Shift 0,l (04DOHO: Parameters are entered

Page 60

from floating point numbers in 06,07, to be followed by

U to restart T-Program, according to following table:

Space Bar n

Shift 1 c

Shift 2 aN

Shift 2 to Shift 9 (0 4 D O H) : Parameters are entered from

floating- point numbers in 06,07, to be followed by Q to

restart P-Program, according to the following table:

Shift 3 I
Shift 4 T
Shift 5

Shift 6
Shift 7

Shift 8

Shift 9

n

. OA

GA

GP

GV

.

.

.

'*'=MLTLTIPLY (0490H): Floating -point contents of first

stack position are multiplied by contents of 06,07, and

replaced in 06,07 (and displayed). Stack contents are

moved down, so that both multiplier and multiplicand are

lost.

'+'=ADD (04AOH): Floating-point contents of 06,07 are

added to contents of first stack position, and replaced

in 06,07 (and displayed). Stack contents are moved

down, so that both addends are lost.

'-'=SUBTRACT (0 4 B O H) : Floating-point contents of 06,07

are subtracted from contents of first stack position,

I

Page 61

and replaced in 06,07 (and displayed). Stack contents

are moved down, so that subtactor and subtrahend are

lost.

'.'=MANTISSA (0418H): The program waits for two hex

characters, and enters them in both 06 and 07. The

contents of 06 will represent the mantissa, but the

exponent should follow to be placed in 07.

0 to 3 (0186H): DEMOO to DEMO3 are run, according to

the following table:

0 DEMOO places Channel #O input at output.

1 DEMO1 places Channel #1 input at output.

2 DEMO2 places Channel #2 input at output.

3 DEMO3 places Channel #3 input at output.

From the point-of-view of proof-mass controller development,

the most important items are the two versions of the P1-D control-

ler, referred to as as the P- and T- Programs. These use

floating-point subroutines, and make use of the timer interrupt

feature of the 8031. A key to internal data memory and a listing

of program ABCS follows.

A d d r e s s

00,Ol

02

03

04

05

06,07

20

22

23

24

25

26

27

2A,2B

2C, 2D

2E, 2F

30,31

32,33

34,35

36

38,39

3A, 3B

3C, 3D

3E, 3F

Key t o I n t e r n a l D a t a Memory

F u n c t i o n

RO and R1 p o i n t e r s

R2 i s used f o r d i s p l a y

R3 c y c l e c o u n t e r

R4 exponent

R5 s h i f t c o u n t e r

R6, R7 f l o a t i n g p o i n t r e s u l t s

B i t 00 = s i g n

B i t 01 = f l ag

Channel c o u n t e r

D i s p l a y c o u n t e r

Key i n p u t

n = # cycles

P r e s e n t o u t p u t , 2’s complement hex

Ou tpu t d u r i n g n e x t c a l c u l a t i o n c y c l e

n (d e f a u l t v a l u e)

c (d e f a u l t v a l u e)

uN (d e f a u l t v a l u e)

C a l c u l a t o r s t a c k #1

C a l c u l a t o r s t a c k #2

C a l c u l a t o r s t a c k #3

In (d e f a u l t v a l u e)

T (d e f a u l t v a l u e)

(d e f a u l t v a l u e)

(d e f a u l t v a l u e)

GA (d e f a u l t v a l u e)

uA

40) 41

42 ,43

44)45

46,47

48,49

M , 4 B

50,51

52) 53

54,55

56) 57

58) 59

5A, 5B

5C) 5D

Gp (default value)

Gv (default value)

"AT

GAT

GPT

-"P

"A

-"L

xS

uV

UA

APPENDIX A PROGRAM ABC9

'0000=RJMP 0180
0002=NOP
0003=LJHP E003
0006=NOP
0 0 0 7 =NO P
0 0 OF3 =NOP
0009=NOP
000A=NOP
000B=CLR 8E

000F=CLR 01

0013=RETI
0014=NOP
0015=NOP
0016=NOP
0017=NOP
0018=NOP
0019=NOP
001A=NOP
0 0 1 k C L R 8E
001D=CPL B5
001F=RETI
0020=NOP
0021=NOP
0022=NOF'
0023=NOP
0024=NOP
0025=NOP
0 0 2 6 = R E T I
0027=F'USH DO
0029=PUSH EO
002E=MOV A 1 2 6
002fi=SETB C
002E=RLC A
0021~-JC 0032
0031=CF'L A

ooori==cPL ~5

. 0011=ACAL 0027

0032=MOV 8C1A
0034=MOU BfirC

0037=MOV H41C

003B=D JNZ R 3 1 0047

003F=MOV A127
0041=MOV 2 6 r A

0036=CPL C

0039=SETB 8E

O O ~ ~ I = M O V 133 25

RESET - Jump to DEMO 9
INTERRUPT I - Required for SDK-51

TIMER 0 INTERRUPT
Turn TIMER I off
Invert R.H. Voltage on Coil
Clear Flag
Ca I I Subroutine
Return from Interrupt # !

TIMER I INTERRUPT
Turn Timer I off
Invert R.H. Voltage on coil
Return f rorn Interrupt

TIMER 0 SUBROUTINE
Save PSW
Save A
output to A
Set Carry
Rotate output left
Skip next instruction if negative
Comp lement output
Set TIMER I
RH Voltage high i f output negative
Invert sign
L.H. voltage low if output negative
Start TIMER I
Skip 5 instructions if R3 not zero
Reset
Update

OlJtPUt
0043=SETB 01
0045=SETB BO Set Oscilloscope Signal
0047=F:'OF' EO Retrieve A
OOW=F'OP no Retrieve RSW
004E=KET Return

Set f i ag

* Page 6 4

0054 :=MOU C i l O
0056=MOU 9 0 r C
OO'JS=MOU Crli
005A=MOU 9 1 v C
O O S C = S E T B 93
OOSE=CLR 92
0060=SETB 92
0062=NOP
0063=NOP
0064=MOU 90r lFF
0067=CLR B3
0 0 6 9 = M O U A 1 9 0
006B=CLR 93
006D=SETE €33

0071=RET
0 0 6 F = M O U R 4 r # 0 0

007H=MOU 88ri.00
0 0 7 E = M O U 891423
0 0 3 1 = M O U 9 7 r i 0 0
0084=ffOU 98 I f O O
0 0 8 7 = M O U A81#EB
008A=MOU B8r408

, 0 0 8 1 5 = R E T

0094=CLR C
0 0 9 5 = L C A L EOOC
0098=JNC 0 0 A 3
0 0 9 A = L C A L E009
0 0 9 U = A N L A 1 17F
0 0 9 F = M O U 2 4 r A
O O A l = R C A L OOAD
OOA3=RET

O O A D = A N L A l r + 7 0
O O A F z C J N E A I Q Z O I O O B ~
O O B Z = S J M F O O C l
O O B 4 = C J N E A1130rOOH9
O O B 7 = S J M P O O C l
O O B 9 = C J N E A 1 4 4 0 r O O B E
OOBC=SJMF' OOCl
O O B E = C J N E A P # : S ~ O P O O C C
0 0 C l = M O U A 1 2 4
OOC3=NOP
O O C 4 = A N L A 1 B 3 F
O O C S = R L A
OOC7=MOU D F ' T K v # O l 0 0
--i-Jb&~cf$~- (jocfi
OOCC=RET
O O C D = C L R 8 C
O O C F = C L R b4
O O D l = C L R E5
O O D 3 = J r ? F ' @ A t D F ' T R

. Page 65
SUBROUTINE t o READ A/D
Low d i g [+

Next d i g i -t

Enable A/D

t o p l n 1.0

t o p i n 1 . 1

Tr igger
A/D

Wait
Wait
Set P o r t 3 t o read
Set Transceiver t o read
Read A/D i n t o A
Disable A/D
Set t r a n s c e i v e r t o w r i t e

Return .

Set expopent t o zero # !

SUBROUTINE FOR INITIAL SETUP .
Set TCON = 0
Set TMOD. TIMER 0 = Mode 3, TIMER I = Mode 2
Set PCON = 0
Set SCON = 0
Set IE . Enable both t i m e r i n t e r r u p t s
Set IP. Timer I has p r i o r i t y
.Return
SUBROUTINE TO POLL KEYBOARD
C l e a r c a r r y
Look f o r keyboard e n t r y
Jump t o r e t u r n on no e n t r y
#Read ASC I I i n p u t
Set b i t #7 t o zero
Save key i npu t

'CALL INTERPRET
Return

SUBROUT I NE TO 1 NTERPRET KEY STROKES
Remove 4 low b i t s
Test for 20H t o 2FH
Jump i f successfu l
Test f o r 30H t o 3FH
Jump i f successfu l
Test f o r 40H t o 4FH
Jump i f successful
Test f o r 50H t o 5FH
Get o r i g i n a l e n t r y
NOP
Skip two h igh b i t s
M u l t i p l y by 2
Set DATA POINTER t o s t a r t of t a b l e
Make it a subrout ine c a l l
Return from subrout i ne
Stop TIMER 0
L.H. vo l tage t o zero
R.H. vo l tage t o zero
Jump t o t a b l e

-

o o r a = L c A L EOOF
OODf~=MOU RZ I #2E
OOISF=LCAL E006
OOE2=MOU R2106
OOE4=LCAL E015
OOE7=MOU R2rB58
O O E 9 = L C A L E006
OOEC=MOU R2r07
OOEE=LCAL E015

‘ O O F l = M O U R2rQZO
O O F 3 = L C A L E006
OOF6=MOU I32124
O O F 8 = L C A L E006
OOFH=ACAL 0094
OOFD=SJMP OOFB

SUBROUTINE’TO DISPLAY 8 WAIT
C l e a r d 1 sp I ay

pe r iod

mantissa

Cap. X

exponent

space

keyst roke

keyst roke

output

output

output

output

output

output

Look for new

Page 67

TABLE = KEYSTROKES 40H t o 57H

0 10 1=RET
0102=RET
0103=RET
'0 104=RET.
01.05=RET
O ~ O ~ = A J M P 0568 C = Coi I: Force
0108=AJMP OlA8 D = D isp lay four analog i npu ts
OlOA=AJMP 0454
O3.GC-AJMP C4EO F = F ixed Decjm=!
OlOE=RET
01 OF=RET
OllO=RET
Olll=RET
01 12=RET
0113=RET
0114=RET
0115=RET
0116=RET
0117=RET
0118=RET

' 0119=RET
OllA=RET
01 lB=RET
OllC=AJMF' 0448 N = Negate
OllE=RET

r !

E = Enter onto s tack

01 lF=RET
0120=AJMF' 0300 P = PI-D Program _ - ~

. 0122=AJMP 0308 Q Continue P
0124=AJMP 0470 R = Read s tack
0126=RET
0127=RET
Ol28=AJMP 0330 T = A l t e r n a t e PI-D Program
012A=AJMP 0338 u = Continue T
012C=HET
01.2D=I?ET
012E=RET
012F=RET - ..

* Page 6 8

0130=AJMP 0424
TABLE: KEYSTROKES 58H t o 5FH; ZOH t o 3FH
X = Exponent

S h i f t 0 t o 2

t :

0132=RET
0133=RET
0134=AJMP 043C Z = Norma I i z e
0136=RET
0137=RET
013S=RET
013?=HET
Ol3A=RET
013B=RET
O13C=RET
O,l3D=RET
013E=RET
013F=RET
0140=NOP
0141=NOP
0142=NOP
0143=NOP
0144=AJMP 04CO
0146=NOP
0147=NOP
0148=NOP

014A=NOP
014B=NOP

. . . Ol4C=NOP
014D=NOP
014E=NOP

. 014F=NOP
0150=NOP
0151=NOP
Ol52=AJMP 04110 S h i f t 3 t o 9
0154=AJMP 0490 I w 1 = M u l t i p l y
0156=AJMP 04A0 f tr = Add
0158=RET
0159=RET
O15A=AJMP 04HO I - ' = Subt rac t
OlSC=AJMP 0418 . I = Mant isser
OlSE=RET
OlSF=RET
0160=AJMP 0186 DEMO I . Prox imeter t e s t
0162=AJMP 0186 DEMO 2 . Accelerometer t e s t
0164zAJMP 0186 DEMO 3 . LVDT t e s t
0165=AJMF' 0186 DEMO 4 . Signal generator t e s t
0168=RET

O I ~ Y = N O P

- .
+

017F=RET

oiao=i,cAL EOOC
OlS3=MOV 24r#30
0186=MOU 81r+60
0189=MOU 25rPO1
018C=ACAL 007F
018E=SETH 8C
0190=CLR 01

0194=MOW 22rA
0196=ACAL 0054
0.198=MOV 2 7 r A
019R=CLR BO
Ol?C=ACAL 0094
Ol?E=JR Olr0190

. OlAl=SJMP 019E

O192=MOW 4124 .

. Page 69

DEMO 0-3 PROGRAMS
Read keyboard
Set i npu t channel t o # O
Stack p o i n t e r = 60
Counter i npu t ,= 0
CALL INITIAL SETUP
S t a r t TIMER 0
Clear f l a g
Keystroke (0 t o 3)

Cal I READ A/D
A/D i npu t t o 27
Clear osc i l l oscope s igna l
CALL POLL KEYBOARD # :

Jump i% f l a g h i g h
Wai t f o r i n t e r r u p t

i n t o Channel #

_ - . .
OlA8=MOW SI rP6O
OlAB=NOF'
OlAC=NOP
OlAD=NOP
OlAE=ACAL 0078
OlBO=MOW R8r#El
OlH3=MOW BSr#OO
OlB6=SETB 8C

. dlBS=ACAL OlCO .
OlHAZACAL 0094
OlBC=SJMF' 01H8

OlCO=JNH 8DrOlEl
OlC3=CLR 8D
OlCS=INC 23
OlC7=MOU A 1 2 3
OlCS=JNZ OlEl
OlCE=LCAL EOOF
OlCE=MOU R0~#22
OlDO=MOU @RO I #00
OlK!=ACAL 0054
OlD4=MOW R2rA
OlIE=LCAL E015
Oln8=MOu R2r#2C
OlDA-LCAL E006
OlDD=INC @RO
OlItE=CJNE @ROr#04rOlD2
OIE 1 =RET-

DISPLAY 4 INPUTS
Stack p o i n t e r = 60

CALL INITIAL SETUP
Reset tE - Disable i n t e r r u p t s
Reset 1P - Cancel i n t e r r u p t p r i o r i t i e s
S t a r t TIMER 0
CALL INPUT subrout ine
CALL POLL KEYBOARD
Cont i nue

SUBROUTINE FOR INPUT
Return i f TIMER 0 f l a g low
Clear TIMER 0 ove r f l ow f l a g
Increment d i sp I ay counter
Return on

C I ea r d i sp lay
Set channel #O

t o zero
CALL READ A/D

, D i sp I ay
read i ng

comma

nonzero d i sp lay counter

output

Increment channel #
Continue i f channel # no t 5
Return

SUBROUTINE TO CORRECT MANTISSA OVERFLOW
Return on no OVERFLOW

Jump i f exponent n o t maximum

OlFO=JNE(K?101F7
OlFZ-RRC- A Rotate r i g h t
OlF4=CJNE R 4 I %7F, 01F8
OlF7=RET Return
OlFS=INC R4 Increment exponent
OlF9=RET Return

SUBROUTINE TO NEGATE A, 04 . . -_
0204=CFL A Complement A
0205=ADD A I I O 1 Add U n i t y
0207=ACAL 0 1 ~ 0 Correct over f low

0209=RET Return # :

0210=JH E7t0219
0213zJB E6r0221
0216=SETB C
0 2 1 7 = S J M P 02111
0219=JNi(E610221

. OZlC=CLR c
021D=RLC A
021E=CJNE H41#8010222
0221=RET
0222=DEC H4

_- 0223=SJMP 0210

SUBROUTINE TO NORMALIZE MANTI.SSA
Jump i f negat ive
Return i f norma I i zed
Set c a r r y i f p o s i t i v e

t o e n t e r 1 ' s
Return i f norma I i zed
Clear c a r r y i f negat ive t o e n t e r 0 's
Rotate l e f t through c a r r y
Jump i f exponent n o t minimum
Return .

Decrement exponent
Cont i nue

SUBROUTINE TO SHIFT MANTISSA TO RIGHT

Decrement s h i f t counter, jump if nonzero

Set c a r r y = s i g n b i t

0228=1NC R 5 Increment s h i f t counter
0229=DJNZ R5 022C
022R=RET . Return
O22C=MOU CvE7
0 2 2 E = R R C A Rotate, r i g h t

. OZ2F=SJMF' 0229 Continue

0234=MOU R 6 t A
0 2 3 5 = M O V R7104
0237=RET

SUBROUTINE MOVE'A, 04'TO 06, '07
A t o 06
04 t o 07
Ret u r n

Q24():=.1NC RO
0241.-:CNC: R 1
0242-MoV A I @RO
0243=CI,R C
0244=SUEkE A r @ R l
0 2 4 S = C F ' L c
0246~ J N B 112 I 024A

024A=,JB E7 I 0258
024D=MUV R 5 I A
024E-MOU 0 4 r e f i O
0 2 5 0 = D E C R 1

O 2 5 2 = A C A L 0228
0 2 5 4 = D E C RO
0255=ADD A I @RO
0255=SJMP 0263
0 2 5 8 = C P L A
0 2 5 ? = I N C A
0233-MOU R 5 I A
02SiH=MOU 0 4 r @ R l
0 2 5 D = D E C RO
023E=MOU A r @ R O
OZ!5F=ACAL 0228
0 2 6 1 = D E C R l
0262=k1lD A I @ R 1
0 2 6 3 = A C A L O l F O
0 2 6 3 = A C A L 0210
0 2 5 7 = A C A L 0234
0 2 6 ? = R E T

~

024?=ItRC A

G?,51=MOU A I @ R l

. .

0 2 6 C = M O U A I @ R ~
0 2 5 U = I N C H1
0 2 C E z M O V 0.1 I @R1
0 2 7 0 = D E C fil
0 2 7 1 = A C A L 0204
0 2 7 3 = A C R L 0210
0 2 7 5 = M Q U @ R l , R
0 2 7 5 = I N C I31
@ 2 7 7 = M 0 1 J @Rl I 04
0 2 7 9 = D E C R l
0 2 7 A = R E T

0 2 7 C - A C A L 0 2 6 C
0 2 7 E z A C R L 0240

0283=SJMP 0287
0 2 8 5 = A C R L 0 2 6 C
0287=KET

0280=CJf \ lE R 1 , $06 I 0285

' Page 71
SUBROUTINE @RO + @R1 + 06.07
Increment RO t o exponent address
Increment R I t o exponent address
Exponent = #O
Clear c a r r y
Subtract exponent #O
Comp I ernent c a r r y
Skip nex t i n s t r u c t i o n i f . n o over f low
Rotate r i g h t
Skip e i g h t i n s t r u c t i o n s i f negat ive
Set exponent d i f f e r e n c e i n s h i f t counter
Store exponent #O i n 04
Decrement R I t o Mantissa address
Mantissa # I t o A
CALL SHIFT MANTISSA
Decrement RO t o Mantissa address
Add Mantissa #O
Jump t o e x i t
Complement t o g e t exponent difference
Add I t o g e t 2 's complement
Set exponent d i f f e r e n c e i n s h i f t counter

. Store exponent # I i n 04
Decrement RO t o Mantissa address

.Mantissa #O t o A
CALL SHIFT MANTISSA
Decrement R I t o Mantissa address
Add Mantissa # I
(E x i t) . CALL CORRECT MANTISSA
CALL NORMALIZE MANTISSA
CALL MOVE A, 04 t o 06, 07
:Return

SUBROUTINE NEGATE @ R I
Mantissa # I t o A
Increment R I t o exponent address

,Exponent # I t o 04
Decrement R I t o Mantissa address
CALL NEGATE A, 04
CALL NORMAL I ZE MANT I SSA

' Store Mantissa
Increment R I t o exponent address
Store exponent
Restore R I
Return

SUBROUTINE @ RO - @RI -t 06, 07
CALL NEGATE @ R I
CALL @ RO + . @ R l -+ 06, 07
Skip nex t i n s t r u c t i o n i f RO n o t 06
Jump t o r e t u r n

'CALL NEGATE @ R I
Return

n Page 7 2

. ,

02DO=CLR A
O%Dl=MOU 0 4 I A
02IS3=MOU Av@RO
0 2 D 4 = A C A L 0210 '
02116=MOV @ R ~ I A
O Z D 7 = I N C R l
02l38=MOU @ R l 1 0 4
02DA=DEC R l

. 0 2 _ . D H = R E T

.. 0 2 B C = I N C RO
02DD=MOU A 9 @RO
02ISE=DEC RO
020F= JB E7 T 02EP
02EZ=JZ 02ED
0 2 E 4 = t l O V AI@RO
0 2 E 5 z A N L A 1 # 8 0

. 0 2 E 7 = A C A L 0210
02E9=SJMP 02F1
OZEB=CPL A
0 2 E C = f N C A
02ED=MOV R5 I A
0 2 E E z M O U AI@RO
0 2 E F = R C R L 0228
02Fl=MOU @ R l r A
O2F2=RET -

.02F4=MOV @ R 1 I 06
OZF6=INC R 1
OZF7=MOU @ R l r 0 7
02F9=61EC R1
02FA=RET

SUBROUTINE FLOAT @RO t o @R1
Clear A
Zero t o 04
Mantissa #O t o A
CALL NORMALIZE MANTISSA (ENTRY)*
A t o Mant issa # 1
Increment R1 t o exponent
04 t o exponent # 1
Restore R1
Return:

*ENTRY FOR FLOAT A, 04 t o @R1

:

SUBROUTINE FIX @RO t o @R1
Increment RO t o exponent
Exponent #O t o A
Decrement RO t o Mant issa
Skip 5 i n s t r u c t i o n s i f negat ive
Skip 6 - i n s t r u c t i o n s i f zero
Mantissa #O t o A
Keep s i g n of Mant issa
CALL NOWALIZE MANTISSA
Jump t o e x i t
Complement negat ive exponent

2 ' s complement
Set s h i f t counter .

Mantissa #O t o A
CALL SHIFT MANTISSA
(E x i t) A t o Mant issa # 1
Return

SUBROUT 1 NE- STORE '06, 07 i n @R1
06 t o Mant issa #l
Increment R1 t o exponent
07 t o exponent # 1
Restore R1
Return

' Page 7 3

0300-MOb 811#60
0 3 0 3 = M O U DPTR I * 0 4 F O
0 3 0 6 = A C A L 0356
0 3 0 S = A C A L 0362
0 3 0 A = A C A L 0380
0 3 0 C = A C A L 0 3 A 0
0 3 0 E = A C A L 03118
0 3 1 0 = M O U R01#56
0 3 1 2 = M O U R l r # 5 A

0 3 1 6 = M O U R01P06
0 3 1 8 = M O U R l r % : S C
0 3 1 A = A C A L 0240
0 3 1 C = M O U R01*06
0 3 l E = M O V R l r 4 k 2 7
0 3 2 0 = A C A L 02DC
0 3 2 2 = C L R BO
0 3 2 4 = A C A L 0094

0 3 2 9 = S J M F ' 0326

- _ _ __ - - .- .- - ---

0 3 1 4 = A C A L 0240

.. 1

0326=JB O l r 0 3 0 A

P-PROGRAM
Set stack po in te r t o 60
Set data po in te r t o TARLE 1
CALL READ P PARAMETERS
CALL MULTIPLY; BY T
CALL READ INPUTS
CALL CALCULATE Up
CALL CALCULATE Ua
SET RO t o Xs
SET R1 t o Up
CALL @RO + @R1 t o 06, 07
SET RO t o 06
SET R1 t o Ua
CALL B RO + @R1 t o 06, d7 '
SET RO t o 06
SET R1 t o OUTPUT
CALL F i x @EO i o BRl
CLEAR osc i l loscope signal
CALL POLL KEYBOARD
LOOP i f f l a g h igh
Wa i t f o r i n t e r r u p t

T-PROGRAM
Q 3 3 0 = M O V 81 1460
0 3 3 3 = M O U D F ' T R I C O ~ F ~
0 3 3 6 = A C A L 0340

. 0 3 3 8 = A C A L 0500
q 3 3 A = A J M P 0308 Jump t o P - P r o g r a m

Set stack po in te r t o 60
Set data po in te r t o TABLE 2
CALL READ T PARAMETERS
CALL CALCULATE PARAMETERS

0 3 4 0 = A C A L 007B
0342=MOU R l r * 2 A
0 3 4 4 = M O V X A I @DFT
0345=MOU @R1 P A '
0 3 4 6 = I N C DPTR
0 3 4 7 z I N C R 1

034B=RET .
0 3 4 8 = C J N E R l r # 3 0 1 0 3 4 4
- - .

, - ..
0 3 5 6 = A C A L 007B
0358=MOU R11436
0 3 5 A = M O V X A I @DPT
0 3 5 R = M O V @ R l r A
0 3 5 C = I N C DF'TR
o3m=INc ~i
035EzCJNE R 1 1 1 4 4 1 0 3 5 A
0361=RET

SUBROUTINE READ T PARAMETERS
CALL I N I T I A L SETUP
Set R1 t o n
TABLE 2 t o A
Store A
Increment data po in te r
Increment R1
LOOP u n t i I R1 = 30
Return

SUBROUTINE READ P PARAMETERS
CALL I N I T I A L SETUP
Set R1 t o In
TABLE 1 t o A
Store A
Increment data po in te r
Increment R1
LOOP u n t i I R l = 44
Return

Page 7 4

0288=MOU 'A; @RO
028?=MCIU @Ri r A
028A=INC RO
0 2 8 B = I N C Ri
028C=MOU Ar@RO
028JJ=MOV @Rl r A
028E=DEC RO
OZSF=DEC Rl
0290=RET

0 2 ? 4 = C L R 30
02?6=1NC- RO

0298=MOU Ar@l?O
0 2 9 9 = A f i D A r @ R l
029A=JNH * D 2 r 0 2 A 5
02?D=JNC 02A3
02?F=MOU A r # 8 0
OZAl=SJMP 02A5
0 2 A 3 = M O V A9*7F

'O';IA6=DEC RO
02A7=DEC R1
0 2 A 8 = M O V Ar@RO
02A?=JNB E7r02EO
O?,AC=CPL 00
02AE=ACAL 0204
O2!BO=NOP
02Hl=MOU F O I A
OZB3=MOU A r @ R 1
0 2 B 4 z J N B E7r02BB
0 2 E 7 = C P L 00
02B?=ACAL 0204
02EB=CLR c
OZBC=RLC A
O~HLI=MUL AB
OZRE=MOU ArFO
02CO=NOP
0 2 C l = N O P
0 2 C 2 = N O P
02C3=NOP
02C4=NOF'
0 2 C 5 = N O P .
0 2 C b = J N H O O ~ O ~ C H

02CB=ACAL 0210

02CF=RET

0 2 ? 7 = I N C . Rl

02f55=MOU R 4 r A -

02c?=ACAL 0204

OZCII=ACAL 0234

SUBROUTINE SHIFT @ RO -f @R1
Mantissa #O t o A
A t o Mantissa #1
Increment RO t o exponent address
Increment R1 t o exponent address
Exponent #O t d A
A t o exponent # 1
Restore RO
Restore R1
Return

SUBROUTINE @RO * @R1 + 06, 07

Increment RO t o exponent address
Increment R l t o exponent address
Exponent #O t o A
Add exponent # 1
Skip 4 i n s t r u c t i o n s i f no over f low
Skip 2 i n s t r u c t i o n s i f p o s i t i v e
Set exponent t o 80H
Skip nex t i n s t r u c t ion
Set exponent t o 7FH
Exponent t o 04
Decrement RO t o Mantissa address
Decrement R1 t o Mantissa address
Mantissa #O t o A
Skip two i n s t r u c t i o n s i f p o s i t i v e .
Complement s ign b i t
CALL NEGATE A, 04
NOP
Mantissa #O t o B
Mantissa # I t o A .
Skip two i n s t r u c t i o n s i f p o s i t i v e
Complement s i g n b i t
CALL NEGATE A, 04
Clear c a r r y
Rotate l e f t
Mul t iphy A * B
Product t o A
NOP' s
t o
be
removed

Clear s i g n f l a g I !

Sk ip two i n s t r u c t i o n s i f s i g n p o s i t i v e
NEGATE A, 04
CALL NORMALIZE MANTISSA
CALL MOVE A, 04 t o 06, 07
Return

0362=MOU R O I + ~ A
0364=MOU R l r * 4 4

0368=MOU Ri I 4:38
0366=PUSH 01

0 3 6 R = A C A L 0294
036C=F'OF' 01
0 3 6 E = R C A L 02F4
0 3 7 0 = 1 N C RO
0 3 7 1 = I N C RO
O 3 7 2 = I N C R 1 -
0 3 7 3 = I N C R 1 .

0 3 7 4 = C J N E R 1 1 8 4 C 1 0 3 6 6
0377=MOU A I 36
0379=MOU 25 I A
0 3 7 B = S E T B 8 C
0 37 D =RET . -

03SO=CLR 0-1
0382=MOU 22r#O0
0385=pfOU R l r i f i O
0 3 8 7 = A C A L 0054
0 3 8 9 = A C A L 02Kl4
0 3 8 B = I N C 22
0 3 8 8 = I N C Rl
0 3 8 E = I N C R l
0 3 8 F z C J N E R l r 8 5 8 1 0 3 8 7
03?2=MOV R01Q50
0394=MOU R l r # 5 4
0 3 9 6 = A C A L 0240

03?A=RET
. 0 3 9 8 = A C A L 02F4 *

03AO=MOU ROr#46
03A2=MOU R 1 1 4 5 A
0 3 A 4 = A C A L 0294
03A6=MOU h ' O v * 0 6
03A8=MOU R l r # ! 5 8
0 3 A A = A C A L 0 2 7 C
03AC=ACAL 02F4
03JAE=MOU R 0 1 + 4 A
03EO=MOU R l r Q 5 4
0 3 H 2 = A C A L 0294
03B4=MOU R 1 1 Q 5 8
03Bb=MOU R01Q06
0 3 B 8 = A C A L 027C
03EA=ACRL 02F4
03BC=MOU R 0 1 # 4 2
03BE=MOV Hi I 454
03CO=ACAL 0294
03C2-MOU R01#58
03C4=MOV R11+06
0 3 C 6 = A C A L 0240

. 0 3 C 8 = M O U R~I+SA
0 3 C A = A C A L 02F4
03CC=RET

SUBROUTINE MULTIPLY BY T
Set RO t o wa
Set R1 t o o a t
Save R l
Set R1 t o T
CALL @RO * @R1 t o 06, 07
Ret r ieve R1
CALL STORE 06, 07 i n @R1
Increment RO *

t w i c e
Increment R1

t w i ce
Loop u n t i I R1 = 4C
STORE In

S t a r t TIMER 0
Return ! :

Page 75

i n 25

SUBROUT I NE READ I NPUTS
Clear f l a g
Set channel # t o 0
Set R l t o - Xp
CALL READ A/D
CALL FLOAT A , 04 t o @R1
Increment channel #
Increment R1

t w i c e
Loop u n t i I R1 = 58
Set RO.to - Xp
Set R1 t o -XI
CALL @RO + @R1 t o 06, 07
CALL STORE 06, 07 i n @ R1
Return .
SUBROUT I NE CALCULATE UP
Set RO t o o p t
Set R1 t o Up
wpTup t o 06, 07
Set RO t o 06, 07
Set RI' 40 uv
WPTUP - UV t o 06, 07
WPTUP - UV t o UV
RO s e t t o Gpt
R1 s e t t o Xp

Set R1 t o Uv
Set RO t o 06, 07
Updated Uv t o 06, 07
Updated Uv t o Uv
Set RO t o Gv
Set R1 t o -Xp

Set RO t o Uv
Set R1 t o 06

Set R l t o Up

Return

-XpGpT t o 06, 07

-XpGv t o 06, 07

UV - XPGV t o 06, 07

UV - XPGV t o Up

Page 76

03DS=MOU RO I t-44
03DA=MOU R 1 I *:5C

03I lE=MOU RO I #Ob

0 3 E 2 = A C A L 0 2 7 C
0 3 € 4 = A C A L 02F4
0 3 E b = M O U R 0 1 # 4 8
03ES=MOU R l 1 # 5 2
0 3 E A = A C A L 0294
03EC=MOU R l t Q 5 C
03EE=MOU R 0 1 Q 0 6

O ~ D C = A C A L 0294

03EO-MOU Rl ; #sc.

0 3 F O = A C A L 0 2 7 C
. 0 3 F 2 = ? C A L --- .- 02F4
0 3 F 4 = R E T

O 4 O O = L C A L E009
0 4 0 3 = M O U R2 I A
0 4 0 4 = L C A L E O J E
0 4 0 7 = S W A P A
0 4 0 S = M O U R 7 1 A
0 4 0 9 = L C A L E009
0 4 0 C = M O U R 2 r A
0 4 O D = L C A L E O l E
04 lO=ACIlCI A I R7
0 4 1 1 = M O U R 7 r A
0 4 1 2 = R E T

0 4 1 8 = M O U 811460
0 4 1 H = A C A L 0400
0 4 I D = M O U R 6 1 0 7
O ~ ~ F = A J M F ' o o m

0424=t+fOU 81 r#60
0 4 2 7 = A C A L 0400 .
0 4 2 9 = A J M P OODA

0430=MOU AIR^
0 4 3 1 = M O U 0 4 r R 7
0 4 3 3 = A C A L 0210
0 4 3 5 = M O U R 6 r A
0 4 3 6 z M O V R 7 1 0 4
0 4 3 8 = R E T

0 4 3 C = M O V 811#60
0 4 3 F = A C A L 0430
0 4 4 1 = A J M P OODA

SUBROUTINE CALCULATE Ua
Set RO t o waT
Set R l t o Ua
waTUa t o 06, 07
Set RO t o 06
Set R1 t o Ua '

waTUa - Lk t o 06, 07
waTUa - Ua t o Va

Set RO t o GaT
Set R1 t o Xa

Set R1 t o Ua
Set RO t o 06, 07

GaTXa t o 06, 07

Updated Ua t o 06,07 ' '
Updated Ua t o Ua

Return

SUBROUTINE READ HEX BYTE
CALL READ KEY
Store i n R2
CALL CONVERT TO HEX
Place i n t o p 4 b i t s
Store i n R7
CALL READ KEY
Store i n R2
CALL CONVERT TO HEX
Add t o R7
Store i n R7
Return

PROGRAM ' . I TO READ MANTISSA
Set s tack p o i n t e r t o 60
CALL READ HEX BYTE
Store i n 06
Jump t o DISPLAY AND WAIT

PROGRAM ' X I To READ EXPONENT
Set s tack p o i n t e r t o 60
CALL READ HEX TYTE
Jump t o DISPLAY AND WAIT

SUBROUTINE TO NORMALIZE
06 t o A
07 t o 04
CALL TO NORMALIZE A, 04
A t o 06
04 t o 07
Return

PROGRAM ' Z ' NORMALIZE DISPLAY
Set s tack p o i n t e r t o 60
CALL NORMAL I ZE
Jump t o DISPLAY AND WAIT

I

0 4 4 8 = M O V 81r460
0 4 4 B = M O U R l r f O b
0 4 4 K l = A C A L 026C
0 4 4 F = A J M P O O I l A .

0 4 5 4 = M O U 81r#60
0457=MOW R l r # 3 5
0 4 5 9 z M O V R O v B 3 3
0 4 5 B = M O V A r @ R O
0 4 5 C = M O U @ R l r A
0 4 5 Q = D E C RO
0 4 S E = B E C R1
0 4 5 F z C J N E R O v 1 2 F r 0 4 5 B
0 4 6 2 = M O U @ R l v 0 7
0 4 6 4 = D E C R 1
0 4 6 5 = M O U @ R l r O 6
0 4 6 7 = A J M P OODA

. a - -

0 4 7 0 = M O U 81r t60
. 0 4 7 3 = M O V R O v 4 3 0

0 4 7 5 = M O V Rlr406
0 4 7 7 = A C A L 0288 ,

0479=ACAL 0480
0 4 7 P = A J M F OODA

. .
0480=MOU RO r *32
0 4 8 2 = M O V R l r # 3 0
0 4 8 4 = M O V Ar@RO
0 4 8 5 = M O V @ R l r A .
0 4 8 5 = I N C RO
0 4 8 7 = I N C F t l
0 4 8 8 = C J N E R O v # 3 6 r 0 4 8 4
048H=RET

0 4 9 0 = M O U 8 l r t b O
0493=MOU R O r i 3 0
0 4 9 5 = M O U Rlr+Ob
0 4 9 7 = A C A L 0294
0 4 9 9 = A C A L 0480
0 4 9 B = A J M F ' OOfiA

PROGRAM I N ' to NEGATE DISPLAY
,Set stack pointer t o 60 .
Set R1 t o 06
CALL NEGATE @R1
Jump t o DISPLAY and WAIT

PROGRAM ' E ' t o ENTER STACK
Set stack pointer t o 60
Set R1, t o STACK 3
'Set R2 t o STACK 2

4 :

O l d stack t o A
P, tc2 new stack
Decrement RO
Decrement R1
Loop u n t i I RO = 2FH
07 t o stack. 1 exponent
Decrement R1
06 t o Stack 1 'Mantissa
Jume t o D l S P l A Y and WAIT

PROGRAM 'R ' t o READ STACK
Set stack Dointer t o 60
Set RO t o STACK 1
Set R1 fo 06
CALL @RO t o 8R1
CALL SHIFT STACK '

Jump t o DISPLAY and WAIT

SUBROUTINE TO S H I F T STACK
Set RO t o STACK 2
Set R1 t o STACK 1
O ld stack t o A
A t o new stack
Increment RO
Increment R1
Loop u n t i I RO = 36
Return

PROGRAM '*I t o MULTIPLY
Set stack pointer t o 60
Set RO t o STACK 1
Set R1 t o OG
CALL @RO * @R1 t o 06, 07
CALL SHIFT STACK
J u m p t o DISPLAY and WAIT

Page 7 8

04AO-MOU 8 1 r 4 k 6 0
04A3=MOU RO d 3 0
04A5=MOU R 1 1 3:06
04A7=ACAL 0240.
04A9=ACAL 0480
O ~ A B = A J M P o o m

O~BO=MOW si r460
04E3=MOV R 0 ~ # 3 0
O4B"J=MOV RlrQ06
0 4 E 7 = A C A L 0 2 7 C
04B9=ACAL 0480
0 4 E B = AJM P 0011 A

. .

O4CO=MOU 811960
04C3=MOV A124
0 4 C 5 = C L R c
04C6=RLC A
04C7=ADD A I #EA

' 04C9=MOV K l r A
04CA=ACAL 02F4
04CC=AJMP OOflA

._.
041lO=t.rOU 81 I #60
04I l3=MOV A r 24
04D5=CLR C
0 4 D 6 = R L C A
04D7=AI ID A I #FO
04D9=MOV R 1 I A
04DA=ACAL 02F4
04DC=AJMF' OODA

04EO=MOU 81r#60
04E3=MOU R O y C 0 6
04E5i=MOU R 1 ~ # 0 6
0 4 E 7 = A C A L 0 2 D C
04E9=AJMP OOfIA . .

PROGRAM t o ADD
Set s t a c k p o i n t e r t o 60 .
Set RO t o STACK 1
Set R1 t o 06
CALL @RO + @R1 t o 06, 07
CALL SHIFT STACK
Jump t o DISPLAY and WAIT

PROGRAM ' - I t o SUBTRACT'
Set s t a c k p o i n t e r t o 60
Set RO t o STACK 1
Set !?! t o 06
CALL @RO - @R1 t o 06, 07
CALL SHIFT STACK
Jump t o DISPLAY and WAIT

PROGRAM S.B., SHIFTS 1 , 1. INPUTS
Set s t a c k p o i n t e r t o 60
Key i n p u t t o A
C lear c a r r y
Rotate A l e f t
Subt rac t 6
Resu l t t o R1
CALL 06, 07 t o @R1
Jump t o DISPLAY and WAIT

PROGRAM SHIFTS 1-9. INPUTS
Set s t a c k p o i n t e r t o 60
Key i n p u t t o A
C I e a r ca r r y
Rotate A l e f t
S u b t r a c t 16
Resu l t t o R1
CALL 06, 07 t o @R1
Jump t o DISPLAY and WAIT

PROGRAM 'F ' t o F I X DISPLAY
Set s t a c k p o i n t e r t o 60
Set RO t o 06
Set R1 t o 06
CALL F I X @RO t o @R1
Jump t o DISPLAY and WAIT

TABLE 1. PARAMETERS FOR PROGRAM P
'CBYT 0 4 i o = i o I o o A o I ~ ~ 9 I n , T
CBYT 04F4=4810615E107 wa , up
CBYT 04F8=6610615E105 Ga , Gp
. C B Y T .. 0 4 F C = 4 0 1 b 3 1 0 0 1 0 0 GV

0 5 0 0 = M O C DF'TR I #05E8
0503=MOV R 0 1 I 0 6
0 5 0 5 = A C A L 0558
0507=MOV R l r I 2 A
0 5 0 9 = A C A L 0294
OSOH=MOU R l r * 3 6
0 5 0 B = A C A L 02 11 C
OSOF=ACAL 0558
0 5 l l = M O U R l r 4 2 A
0 5 1 3 = A C A L 0294
0515=MOU R l r # 3 8
0 5 1 7 = A C A L OZF4
0 5 1 9 = A C A L 0558
OSlH=MOV R I I P ~ C
O S l D = A C A L 0294
OSlF=MOU R 1 9 # 3 A
0 5 2 l = R C A L OZF4
0 5 2 3 = A C A L 0558 -- .-

0 5 2 7 = A C A L 0294

0 5 2 B = A C A L 02F4
0 5 2 D = A C A L 0558
052F=MOV R l r # 2 C
0 5 3 1 = A C A L 0294
0533=MOU R l r P 3 E
0 5 3 5 = A C A L 02F4
0 5 3 7 = h C A L 0558
0539=MOU R1 ,#2E
0 5 3 B = A C A L 0294
053D=MOV R 1 I *2E
OS3F=ACAL 0294
0541=MOU R l r i 4 2
0 5 4 3 = A C A L 02F4
0 5 4 5 = A C A L 0558
0 5 4 7 = A C A L 0294

0 5 4 B = A C A L 0294

- 0 5 4 F = A C A L 02F4

. - _-__-.
0 5 2 5 = ~ 0 V % i ,WE

0 5 2 9 z M O V R1,#3C

0 5 4 9 = M O V R l r C 2 E

054D=MOV R l 1 # 4 0

0 5 5 1 Z R E T

SUBROUTINE - CALCULATE T PARAMETERS
SET data p o i n t e r t o TABLE 2
SET RO t o 06
CALL GET DATA
SET R1 to
CALL @RO +- @R1 t o 06, 07
SET R1 t a I n
CALL F I X @RO t o @R1
CALL GET DATA
SET R l t o n
CALL @RO * @R1 t o 06, 07
SET R1 t o T
CALL 06, 07 t o @R1
CALL GET DATA
SET R1 t o C
CALL @RO * @ R l t o 06, 07
SET R1 t o wa
CALL 06, 07 t o @R1
CALL GET DATA
Set R1 t o wn
CALL @RO * @R1 t o 06, 07
SET R1 t o up
CALL 06, 07 t o @R1
CALL GET DATA
Set R1 t o C
CALL @RO * @ R l t o 06, 07
SET R1 t o Ga
CALL 06, 07 t o @R1
CALL GET PATA
Set R1 t o w n
CALL @RO * @R1 t o 06, 07
Set R1 t o wn
CALL @RO * @R1 t o 06, 07
SET R1 t o Gv
CALL 06, 07 t o @R1
CALL GET DATA
CALL @RO * QRl t o 06, 07
Set R1 t o wn
CALL @RO * @R1 t o 06, 07
SET R1 t o Gp
CALL 0 6 , 07 t o @R1
Return

0 5 5 8 = M O V X A I @DFT
0559=HOU ObrA
055B=INC I P T R
055C=MOVX A r @DPT
0 5 5 D = H O V 07 I A
055F=INC W T R
0.9 6 0 =RET

O'i68=MQV 81 r 860
056R-;MOV 25r$Ol
OS6E=ACAL 007B
0570=ACAL 0400
0572=SETB 8C
0574=CLR 01
0576=MOU A 1 0 7
0578=MOU 2 7 r A
057A=CLR RO
057C=ACAL 0094
057E=JB 0170574
058l=SJMP 057E

CBYT 05E8=40rFA;43rF5
CBYT 05EC=73r02r40r04
CBYT 0 5 F O = 5 1 r 0 3 r 7 5 r F R
CBYT 0 5 F 4 = 4 0 r 0 0 r 0 0 r 0 0
CBYT 0 5 F 8 = 4 0 r 0 5 ~ 5 0 ~ 0 4
CBYT 05FC=5E104rOOr00

Page 80

SUBROUTINE TO GET DATA -
Move from TABLE to A
A to 06 (Mantissa)
Increment data poi nter
Move from TABLE to A
A to 07 (exponent)
Increment data poi nter
Return

.

PROGRAM "2' FOR CO I L FORCE
SET stack pointer to 60
SET 1 cycle
CALL SETUP
CALL READ HEX BYTE
Start TIMER 0
Clear flag
07 (HEX BYTE) to A
A to output
Clear oscilloscope signal
CALL POLL KEYBOARD
Loop if flag high
Wait for interrupt

TABLE 2 FOR T-PROGRAM
2-7, 256x1 0-6
3.60, 8
5.08, .0287
.5, -
n,c
on -

Page 81

APPENDIX B

SCHEMATICS

Six logic diagrams for the digital controller follow. Each
has a sheet number, used when referring to connections between
different sheets. Power and ground connections to standard DIPS
are not shown, nor are despiking capacitors. The first five
sheets refer to circuits on the wire-wrap area of the SDK-51
board, while sheet 6 refers to the PWM board.

Sheet 1, Figure B1: This shows the transceiver which was used to
permit sharing of some pins between input and output functions.
Also, the drivers for the PWM board are shown. These were needed
because the signals fro=: the $031 where inadequate to drive the
LED’s in the opto-transistors.

Sheet 2, Figure B2: This shows the A/D converter, which is made
up from a DAC0800 8-bit D/A converter, and a DM2502 successive
approximation register. A high speed LM361 comparator is used to
produce a TTL signal to the DM2502, which requires ten cycles to
convergence. Presently, a 3 MHz clock is being used, so that con-
vergence time is 3.33 microseconds. It is only achieving about
7-bit accuracy, but it is hoped that this will be improved with
further adjustment.

Sheet 3, Figure B3: This shows the clock used to drive the A/D
converter. It is derived from the 12 MHz crystal on the SDK-51
board, and provides four options, ranging from 6 MHz to 0.75 MHz,
selectable with a jumper. Also, there is a one-and-one-only cir-
cuit to synchronize the start of the A/D with the clock.

Sheet 4, Figure B4: This shows the analog switch and demul-
tiplexer circuit used to select the analog channel which is to be
read by the A/D converter. is
necessary to provide adequate output impedance combined with the
switching speed required.

A high speed operational amplifier

Sheet 5, Figure B5: This shows a typical analog amplifier cir-
cuit, of which two are presently populated on the wire-wrap area.
The circuit is provided with three jumpers to provide flexibility
in selecting gain ranges and input offsets, such as are
experienced with the proximeter. Diode protection prevents
accidental damage to the circuits, should the input voltage become
excessive.

Sheet 6, Figure B6: This shows the pulse-width-modulation (PWM)
board, which is mounted on the proof-mass actuator. Each end of
the coil can be switched inaependently, so that, with suitable
digital program logic, high currents can be avoided with the
actuator in a quiescent state. Although there is a 15V supply,
the circuit only provides an 8V differential, which provides about
one Ampere of current in either direction. Planned improvements

FIGURE B1 .
Sheet 1: Drivers

I ?

Page 83

FIGURE B 2

Sheet 2: A/D Converter

DAC
0800

Page 8 4

FIGURE B3 .
Sheet 3 : A/D Trigger and Clock

Sa

Sheet

FIGURE B4

Sheet 4 : Channel Select

Page 8 5

FIGURE B 5

Sheet 5: Analog Input P b r t (Typica l)

I

f

Page 87

Figure B6
Sheet 6: PWM Board .
1

x
N

I - - ----

Im

N I I

Page 8 8

in this circuit should make at least one and a half Amperes pos-
sible. Opto-transistors permit electrical isolation of this
board, with its own power supply, from the SDK-51 board.

