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I was fortunate to have the assistance of two graduate students from William and 
Mary, John McManus and Mike Mansfield, from June, 1986 to December, 1986. Although neither 
of these students received any stipend, their contributions to the grant were significant. 

This report will be organized as an enumeration of what each of the three of us 
accomplished during the grant period. 

JohnMcManw 

John developed a graphics package for the Symbolics in ZetaLISP and used it to 
implement a program to provide on the Symbolics a graphical simulation of a moving PUMA 
manipulator. He constructed the program in a modular way so that it could be used to simulate 
cooperating PUMA manipulators. John is a highly motivated, intelligent student who required 
little supervision or assistance. 

Mike Mansfield 

Mike's contribution consisted of splitting the existing program for controlling the 
parallel jaw end-effectors into separately assembled parts. In doing so, he discovered 
pecularities in the 8051 assembler and linker system that showed that the goal of separate 
assembly was impractical. Although this result was negative in nature, it was very valuable 
to the grant, because it was something that I would have had take the time to discover myself. 

Bill Bynum 

Working with Bob Glover, I integrated the existing controller program for the parallel 
jaw end-effectors into the operator interface. This places the end-effectors under software 
control. As a separate program, I modified previously written code to provide a graphical 
simulation of the end effector on the VSll graphics terminal that is driven by changes made to 
the REALTIME data structure - that is, the graphical image faithfully mirrors the jaw 
position of the end-effector selected in the operator interface. 

There was no source that corresponded to the object code of the existing controller 
program. Using existing source files, I handdisassembled the object code of the existing 
controller program for the end effector to produce a source listing for the program. The source 
files that comprise the program are: 

ISRL6SY S$USERDISKCWILLMAR.GRIPPERlDM"D.Sl 
ISRL6SYS$USERDISK[WILLMAR.GRIPPERlDMSYSTEM51 
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDM"DMACJl 
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDMINITSE.51 
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDMSENSORSSl 
ISRL6SYS$USERDISK[WILLMAR.GRIPPERIDMENCODE.51 
ISRL6SY S$USERDISKIWnLMAR.GRIPPERIDMERRORS.Sl 

The file ISRL6:SYS$USERDISK[WILLMAR.GRIPPERlDMHAND.LIS is a listing of 
the assembly of the program. The object code produced by this program source is identical to the 
existing object code. 

I wrote the code to incorporate the parallel jaw gripper into the CRITTER behavior 
network. 
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After Mike Mansfield completed his work in December, 1986,I rewrote the existing 
program to control the parallel jaw end-effector. The new program corrects deficiencies and 
errors in the existing program and provides significantly more functionality, reliability, and 
interactive debugging capability than the existing program. The new program has been 
thoroughly documented, both by comments in the program source and by a separate written 
report. A copy of that report is attached as an appendix . 



A Parallel Jaw End-Effector Controller 

Part of the Final Report 

for NASA Grant NAG-1-670 

W. L. Bynum 

June 1987 



Introduction 

The purpose of this report is to document a new version of the program to control 
the parallel jaw gripper used in the Intelligent Systems Research Laboratory. This parallel 
jaw gripper waa designed at the University of Rhode Island. The hardware and software 
that support the parallel jaw gripper were developed at NASA/Langley Research Center 
under the leadership of Jim Wise and Wallace Harrison. 

The program that is the subject of this report follows the basic outline of the original 
program designed by Wallace Harrison. Others who have made substantial contributions 
to the development of the controller software are Jim Wise, Sixto Vasquez, Don Soloway, 
Karin Cornils, Gene Bahniuk, Frank Primiano, Taumi Daniels, and Mike Mansfield. Those 
responsible for the development and maintenance of the parallel jaw gripper hardware have 
been Jim Wise, Kevin Barnes, Art Hayhurst, Alan Williams, and Dave Poskevich. 

The program now being used to control the parallel jaw end-effector has been remark- 
ably stable and relatively free from errors, and has not been modified for a long period of 
time. However, changes to this program were required for the following reasons. 
1. 

2. 

3. 

4. 

5.  

There is little documentation for the old program - how it works, how it was designed. 
The actual source for the old program appears to be lost. Although there are several 
versions of the source that produce object code that is close to the object code now 
being used, none of the versions are an exact description of the old program. 
The old program is inflexible and cannot be easily modified to deal with end-effectors 
having different drive motor worm gear ratios. The characteristics of different drive 
motors and shaft encoders have been found to vary widely, and the old program has 
no built-in mechanism with which the user can determine the number of shaft encoder 
counts required to move the jaws from wide open to closed. This constant is used by 
the FORTRAN controlling program in the REALTIME system to convert back and 
forth between jaw openings in mm. and encoder counts. 
There is no provision for interactive debugging in the old program, so that isolation 
of errors and the determination of their cause is a lengthy, time-consuming process. 
Changing one of the parameters of the program involves creation of a new object file 
with the assembler and linker, transferring this file to an EPROM, and installing the 
new EPROM in the CPU board of the controller cage. 
With the old program, it is possible for the user to get the program in a state where 
maximum drive current is being steadily applied to the drive motor even though no jaw 
movement is occurring. Although this does not harm the drive motor, the heat that 
the drive motor generates is deleterious to other heat-sensitive components located in 
the end-effector housing, such as the force-torque sensor. 
The part of the old program that presents the sensor information contains an error 
that results in the loss of one of the sensor values. There is no documentation of the 
arrangement of sensor bits. 
The new version of the controller program corrects these deficiencies. The following 

changes have been made. 
1. This paper, along with the extensive commenting in the program source, provides a 

thorough description of the program. 
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2. A command has been added to the program with which the user can change the speed 
of the drive motor to accommodate different worm gear ratios. Another command 
has been added with which the user can determine the number of encoder counts that 
correspond to the total jaw travel. 

3. An interactive monitor haa been added to the program with which a user can examine 
and modify contents of the on-chip RAM and suspend and resume the clock/timer in- 
terrupts. This allows the user to change the system variables that control the program. 
Because the program locations given in an assembly listing are shown in hexadecimal, 
the mode of numeric user interaction with the program has been changed from octal 
to hexadecimal. 

4. A feature has been added to the program so that a state in which a consistent current 
being applied to the drive motor when no jaw movement is occurring can be detected 
and terminated. 

5. A monitor command to debug the sensor system and the associated LEDs on the 
front panel of the controller cage has been implemented. A description of the location 
and meaning of the sensor bits appears in this document and has been added to the 
commenting in the program source. 
The next section of this paper contains a brief description of the parallel jaw end- 

effector hardware and the Intel 8031 processor that is used to control the end-effector. 
The third section of the paper gives a general overview of the controller program, and the 
final section contains a complete description of the program’s structureand design. There 
are three appendices: a memory map of the on-chip RAM, a cross-refthence listing of the 
self-scheduling routines, and a summary of the top-level and monitor commands. 

Features of the Gripper Controller Hardware 

The reader may find it helpful to have a brief description of the technical features 
of the parallel jaw gripper and its associated hardware. The gripper has been described 
in detail elsewhere [l]. The reader interested in a detailed desciption is referred to that 
source. 

Parallel jaw movement is achieved on the gripper through a four-arm linkage, two 
arms per jaw. The linkage for each jaw has an attached sector gear that is driven back 
and forth by a central worm screw. There is a shaft encoder attached to the motor driving 
the worm screw that is used to provide an indication of the position of the jaws. Each 
jaw has four prozimity detectors, each implemented by three light-emitting diodes. In the 
three-diode set, two of the diodes are used as emitters and one diode is used to sense light 
reflected from the emitting diodes. There is a crossfire detector to determine when an 
object is between the jaws, there is an overload detector to determine when the maximum 
allowable load on the gripper has been exceeded, and there is a limit detector to sense 
when the jaws are open to their widest position. 

The program that controls the gripper is written for a microprocessor in the INTEL 
8051 family. The two members of this family that fit into the design of the CPU board 
used in the controller card cage are the 8031 and the 8751. These two processors have 
identical instruction sets. The only difference between them is the presence of 4-Kbytes of 
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on-chip EPROM on the 8751 for storing program code, whereas the 8031 has no on-chip 
EPR.OM and depends solely on the external program memory provided by the two 2-Kbyte 
EPROM sockets on the CPU board. Both processors share the following features [2,3): 

&bit CPU 
on-chip oscillator and clock circuitry 
four 8-bit 1/0 ports 
128-byte on-chip data memory (RAM) 
64-Kbyte address space for external data memory (RAM) 
64-Kbyte address apace for external program memory (ROM or 
EPROM) 
two 16bit  timer/counters 
a five-source interrupt structure 
a full-duplex serial port 

The circuitry on the CPU board limits external program memory to two 2-Kbyte EPROM 
sockets. At  present, only one of the two sockets is needed, since the controller program 
is slightly shorter than 2-Kbytes. External data memory is used solely to address the 
I/O ports of the 8155 chip for sensor data and the port to the digita!-to-ana!og converter 
controlling the jaw drive motor. The only data memory (RAM) accessed by the program 
is the 128 byte on-chip RAM. 

The interrupt structure for the 8051 family has five levels, as shown in the following 
display: 

interrupt use priority 
external request 0 increasing encoder counts highest 
internal timer 0 system ready queue 
external request 1 decreasing encoder counts 
internal timer 1 unused 
internal serial port terminal 1/0 lowest 

The encoder connected to the motor driving the worm gear is connected to the 8031 
processor so that a rotation of the encoder in the direction of increasing encoder counts 
causes an “external request 0” interrupt and a rotation of the encoder in the direction of 
decreasing encoder counts causes an “external request 1” interrupt. The handlers for these 
two interrupts increment or decrement the memory location in the on-chip RAM that is 
used to hold the actual encoder count. 

The “internal timer 0” is used as an autoload clock timer. A fixed value is loaded 
into the 16-bit timer 0 register. The register is decremented in each clock cycle of the 
processor. When the register reaches 0, the timer-driven interrupt occurs and the register 
is reloaded with the fixed value. This is a periodically occurring interrupt that is used to 
drive the software that maintains the operating system ready queue. How this is done will 
be discussed in the next section. 
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Another hardware feature that affects the design of the software is the method in 
which the worm screw motor is driven. The motor is driven through the &bit digital-to- 
analog converter port that is located in the external memory space of the 8031 processor. 
Values at this port indicate the amount of current being sent to the drive motor. These 
values are represented using excess-128 notation. That is, the value corresponding to the 
current sent to the drive motor is 128 more than the actual value. For example, the null, 
or quiescent, current corresponds to a port value of 128 = 0 + 128. The maximum positive 
current corresponds to a port value of 255 = 127 + 128, and the maximum negative current 
corresponds to a port value of 0 = -128 + 128. 

The value written to this port is latched, which has the effect that the motor continues 
to be driven with the last value written to the port until overwritten with a different value. 
This feature, along the wiring of the CPU circuit board used in the controller card cage, 
makes use of the 8031 processor preferable to the 8751 processor. When the "reset" switch 
is closed, the 8751 processor begins executing at location oo00 of its internal EPROM 
unless one of its control lines is raised. This control line is not raised on the CPU circuit 
board used in the controller card cage, because the board was designed for the 8031 CPU. 
When the 8751 processor is used and no program code is stored in its internal EPROM, 
there is a brief delay while the processor "executes" the 4 Kbytes of this internal EPROM 
before going to the controller program stored in external EPROM. In contrast, the 8031 
processor goes to the external EPROM immediately, since it has no internal EPROM. 
During a reset of the processor, the bit pattern at the digital-tu-analog port drives the 
worm gear motor until the jaw controller program stored in the externa! EPR.OM can take 
control and null the current. The result is a brief "spasm" of the jaws occurring at a reset 
when the 8751 is used on the CPU board that is entirely absent when the 8031 processor 
is used. Such a spasm could be undesirable if a processor reset became necessary when the 
end-effector was grasping an object. A similar spasm occurs with either processor when the 
controller cage is initially powered up with the motor switch on. This spasm is harmless, 
since the end-effector is not usually grasping an object at  initial power-up. 

The internal serial port is used to transfer serial character input from the RS232 port 
to the processor and to transfer output from the processor to the RS232 port. The 8031 
processor actually uses two buffers for serial communication, one for transmitting charac- 
ters and one for receiving characters, although both are accessed through the same on-chip 
RAM address. A serial interrupt occurs when either the transmitting buffer empties or 
the receiving buffer fills. The processor can determine what sort of action to take when a 
serial interrupt occurs by examining the appropriate bit in the serial port control register. 

Overview of the Gripper Controller Software 

Both the previous and the new control programs for the parallel jaw gripper have 
the same basic structure. This section discusses their common structure from a general, 
high-level point of view. 

A program controlling the parallel jaw end-effector must perform several actions: 

0 

Keep a record of the current jaw opening. 
Move the jaws, when needed. 

4 



0 Record, on a regular basis, the status of the proximity, crossfire, overload, 
and limit sensors. 
Respond to the user's requests for jaw movement or jaw atatus information. 

The opening of the parallel jaws is correlated to encoder counts of the shaft encoder 
driven by the worm screw motor through the external interrupts 0 and 1 as described 
in the previous section. The handlers for these two interrupts maintain a record of the 
current encoder counts. 

Jaw movement can occur in either of two ways, a move to a commanded position or 
a manual "jog request" from the jog switch to open or close the jaws a small amount. 

In a move to a commanded position, the controller program continually checks the 
actual encoder value against the target value and applies the corrective drive current to 
bring the actual encoder value to the target value. In a jog request, the controller program 
simply applies briefly a current to drive the jaws in the direction requested. 

The status of the proximity, crossfire, and limit detectors is continually monitored by 
the controller program and stored in on-chip RAM. 

Interaction with the user occurs through the serial port. The lower level of this 
interaction was described in the part of the previous section dealing with the serial port 
and the associated serial interrupts. The controller program must perform the conversion 
from the character-level interaction with the user down to the binary level at which the 
controller program must operate. The controller program must also determine from the 
character input supplied from the user what the user wants and respond accordingly. 

From the above discussion, it appears that the controller program must do several 
things simultaneously, which is impossible, of course, since like most people, a single pro- 
cessor can only do one thing at a time. This apparent concurrency is accomplished by 
having the processor switch rapidly from one task to another so that all of the tasks 
appear to progress steadily to their completion. 

0 

The Ready Queue 

The interleaving of task execution is the responsibility of the operating system kernel. 
It is implemented by use of one of the 8031 clock/timers as an autoload timer to generate 
a periodic clock interrupt. The handler for this interrupt maintains a ready queue, a list 
of subroutines waiting to execute. Each subroutine in the list has an associated echcdule 
variable which holds the number of clock interrupts to occur before the subroutine executes. 
When the clock interrupt occurs and control passes to the interrupt handler, the interrupt 
handler checks through the ready queue and decrements the schedule variable of each 
subroutine on the queue. Any subroutine whose schedule variable is zero is removed 
from the ready queue and made ready to execute. On termination of the handler, the 
subroutine removed from the ready queue executes to completion, with occasional pauses 
due to interrupts. 

To say that this process is repeated each time a clock interrupt occurs is a slight 
oversimplification. The clock interrupt handler only checks the ready queue on a fraction 
of the times that the clock interrupt occurs. This slows the rate of checking the ready 
queue to a point that fits the time dynamics of the gripper hardware. Currently, the 
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clock interrupt handler checks the ready queue every fourth clock interrupt - three clock 
intertuph out of four, the handler simply retnrna with no action. The frequency with which 
the clock interrupt handler checks the ready queue can be varied interactively by the user. 
The value for the clock interrupt handler frequency that the program uaes is stored in a 
location of the on-chip RAM that can be modified by the user with the interactive monitor. 

The frequency with which the clock interrupt handler checks the ready queue does 
not affect the system. Its behavior is essentially the same whether the clock interrupt 
value is at the minimumvalue of 01 (check the ready queue at every clock interrupt) or its 
maximum value of FF (check the ready queue only once out of every 255 clock interrupts). 
The explanation for this fact is that the clock interrupt frequency determines the frequency 
of events in the controller system in relation to red time and not the order of the events 
or their relative frequency. Even at the largest value for the period of the clock interrupt 
timer, the system events occur rapidly enough in relation to real time not to cause a 
problem. It is possible that if a 16-bit value were used instead of an 8-bit value to keep 
track of the period of the clock interrupt handler, the frequency of system events could be 
slowed to the point of adversely affecting system behavior. 

Process Scheduling 

The schedule subroutine of the operating system kernel places a subroutine on the 
ready queue and sets the schedule variable of the submutine to the deeired initial value. 
The subroutines in the parallel jaw controller that must perform a task repeatedly are 
written as self-scheduling routines. One of the last statements of such a subroutine would 
be to schedule itself into the ready queue to re-execute at some future time. This self- 
scheduling causes the subroutine to be invoked periodically. The self-scheduling occurs 
toward the end of the subroutine to avoid having two copies of the subroutine executing 
at the same time. At system initialization, the main program schedules all self-scheduling 
subroutines to get them started. 

The new program uses three self-scheduling subroutines. The sctzsor subroutine con- 
tinually reads the proximity, crossfire, and limit sensors and displays the information by 
turning on the appropriate indicators on the front panel of the controller cage. The jaw 
movement routine continually checks to see whether the jaws must be moved, and if so, 
moves the jaws. The subroutine first checks to see if the jog switch is active and drives 
the jaws accordingly. If the jog switch is not active, the subroutine drives the jaws to 
zero the difference between the commanded position and the current position. The jaw 
watching subroutine continually compares the present jaw position with the previous jaw 
position, sets a stopped bit flag if the two positions are the same, and then calculates the 
error between the target position and the present position. 

The original program only uses the masor and j a w  movement self-scheduling routines. 
The j a w  watching subroutine is the program unit in the new program that provides the 
capability of detecting when the jaws are stopped. The corresponding  enso or and j a w  
mouement subroutines in the two programs differ significantly. 

In the new program, the schedule frequencies of the self-scheduling subroutines can 
be varied interactively. The schedule values for the self-scheduling subroutines are taken 

. 
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from locations in the on-chip RAM; they not hard-coded into the object file. As a result, 
the user can vary these values using the interactive monitor. 

This feature was added to give the user the flexibility to determine the optimal sizes 
of the scheduling intervals. This feature was necessary because the controller program did 
not perform correctly with the values initially chosen. Furthermore, without the ability 
to vary the values interactively, it was very difficult to determine what the values should 
be. This feature has been invaluable in getting the controller program to work as it was 
designed. 

Tests have shown that the value of the j a w  watching schedule variable is critical for 
proper behavior of the system. This routine should execute as frequently as possible. When 
the j a w  watching schedule variable is large, the stoppcd bit does not accurately describe 
the state of the jaws because the bit can be ON even though the jaws are actually moving, 
and the error value between the targeted and actual positions is not valid. 

The inaccuracy of the stopped bit is most crucial during initialization of the jaws. The 
jaws have previously been at rest, so the stopped bit is ON. As the jaws are driven open 
to their widest position, the stopped bit remains ON even though the jaws are moving, 
because the j a w  watching routine, which would change the stopped bit, is waiting on the 
ready queue for its schedule variable to reach zero. The checks built into the initialization 
routine sense from the stopped bit that the jaws are stopped, even though they are actually 
moving, and abort the initialization. 

The scheduling frequency of the jaw watching subroutine is also important because 
this subroutine computes the error between the target and actual positions. If the value of 
the schedule variable of the j a w  watching subroutine is significantly larger than the value of 
the schedule variable of the j a w  movement subroutine, then the value of the error between 
the target and actual positions used by the j aw movement subroutine to drive the jaws is 
not accurate, which leads to oscillation of the jaws around the target jaw position when 
a jaw movement command is given. This also dictates that the j a w  watching subroutine 
should execute as frequently as possible. 



Detailed Description of Program Structure 

The new program is contained in ten files, all in the directory 

ISRLG::SYS$USERDISK[ WILLMAR.NE WGRIP] 

on the ISRL MicroVax. 

contents of these files. All addresses referred to in the code are given in hexadecimal. 
The details of the program structure will be organized around a discussion of the 

File 
HEXHAND .5 1 
HHDATASTR.51 
HHMACROS.51 
"VECTORS .5 1 
HHTTYIO .5 1 
HHSYSTEM.51 
HIIINIT.51 
HHSENSORS .5 1 
HHMV JAW S .5 1 
HHCMDLOOP.51 

Contents 
master file that "includes" the other files in order 
all data structures used anywhere in the program 
all macros used anywhere in the program 
places all interrupt jump vectors 
terminal input/output subroutines 
operating system: ready queue, schedule, wait 
initialization routines 
read and display sensor values 
encoder interrupt handlers, jaw movement, jaw watching 
main program, command loop, interactive monitor 

HEXHAND .61 

This file is a shell file that "includes" the necessary files into the assembly in the 
proper order. It contains no code. 

HHDATASTR.61 

This file contains all data structures used anywhere in the program. This includes the 
128 bytes of on-chip RAM, as well as the external port addresses. The data Structures are 
defined in memory order - which means that the file itself provides a memory map of the 
on-chip RAM. The 8031 processor has four banks of eight registers that occupy the first 32 
bytes of on-chip RAM. Only the first bank is used in the program, which occupies bytes 0 
through 7. The program data structures occupy the rest of the on-chip RAM from location 
08 through 7F. The program data structures are, in order, the buffers for terminal 1/0, 
the bit flags, the sensor bits, the ready queue, and the remaining program variables, such 
as the current encoder count and the commanded encoder count, and finally, the system 
stack. A memory map of the on-chip RAM is included in an appendix. 

The system stack occupies the top part of the on-chip RAM, from location 54 through 
location 7F. This represents a significant change from the original design and was neces- 
sitated because the system stack location in the orignal design occasionally resulted in 
overwriting some of the flag bits when the stack grew larger than its expected size. 

The file generates no object code. 
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"MACROS. 6 1 

This file contains all assembly language macros used anywhere in the program. There 
are macros for augmenting the instruction set of the 8031 processor, such aa word-sized 
(2 byte) arithmetic and compare-and-jumpon-equal, and macros for simplifying procedure 
call prologues and epilogues. 

The file generates no object code. 

HHVECTORS.61 

The jump vector locations for the 8031 processor are as follows: 
This file contains the code necessary to place the jump vectors for all of the interrupts. 

code memory 
address interrupt type used for 
m power-on reset system initialization and re-initialization 
0003 external request 0 positive-going motor shaft encoder 
OOOB clock/ timer 0 system clock autoload timer 
0013 external request 1 negative-going motor shaft encoder 
0023 serial port terminal input /outpu t 

When the particular type of interrupt occurs, the 8031 processor executes the code 
at the memory address shown. This code is typically a jump to the appropriate interrupt 
handler. 

HHTTYI0.61 
This file contains the subroutines needed for terminal input and output, namely: 

the handler for the serial port interrupt. This handler actually does the low-level 
work of writing the output buffer to the terminal screen and storing input from the 
terminal keyboard into the input buffer. 
the routine that moves characters from the program to the output buffer. 
the routine that moves characters from the input buffer into the program and echoes 
them to the screen. All character comparisons in the program are made between 
upper case ASCII characters. This routine also coverts lower case ASCII characters 
into upper case before storing them in the input buffer and echoing them to the 
terminal. This feature relieves the user of having to reset his or her terminal before 
using the program, since it accepts lower case and upper case input equivalently. 
t h e  toiltines that do  Character conversion and number conversion from binary used in 
the program into hexadecimal for display and from hexadecimal entered by the user 
into binary for use by the program. The original program used octal notation for input 
and output instead of hexadecimal. With the inclusion of an interactive monitor, the 
change to hexadecimal offers a considerable convenience to the user, since it relieves 
the user from having to convert back and forth from the octal terminal 1/0 to the 
hexadecimal used in the assembler listing. 
the high-level routine that writes strings to the terminal screen. This routine is used 
to write all messages to the user. 

0 

0 

0 

0 
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HHSY STEM.61 

This file contains the basic operating system aubroutines: 

0 the interrupt handler for the clock timer interrupt. This routine maintains the ready 
queue and the associated schedule variables. 
the routine to initialize the operating system and 8031 processor variables. 
the schedule routine that adds routines to the ready queue. The behavior of this 
routine was described in the previous section. 
the wait routine. This routine is used in the initialization routine where it is necessary 
to pause briefly before proceeding - to wait for the worm drive motor to stop turning 
or to wait for the 8155 chip to reset. The wait is accomplished through clearing a flag 
bit, scheduling a subroutine that will set the bit when it executes in the future, and 
then entering a “busy wait” loop that terminates when the bit is set. 

0 

0 

0 

HHINIT .6 1 

This file contains the two main subroutines that are used to bring the end-effector 
and its controller into a consistent initial state. 

The init routine initializes the 8155 110 chip, the se~sor data hits, and the variables 
in the on-chip RAM that relate to encoder counts. 

The fullopen routine drives the jaws to the position of maximum jaw opening. This is 
the position that corresponds to zero encoder count value that is set by the init routine. 
The full open position is detected by the limit sensor. The sensor self-scheduling routine 
sets the limit bit in the program when the limit sensor fires. 

In the old program, if the limit sensor was inoperative, the limit bit would never be 
set and the program would continue to drive the jaws open. After the jaws reached the 
physical limit of jaw opening, the jaws would stop moving, but current would continue to 
be applied to the worm screw drive motor. This does not damage the drive motor but 
it does generate heat that is harmful to the heat-sensitive components in the end-effector 
housing, such as the force-torque sensors. 

The new program checks to be sure that the jaws are moving during the fulZopen 
initialization. If the jaws stop moving before the limit bit goes on, the initialization is 
aborted and control is passed to the interactive monitor. The new program successfully 
detects limit sensor failure. 

HHSENSORS.51 

This file contains the self-scheduling sensors routine that reads the current values of 
the proximity, crossfire, overload, and limit sensors, stores them in the proper place in the 
on-chip RAM, and displays the results in the LEDs on the controller cage front panel. 
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HHMVJAWS.61 

This file contains three types of subroutines: the handlers for the encoder interrupts 
and the jaw movement and j a w  watching self-scheduling subroutines. 

Encoder counts are maintained by the two external request interrupt handlers. When 
the external request 0 interrupt occurs, the encoder count value stored in on-chip RAM is 
incremented, and when the external request 1 interrupt occurs, the encoder count value is 
decremented. 

The Jaw Movement Subroutine 
The jaw movement subroutine is one of the three self-scheduling subroutines used in 

the new program. This subroutine is responsible for two types of jaw movement: a move 
to a commanded position, or a “jog request” made by the manually-operated jog switch 
on the front panel of the controller card cage to open or close the jaws a smaIl amount. 

The jaws are also moved by other parts of the program during initialization and 
calibration. It is desirable to be able to temporarily disable the effects of this subroutine 
during those periods, so that the worm gear drive motor will not receive contradictory 
drive information. The jaw movement subroutine is enabled and disabled by means of a 
drive bit in the on-chip RAM. If the bit is set, then the subroutine executes normally, but 
if the bit is clear, then normal execution is bypassed. The drive bit is on only during a 
move to a commanded position. 

Each execution of this subroutine consists of the following steps. First, the subroutine 
checks io see if either an open or close jog has been requested. If mi then the subroutine 
drives the motor in the appropriate direction and returns. If there is no active jog request, 
the subroutine checks the drive bit to see if it is on. If so, then the subroutine drives the 
jaws with a current that is equal to the difference between the target position and the 
current position. Then, the subroutine checks to see if the stopped bit has been set by the 
jaw matching subroutine. 

If the stopped bit has been set, this means that the jaws may be close to the targeted 
position and the move to a commanded position is nearly over. It might seem that under 
these conditions the jaws should actually be at the commanded position. What happens 
in practice is that the jaws stop moving slightly before the commanded position is reached, 
and drive current should continue to be applied to the motor for a short period longer. This 
is accomplished by the use of an auxiliary counter variable that is loaded with a positive 
value prior to the beginning of a move to a commanded position. After the stopped bit 
goes on, this counter variable is decremented in each execution of the subroutine until the 
variable reaches zero, at which time the current to the motor is zeroed and the drive bit 
is cleared. This counter variable thus briefly delays terminating the drive current to the 
motor. Moreover, it prevents a high drive current from being applied to the drive motor 
indefinitely. 

If the drive bit is off when the subroutine is entered, the subroutine checks to see if 
the previous execution of the subroutine involved a jog request. This is done by checking a 
different bit flag, the dojog bit, in the on-chip RAM that is set by this subroutine during a 
jog request. If the dojog bit is on when this check is made, then the value at the motor port 
is zeroed to stop the jog and the dojog bit is cleared. This step is necessary to overcome the 
previous value written to the port and stop the jog movement. If the previous execution 
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of the subroutine did not involve a jog request and the drive bit ia off, then the aubroutine 
leaves without any further action. 

The Jaw Watching Subroutine 
This self-scheduled subroutine continually sets or clears the stoppcd bit according to 

whether or not the jaws are stopped. In addition, it updates the "current" and "previous" 
encoder values and calculates the difference between the targeted and current encoder 
Values. 

Since the jaw movement subroutine watches the stopped bit carefully, the j a w  watching 
subroutine should be rescheduled more frequently than the j a w  movement subroutine. 

HHCMDLOOP.61 

This file contains the top-level of the main program. Control passes to this code at 
power-up and at power-on reset. 

First, the schedule variables for the self-scheduling subroutines and the frequency 
with which the clock interrupt handler checks the ready queue are initialized. Then the 
jaw movement variables and the jaw opening of the gripper are initialized by calls to the 
HHINIT.51 routines. Finally, the program enters a command loop and begins accepting 
commands from the user. The prompt used for the main command loop is "CMD: ". 

The possible commands that can be entered are: 
Command Description 

C 

E 
I 

M enter the interactive monitor 
P 
S display current sensor values 
T display target position 
W display current position 
X 

display the range of encoder counts from the 
wide open to fully closed jaw positions 
display error between target and actual positions 
initialize the gripper and its data structures 

move to a commanded position 

change speed of jaw movement 
The S command displays the current states of the sensors in binary format; all other 

displays are given in hexadecimal. 
C 

E 

Display the range of encoder counts from the wide open to the fully closed positions. 
This command initializes the gripper as in the I command below, closes the jaws 
until they stop, displays the corresponding encoder count value, and re-initializes the 
gripper. The value displayed is slightly more than the actual total range of encoder 
counts because of looseness in the jaw linkage and compliance of the material used 
in the jaw surfaces. If either initialization of the gripper fails, control passes to the 
interactive monitor (see the M command below). 
Display error between target and actual positions. As mentioned in the hardware 
section, the error value is kept in excess-128. Since the error value is shown in hex- 
adecimal, a value of "0080" corresponds to zero error, a value of "008F" corresponds 
to an error of 15 (the actual position is 15 encoder counts more than the target value), 
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I 

M 

and a value of "007A" corresponds to an error of -6. The error value is always equal 
to the actual position (the value displayed by the W command) minus the target 
position (the value displayed by the T command). 
Initialize the gripper and its data structures. This command initializes the gripper by 
initializing the on-chip RAM location dealing with encoder counts and then driving 
the jaws to the wide-open position. The wide-open position of the jaws is sensed by 
the limit sensor. The current value of this sensor is stored in the limit bit. If the 
initialization procedure notices that the jaws have stopped (the etopped bit is on) 
before the limit bit comes on, the initialization is aborted with an error message, and 
control is passed to the interactive monitor so that the mer can determine the cause 
of the initialization failure (see the M command below). 
This command enters the interactive monitor. The command line prompt changes 
from "CMD: " to "* n.  The following commands are accepted: 

Monitor 
Command Description 

C 
D 
I toggle clock/timer interrupts 
L test sensor LEDs 
N 
8 
S 

C addr value 

change contents of a location in on-chip RAM 
display contents of a location in on-chip RAM 

display contents of next location in on-chip RAM 
quit the monitor and retcrm to main command level 
display contents of SP, the stack pointer 

Change the contents of on-chip RAM location addr (0 5 addt 5 7F) to value. 
The address and new value stored at the address are displayed after the storage 
takes place. 

Display the contents of on-chip RAM location addr (0 5 addt 5 7F). 

Toggle the clock/timer interrupt on or off. This command is needed to be able 
to look at the ready queue or test the sensor LEDs. Disabling the clock/timer 
interrupt suspends all changes to the ready queue so that the user can use the 
D monitor command to inspect the ready queue and the associated schedule 
variables. If the clock/timer interrupt is not disabled, then use of the D command 
to inspect the ready queue leads to confusing results, since the ready queue is 
being changed by the clock/timer interrupt handler as it is being inspected. 

Test sensor LEDs. This command allows the user to test each sensor LED indi- 
vidually. The full word (two-byte) bit-parttern is stored at the two on-chip RAM 
locations used to store the sensor information. The proximity sensor bits are 
stored at location 2D and the crossfire, overload, and limit bits are stored at  
location 2E. This command stores the full word bit pattern entered by the user 
at locations 2D and 2E and then displays the contents of location 2D. The action 

D addr 

I 

L bit-pattern 
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of displaying the contents of the location just stored was added to make eure that 
the intended value for the sensor LEDs was actually being stored at locations 2D 
and 2E. 

The following example of use of this command may be helpful. In the 
interaction shown below, the typing done by the user is shown in italics. 

* I  
* L F B F E 2 D F E  
* N 2 E F B  

The user has stored the bit pattern "FBFE" (in hexadecimal) or "1111 1011 
1111 1110" (in binary) in the sensor bytes of the on-chip RAM. The I command 
was necessary to suspend the clock/timer interrupts, so that the self-echeduling 
  en sot subroutine will not replace the values entered with the current sensor 
values. The value "FE" is stored at location 2D and the value "FB" is stored at 
the location 2E (the low order byte is stored at the lower address and the high 
order byte is stored at the higher address). The "FE" of the pattern turns on the 
crossfire LED, and the "FB" turns on the LED corresponding to the +X detector 
on the right jaw (see the main command level S command for a description of 
the locations of the sensor bits). The LED is ON if and only if the corresponding 
bit is zero. You will notice that, as a side-effect of the command, the contents 
of location 2D are displayed. If, as the user has done here, you want to see the 
contents of the next byte (the next sensor byte containing the limit, overload, 
and crossfire bits), you can use the monitor N command to display the contents 
of the byte at location 2E. 

The following bit patterns can be used to test each LED on the front panel 
of the controller cage: 

Bit Pattern LED Location 
FF7F -X, left jaw 
FFBF +X, left jaw 
FFDF +Z, left jaw 
FFEF -Ya, left jaw 
FFF7 -X, right jaw 
FFFB +X, right jaw 
FFFD +Z, right jaw 
FFFE +Ya, right jaw 
FBFF limit 
FDFF overload 
FEFF crossfire 
F8OO all LEDs ON oooo all LEDs ON 
FFFF all LEDs OFF 
07FF all LEDs OFF 

N 
Display the next memory address and its contents. The address displayed is the 
address next to the most recently referenced address by the C or D commands. 
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8 

S 

When the monitor is entered, the default memory address is set to the current 
value of the stack pointer, SP. 

Quit the monitor and return to the main command loop. 

Display the current contents of the stack pointer, SP. Even though the stack 
pointer is kept at location 81 in the on-chip RAM, the D command cannot be used 
to display its value. The D command is implemented using the MOV instruction 
with register-indirect addressing, and the 8031 chip restricts the range of this 
instruction to the values between 00 and 7F. The stack pointer cannot be accessed 
by the D instruction since its address is outside of this range. 

Any other characters are accepted but ignored. 

P Move to a commanded position. This command accepts a target encoder value from 
the user, stores it in the on-chip RAM, and sets the drive bit no that the jaw rnoocment 
routine will start driving the worm screw motor to zero the difference between the 
current encoder value and the target value. 

Encoder counts range from “oo00” when the jaws are wide open to the value 
of approximately “D600” when the jaws are closed. Encoder counts are always non- 
positive and are represented in two’s complement notation. Consequently, a value of 
“D600” really stands for the two’s complement negative of “3A00”. Therefore, the 
commands “PE47A” and “P-1B86” have the same effect, since “E47A” is the two’s 
complement representation of the negative of “1B86”. Either form of the command 
will be accepted by the command interpreter. 

A comment is needed about use of the P command. The P command has been 
improved in the new version of the program. With the two’s complement convention 
used for the number of encoder counts, any positive number of encoder counts can 
never be achieved. In the old program, supplying a positive target would cause the 
jaws to be driven closed and the position encoder counts would become increasingly 
negative. This resulted in an unrecoverable error situation since the encoder counts 
could never become positive. The new program rejects a positive encoder target as 
an invalid command. 

S Display current sensor values. This command displays the current sensor values as a 
16-bit binary string. These values are stored in locations 2E and 2F of the on-chip 
RAM. The leftmost eight bits of the binary string are the bits of location 2F and the 
rightmost eight bits are the bits of location 2E. The bits have the following meanings 
(bit 15 is the leftmost bit and bit 0 is the rightmost bit): 
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Bit Pattern LED Location 
15..11 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

unused - bit might be either 0 or 1 
crossfire 
over load 
limit 
right jaw, -X 
right jaw, +X 
right jaw, f Z  
right jaw, -Ya 
left jaw, -X 
left jaw, +X 
left jaw, +Z 
left jaw, +Ya 

The bit in the sensor bit string is "0" if and only if the corresponding sensor is on. 
For example, if, in response to the S command, the user receives the bit string: 

1111101101101101 
this would indicate that the following detectors are on (proceeding from left to right): 

crossfire (leftmost 0)  
right jaw, -X 
right jaw, -Ya 
left jaw, tZ (rightmost 0 )  

T Display target position. This command shows the last commanded position in encoder 
counts. When the jog switch is used to open or close the jaws, the target position 
is kept equal to the actual position, so that the jaws will not be moved back to the 
previously targeted position by the jaw movement subroutine. 
Display current position. This command shows the encoder counts corresponding to 
the current jaw opening. 
With this command, the user can change the speed at which the jaws open and 
close. When a combination of worm and sector gears is used in an end-effector with a 
significantly higher gear ratio than the ratio used in the original design, the maximum 
speed of the worm drive motor has to be reduced because the jaws move too rapidly. 
With the original worm/sector combination, a speed value of "7F" is used, but with 
the newer high-ratio worm/sector combination, a speed of "33" S~XXIIS to move the 
jaws at approximately the same speed as the original gearing. 

W 

X 

Conclusions 

The program and documentation produced by this research comprise the latest step 
in the evolution of software to control the ISRL parallel jaw end-effector. As such, it 
represents the cumulative experience of a large group of people over a long period of time. 

The capabilities of the controller program have been expanded considerably. The 
software has been thoroughly documented. The user interface has been extended to include 
an interactive monitor. The flexibility of the program has been improved by moving several 
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of the program parameters from the EPROM object code to storage locations in the on-chip 
RAM that can be modified with the interactive monitor. 

Of all of the modifications to the existing program, the addition of the interactive mon- 
itor probably has the greatest aignificance. Assembly language programming ie. difficult, 
even in the beet of circumstances. The information provided by the interactive monitor is 
invaluable in determining root causes for irregular or hard-to-explain program behavior. 
The program is interrupt-driven and the interrupts occur with a frequency related to pro- 
cessor clock frequency. Consequently, simulation of the interrupt behavior of the system 
through the 8051 software simulator is not possible. There are many interrupts that can 
be interleaved in arbitrary order - this represents a combinatorially explosive number of 
possible test cases. Therefore, the interactive monitor is the principal tool available to the 
programmer in testing the program and correcting errors. It was invaluable in this work. 
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Appendix A 
On-Chip RAM Memory Map 

On-chip RAM Program 
Address (hex) Name Description 

00 REG0 
01 REG1 
02 REG2 
03 REG3 
04 REG4 
05 REG5 
06 REG6 
07 REG7 
08 OINPTR 
09 OOUTPTR 
OA OBYTCNT 
OB 
15 IINPTR 
16 IOUTPTR 
17 IBYTCNT 
18 
2 c  

- 

- 
- 

2c.o TBFULL 
2c.1 SEMA 
2c.2 STOPPED 
2C.3 DRVON 
2C.4 DOJOG 

bits 2C.5, 2C.6, 2C.7 are unused 
2D - 

2D.0 - 
2D.1 - 
2D.2 - 
2D .3 - 
2D.4 - 
2D.5 - 
2D .6 - 
2D.7 - 
2E - 

2E.0 - 
2E.1 - 
2E.2 - 

2F T 
35 Q 
41 SYSCLKCNT 
42 SYSCLKPD 

bits 2E.3 . . . 2E.7 are unused 

RO, register 0 
R1, register 1 
R2, register 2 
R3, register 3 
R4, register 4 
R5, register 5 
R6, register 6 
R7, register 7 
address of characters entering the output buffer 
address of characters leaving the output buffer 
count of bytes in output buffer 
output buffer 
address of characters entering the input buffer 
address of characters leaving the input buffer 
count of bytes in input buffer 
input buffer 
bit flags 
bit 0, 1 if transmit buffer full 
bit 1, semaphore used by WAIT routine 
bit 2, 1 if jaws are stopped, else 0 
bit 3, 1 if jaws are driven in servo mode 
bit 4, 1 if last jaw movement was a jog 

proximity sensor bits 
bit 0, left jaw, +Ya sensor 
bit 1, left jaw, +Z sensor 
bit 2, left jaw, +X sensor 
bit 3, left jaw, -X sensor 
bit 4, right jaw, -Ya sensor 
bit 5 ,  right jaw, +Z sensor 
bit 6, right jaw, +X sensor 
bit 7, right jaw, -X sensor 
other sensor bits 
bit 0, crossfire sensor 
bit 1, overload sensor 
bit 2, limit sensor 

queue of schedule values, ready queue routines 
queue of addresses, ready queue routines 
system software clock, check ready queue when it’s 0 
reload value of SYSCLKCNT 
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43 
44 
45 
46 
48 
4A 
4 c  
4E 
50 
51 
52 
53 

54 ... 7F 

Appendix A 
On-Chip RAM Memory Map 

MVJAWSPD 
SENSORPD 

WTCHJWSPD 
ERROR-CNT 

RATE 
ENCODER-CNT 
COMMAND-CNT 

OLDXNC 
STOPCNT 

JSPEED 
MXPJSPD 
MXNJSPD 

- 

MVJAWS routine schedule value 
SENSORS routine schedule value 
WATCHJAWS routine schedule value 
error between target and actual encoder counts 
difference between current and previous encoder counts 
current encoder count 
target encoder count 
previous encoder count 
# times to bump jaws at end of commanded move 
maximum absolute value of jaw speed 
maximum positive jaw speed (in excess-128) 
maximum negative jaw speed (in excess-128) 
system stack 
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Appendix B 
EPROM Addresses of Self-scheduling Subroutines 

EPROM Subroutine Schedule RAM Addr. 
Address (hex) Name Value of Sched. Val. Function 

0295 SYSCLK 04* 42 clock/timer interrupt handler 

04C2 MVJAWS OC 43 move jaws, either jog or 
in differential servo drive 

0473 SENSORS OA 44 read and display sensor values 

054 1 WATCHJAW 01 45 check to see if jaws are stopped dc 
calculate error value 

* This value is the number of clock interrupts that occurs before the subroutine checks 
the ready queue. 



Appendix C 
Summary of Controller Commands 

Top-level Controller Commands 
Form of 

Command Action 

C 

E 
I 

M 
P target 

S 

T 
W 

X speed 

open jaws fully, close fully, report total encoder range 

display current error value in excess-128 

open jaws fully, initialize controller data structures 

enter the interactive monitor (commands are listed below) 

move to target position (encoder counts) 

display current sensor values as a binary bit string 

display target position (encoder counts) 

display current position (encoder counts) 

change speed of jaw movement to speed 

Interactive Monitor Commands 
Form of 

Command Act ion 

C addr value 

D addr 

I 

L bit-pattern 

N 

Q 
S 

change the contents of on-chipRAM location addr to value 

display the contents of on-chip RAM location addr 

toggle clock/timer interrupt ON or OFF 

test sensor LEDs (oo00 + all LEDs ON, FFFF + all OFF) 

display address and contents of next on-chip RAM location 

quit the monitor and return to the top level 

display the contents of the stack pointer 
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