
p 9.5

Command/Response Protocols and Concurrent Software

Final Report

June 24,1987

NASA GRANT NAG-1-670

W. L. BYNUM

Principal Investigator

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23185

Project Monitor

Nancy 0. Sliwa

Mail Stop 152D

NASA Langley Research Center

Hampton, VA 23665 ~

b

4 h ASA-CR- 18 1C 5 6) C C f l B A l D / E i E S f C ALE EAOL OCGLS 88 7- 2 7 b 35
A b D C C P C U R B E I l S O F T W A R E P i o a l beFort
(College of W i l l i a m and rlary) 25 F A v a i l :

A I L S EC AO2/I¶F A01 CSCL 37B Unclas
63/32 0079466

https://ntrs.nasa.gov/search.jsp?R=19870018402 2020-03-20T10:11:19+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

,
' * #

NAG-1470 Final Report 2

I was fortunate to have the assistance of two graduate students from William and
Mary, John McManus and Mike Mansfield, from June, 1986 to December, 1986. Although neither
of these students received any stipend, their contributions to the grant were significant.

This report will be organized as an enumeration of what each of the three of us
accomplished during the grant period.

JohnMcManw

John developed a graphics package for the Symbolics in ZetaLISP and used it to
implement a program to provide on the Symbolics a graphical simulation of a moving PUMA
manipulator. He constructed the program in a modular way so that it could be used to simulate
cooperating PUMA manipulators. John is a highly motivated, intelligent student who required
little supervision or assistance.

Mike Mansfield

Mike's contribution consisted of splitting the existing program for controlling the
parallel jaw end-effectors into separately assembled parts. In doing so, he discovered
pecularities in the 8051 assembler and linker system that showed that the goal of separate
assembly was impractical. Although this result was negative in nature, it was very valuable
to the grant, because it was something that I would have had take the time to discover myself.

Bill Bynum

Working with Bob Glover, I integrated the existing controller program for the parallel
jaw end-effectors into the operator interface. This places the end-effectors under software
control. As a separate program, I modified previously written code to provide a graphical
simulation of the end effector on the VSll graphics terminal that is driven by changes made to
the REALTIME data structure - that is, the graphical image faithfully mirrors the jaw
position of the end-effector selected in the operator interface.

There was no source that corresponded to the object code of the existing controller
program. Using existing source files, I handdisassembled the object code of the existing
controller program for the end effector to produce a source listing for the program. The source
files that comprise the program are:

ISRL6SY S$USERDISKCWILLMAR.GRIPPERlDM"D.Sl
ISRL6SYS$USERDISK[WILLMAR.GRIPPERlDMSYSTEM51
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDM"DMACJl
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDMINITSE.51
ISRL6:SY S$USERDISK[WILLMAR.GRIPPERlDMSENSORSSl
ISRL6SYS$USERDISK[WILLMAR.GRIPPERIDMENCODE.51
ISRL6SY S$USERDISKIWnLMAR.GRIPPERIDMERRORS.Sl

The file ISRL6:SYS$USERDISK[WILLMAR.GRIPPERlDMHAND.LIS is a listing of
the assembly of the program. The object code produced by this program source is identical to the
existing object code.

I wrote the code to incorporate the parallel jaw gripper into the CRITTER behavior
network.

NAG-1-670 Final Report 3

After Mike Mansfield completed his work in December, 1986,I rewrote the existing
program to control the parallel jaw end-effector. The new program corrects deficiencies and
errors in the existing program and provides significantly more functionality, reliability, and
interactive debugging capability than the existing program. The new program has been
thoroughly documented, both by comments in the program source and by a separate written
report. A copy of that report is attached as an appendix .

A Parallel Jaw End-Effector Controller

Part of the Final Report

for NASA Grant NAG-1-670

W. L. Bynum

June 1987

Introduction

The purpose of this report is to document a new version of the program to control
the parallel jaw gripper used in the Intelligent Systems Research Laboratory. This parallel
jaw gripper waa designed at the University of Rhode Island. The hardware and software
that support the parallel jaw gripper were developed at NASA/Langley Research Center
under the leadership of Jim Wise and Wallace Harrison.

The program that is the subject of this report follows the basic outline of the original
program designed by Wallace Harrison. Others who have made substantial contributions
to the development of the controller software are Jim Wise, Sixto Vasquez, Don Soloway,
Karin Cornils, Gene Bahniuk, Frank Primiano, Taumi Daniels, and Mike Mansfield. Those
responsible for the development and maintenance of the parallel jaw gripper hardware have
been Jim Wise, Kevin Barnes, Art Hayhurst, Alan Williams, and Dave Poskevich.

The program now being used to control the parallel jaw end-effector has been remark-
ably stable and relatively free from errors, and has not been modified for a long period of
time. However, changes to this program were required for the following reasons.
1.

2.

3.

4.

5.

There is little documentation for the old program - how it works, how it was designed.
The actual source for the old program appears to be lost. Although there are several
versions of the source that produce object code that is close to the object code now
being used, none of the versions are an exact description of the old program.
The old program is inflexible and cannot be easily modified to deal with end-effectors
having different drive motor worm gear ratios. The characteristics of different drive
motors and shaft encoders have been found to vary widely, and the old program has
no built-in mechanism with which the user can determine the number of shaft encoder
counts required to move the jaws from wide open to closed. This constant is used by
the FORTRAN controlling program in the REALTIME system to convert back and
forth between jaw openings in mm. and encoder counts.
There is no provision for interactive debugging in the old program, so that isolation
of errors and the determination of their cause is a lengthy, time-consuming process.
Changing one of the parameters of the program involves creation of a new object file
with the assembler and linker, transferring this file to an EPROM, and installing the
new EPROM in the CPU board of the controller cage.
With the old program, it is possible for the user to get the program in a state where
maximum drive current is being steadily applied to the drive motor even though no jaw
movement is occurring. Although this does not harm the drive motor, the heat that
the drive motor generates is deleterious to other heat-sensitive components located in
the end-effector housing, such as the force-torque sensor.
The part of the old program that presents the sensor information contains an error
that results in the loss of one of the sensor values. There is no documentation of the
arrangement of sensor bits.
The new version of the controller program corrects these deficiencies. The following

changes have been made.
1. This paper, along with the extensive commenting in the program source, provides a

thorough description of the program.

1

2. A command has been added to the program with which the user can change the speed
of the drive motor to accommodate different worm gear ratios. Another command
has been added with which the user can determine the number of encoder counts that
correspond to the total jaw travel.

3. An interactive monitor haa been added to the program with which a user can examine
and modify contents of the on-chip RAM and suspend and resume the clock/timer in-
terrupts. This allows the user to change the system variables that control the program.
Because the program locations given in an assembly listing are shown in hexadecimal,
the mode of numeric user interaction with the program has been changed from octal
to hexadecimal.

4. A feature has been added to the program so that a state in which a consistent current
being applied to the drive motor when no jaw movement is occurring can be detected
and terminated.

5. A monitor command to debug the sensor system and the associated LEDs on the
front panel of the controller cage has been implemented. A description of the location
and meaning of the sensor bits appears in this document and has been added to the
commenting in the program source.
The next section of this paper contains a brief description of the parallel jaw end-

effector hardware and the Intel 8031 processor that is used to control the end-effector.
The third section of the paper gives a general overview of the controller program, and the
final section contains a complete description of the program’s structureand design. There
are three appendices: a memory map of the on-chip RAM, a cross-refthence listing of the
self-scheduling routines, and a summary of the top-level and monitor commands.

Features of the Gripper Controller Hardware

The reader may find it helpful to have a brief description of the technical features
of the parallel jaw gripper and its associated hardware. The gripper has been described
in detail elsewhere [l]. The reader interested in a detailed desciption is referred to that
source.

Parallel jaw movement is achieved on the gripper through a four-arm linkage, two
arms per jaw. The linkage for each jaw has an attached sector gear that is driven back
and forth by a central worm screw. There is a shaft encoder attached to the motor driving
the worm screw that is used to provide an indication of the position of the jaws. Each
jaw has four prozimity detectors, each implemented by three light-emitting diodes. In the
three-diode set, two of the diodes are used as emitters and one diode is used to sense light
reflected from the emitting diodes. There is a crossfire detector to determine when an
object is between the jaws, there is an overload detector to determine when the maximum
allowable load on the gripper has been exceeded, and there is a limit detector to sense
when the jaws are open to their widest position.

The program that controls the gripper is written for a microprocessor in the INTEL
8051 family. The two members of this family that fit into the design of the CPU board
used in the controller card cage are the 8031 and the 8751. These two processors have
identical instruction sets. The only difference between them is the presence of 4-Kbytes of

2

on-chip EPROM on the 8751 for storing program code, whereas the 8031 has no on-chip
EPR.OM and depends solely on the external program memory provided by the two 2-Kbyte
EPROM sockets on the CPU board. Both processors share the following features [2,3):

&bit CPU
on-chip oscillator and clock circuitry
four 8-bit 1/0 ports
128-byte on-chip data memory (RAM)
64-Kbyte address space for external data memory (RAM)
64-Kbyte address apace for external program memory (ROM or
EPROM)
two 16bit timer/counters
a five-source interrupt structure
a full-duplex serial port

The circuitry on the CPU board limits external program memory to two 2-Kbyte EPROM
sockets. At present, only one of the two sockets is needed, since the controller program
is slightly shorter than 2-Kbytes. External data memory is used solely to address the
I/O ports of the 8155 chip for sensor data and the port to the digita!-to-ana!og converter
controlling the jaw drive motor. The only data memory (RAM) accessed by the program
is the 128 byte on-chip RAM.

The interrupt structure for the 8051 family has five levels, as shown in the following
display:

interrupt use priority
external request 0 increasing encoder counts highest
internal timer 0 system ready queue
external request 1 decreasing encoder counts
internal timer 1 unused
internal serial port terminal 1/0 lowest

The encoder connected to the motor driving the worm gear is connected to the 8031
processor so that a rotation of the encoder in the direction of increasing encoder counts
causes an “external request 0” interrupt and a rotation of the encoder in the direction of
decreasing encoder counts causes an “external request 1” interrupt. The handlers for these
two interrupts increment or decrement the memory location in the on-chip RAM that is
used to hold the actual encoder count.

The “internal timer 0” is used as an autoload clock timer. A fixed value is loaded
into the 16-bit timer 0 register. The register is decremented in each clock cycle of the
processor. When the register reaches 0, the timer-driven interrupt occurs and the register
is reloaded with the fixed value. This is a periodically occurring interrupt that is used to
drive the software that maintains the operating system ready queue. How this is done will
be discussed in the next section.

3

Another hardware feature that affects the design of the software is the method in
which the worm screw motor is driven. The motor is driven through the &bit digital-to-
analog converter port that is located in the external memory space of the 8031 processor.
Values at this port indicate the amount of current being sent to the drive motor. These
values are represented using excess-128 notation. That is, the value corresponding to the
current sent to the drive motor is 128 more than the actual value. For example, the null,
or quiescent, current corresponds to a port value of 128 = 0 + 128. The maximum positive
current corresponds to a port value of 255 = 127 + 128, and the maximum negative current
corresponds to a port value of 0 = -128 + 128.

The value written to this port is latched, which has the effect that the motor continues
to be driven with the last value written to the port until overwritten with a different value.
This feature, along the wiring of the CPU circuit board used in the controller card cage,
makes use of the 8031 processor preferable to the 8751 processor. When the "reset" switch
is closed, the 8751 processor begins executing at location oo00 of its internal EPROM
unless one of its control lines is raised. This control line is not raised on the CPU circuit
board used in the controller card cage, because the board was designed for the 8031 CPU.
When the 8751 processor is used and no program code is stored in its internal EPROM,
there is a brief delay while the processor "executes" the 4 Kbytes of this internal EPROM
before going to the controller program stored in external EPROM. In contrast, the 8031
processor goes to the external EPROM immediately, since it has no internal EPROM.
During a reset of the processor, the bit pattern at the digital-tu-analog port drives the
worm gear motor until the jaw controller program stored in the externa! EPR.OM can take
control and null the current. The result is a brief "spasm" of the jaws occurring at a reset
when the 8751 is used on the CPU board that is entirely absent when the 8031 processor
is used. Such a spasm could be undesirable if a processor reset became necessary when the
end-effector was grasping an object. A similar spasm occurs with either processor when the
controller cage is initially powered up with the motor switch on. This spasm is harmless,
since the end-effector is not usually grasping an object at initial power-up.

The internal serial port is used to transfer serial character input from the RS232 port
to the processor and to transfer output from the processor to the RS232 port. The 8031
processor actually uses two buffers for serial communication, one for transmitting charac-
ters and one for receiving characters, although both are accessed through the same on-chip
RAM address. A serial interrupt occurs when either the transmitting buffer empties or
the receiving buffer fills. The processor can determine what sort of action to take when a
serial interrupt occurs by examining the appropriate bit in the serial port control register.

Overview of the Gripper Controller Software

Both the previous and the new control programs for the parallel jaw gripper have
the same basic structure. This section discusses their common structure from a general,
high-level point of view.

A program controlling the parallel jaw end-effector must perform several actions:

0

Keep a record of the current jaw opening.
Move the jaws, when needed.

4

0 Record, on a regular basis, the status of the proximity, crossfire, overload,
and limit sensors.
Respond to the user's requests for jaw movement or jaw atatus information.

The opening of the parallel jaws is correlated to encoder counts of the shaft encoder
driven by the worm screw motor through the external interrupts 0 and 1 as described
in the previous section. The handlers for these two interrupts maintain a record of the
current encoder counts.

Jaw movement can occur in either of two ways, a move to a commanded position or
a manual "jog request" from the jog switch to open or close the jaws a small amount.

In a move to a commanded position, the controller program continually checks the
actual encoder value against the target value and applies the corrective drive current to
bring the actual encoder value to the target value. In a jog request, the controller program
simply applies briefly a current to drive the jaws in the direction requested.

The status of the proximity, crossfire, and limit detectors is continually monitored by
the controller program and stored in on-chip RAM.

Interaction with the user occurs through the serial port. The lower level of this
interaction was described in the part of the previous section dealing with the serial port
and the associated serial interrupts. The controller program must perform the conversion
from the character-level interaction with the user down to the binary level at which the
controller program must operate. The controller program must also determine from the
character input supplied from the user what the user wants and respond accordingly.

From the above discussion, it appears that the controller program must do several
things simultaneously, which is impossible, of course, since like most people, a single pro-
cessor can only do one thing at a time. This apparent concurrency is accomplished by
having the processor switch rapidly from one task to another so that all of the tasks
appear to progress steadily to their completion.

0

The Ready Queue

The interleaving of task execution is the responsibility of the operating system kernel.
It is implemented by use of one of the 8031 clock/timers as an autoload timer to generate
a periodic clock interrupt. The handler for this interrupt maintains a ready queue, a list
of subroutines waiting to execute. Each subroutine in the list has an associated echcdule
variable which holds the number of clock interrupts to occur before the subroutine executes.
When the clock interrupt occurs and control passes to the interrupt handler, the interrupt
handler checks through the ready queue and decrements the schedule variable of each
subroutine on the queue. Any subroutine whose schedule variable is zero is removed
from the ready queue and made ready to execute. On termination of the handler, the
subroutine removed from the ready queue executes to completion, with occasional pauses
due to interrupts.

To say that this process is repeated each time a clock interrupt occurs is a slight
oversimplification. The clock interrupt handler only checks the ready queue on a fraction
of the times that the clock interrupt occurs. This slows the rate of checking the ready
queue to a point that fits the time dynamics of the gripper hardware. Currently, the

5

clock interrupt handler checks the ready queue every fourth clock interrupt - three clock
intertuph out of four, the handler simply retnrna with no action. The frequency with which
the clock interrupt handler checks the ready queue can be varied interactively by the user.
The value for the clock interrupt handler frequency that the program uaes is stored in a
location of the on-chip RAM that can be modified by the user with the interactive monitor.

The frequency with which the clock interrupt handler checks the ready queue does
not affect the system. Its behavior is essentially the same whether the clock interrupt
value is at the minimumvalue of 01 (check the ready queue at every clock interrupt) or its
maximum value of FF (check the ready queue only once out of every 255 clock interrupts).
The explanation for this fact is that the clock interrupt frequency determines the frequency
of events in the controller system in relation to red time and not the order of the events
or their relative frequency. Even at the largest value for the period of the clock interrupt
timer, the system events occur rapidly enough in relation to real time not to cause a
problem. It is possible that if a 16-bit value were used instead of an 8-bit value to keep
track of the period of the clock interrupt handler, the frequency of system events could be
slowed to the point of adversely affecting system behavior.

Process Scheduling

The schedule subroutine of the operating system kernel places a subroutine on the
ready queue and sets the schedule variable of the submutine to the deeired initial value.
The subroutines in the parallel jaw controller that must perform a task repeatedly are
written as self-scheduling routines. One of the last statements of such a subroutine would
be to schedule itself into the ready queue to re-execute at some future time. This self-
scheduling causes the subroutine to be invoked periodically. The self-scheduling occurs
toward the end of the subroutine to avoid having two copies of the subroutine executing
at the same time. At system initialization, the main program schedules all self-scheduling
subroutines to get them started.

The new program uses three self-scheduling subroutines. The sctzsor subroutine con-
tinually reads the proximity, crossfire, and limit sensors and displays the information by
turning on the appropriate indicators on the front panel of the controller cage. The jaw
movement routine continually checks to see whether the jaws must be moved, and if so,
moves the jaws. The subroutine first checks to see if the jog switch is active and drives
the jaws accordingly. If the jog switch is not active, the subroutine drives the jaws to
zero the difference between the commanded position and the current position. The jaw
watching subroutine continually compares the present jaw position with the previous jaw
position, sets a stopped bit flag if the two positions are the same, and then calculates the
error between the target position and the present position.

The original program only uses the masor and j a w movement self-scheduling routines.
The j a w watching subroutine is the program unit in the new program that provides the
capability of detecting when the jaws are stopped. The corresponding enso or and j a w
mouement subroutines in the two programs differ significantly.

In the new program, the schedule frequencies of the self-scheduling subroutines can
be varied interactively. The schedule values for the self-scheduling subroutines are taken

.

6

from locations in the on-chip RAM; they not hard-coded into the object file. As a result,
the user can vary these values using the interactive monitor.

This feature was added to give the user the flexibility to determine the optimal sizes
of the scheduling intervals. This feature was necessary because the controller program did
not perform correctly with the values initially chosen. Furthermore, without the ability
to vary the values interactively, it was very difficult to determine what the values should
be. This feature has been invaluable in getting the controller program to work as it was
designed.

Tests have shown that the value of the j a w watching schedule variable is critical for
proper behavior of the system. This routine should execute as frequently as possible. When
the j a w watching schedule variable is large, the stoppcd bit does not accurately describe
the state of the jaws because the bit can be ON even though the jaws are actually moving,
and the error value between the targeted and actual positions is not valid.

The inaccuracy of the stopped bit is most crucial during initialization of the jaws. The
jaws have previously been at rest, so the stopped bit is ON. As the jaws are driven open
to their widest position, the stopped bit remains ON even though the jaws are moving,
because the j a w watching routine, which would change the stopped bit, is waiting on the
ready queue for its schedule variable to reach zero. The checks built into the initialization
routine sense from the stopped bit that the jaws are stopped, even though they are actually
moving, and abort the initialization.

The scheduling frequency of the jaw watching subroutine is also important because
this subroutine computes the error between the target and actual positions. If the value of
the schedule variable of the j a w watching subroutine is significantly larger than the value of
the schedule variable of the j a w movement subroutine, then the value of the error between
the target and actual positions used by the j aw movement subroutine to drive the jaws is
not accurate, which leads to oscillation of the jaws around the target jaw position when
a jaw movement command is given. This also dictates that the j a w watching subroutine
should execute as frequently as possible.

Detailed Description of Program Structure

The new program is contained in ten files, all in the directory

ISRLG::SYS$USERDISK[WILLMAR.NE WGRIP]

on the ISRL MicroVax.

contents of these files. All addresses referred to in the code are given in hexadecimal.
The details of the program structure will be organized around a discussion of the

File
HEXHAND .5 1
HHDATASTR.51
HHMACROS.51
"VECTORS .5 1
HHTTYIO .5 1
HHSYSTEM.51
HIIINIT.51
HHSENSORS .5 1
HHMV JAW S .5 1
HHCMDLOOP.51

Contents
master file that "includes" the other files in order
all data structures used anywhere in the program
all macros used anywhere in the program
places all interrupt jump vectors
terminal input/output subroutines
operating system: ready queue, schedule, wait
initialization routines
read and display sensor values
encoder interrupt handlers, jaw movement, jaw watching
main program, command loop, interactive monitor

HEXHAND .61

This file is a shell file that "includes" the necessary files into the assembly in the
proper order. It contains no code.

HHDATASTR.61

This file contains all data structures used anywhere in the program. This includes the
128 bytes of on-chip RAM, as well as the external port addresses. The data Structures are
defined in memory order - which means that the file itself provides a memory map of the
on-chip RAM. The 8031 processor has four banks of eight registers that occupy the first 32
bytes of on-chip RAM. Only the first bank is used in the program, which occupies bytes 0
through 7. The program data structures occupy the rest of the on-chip RAM from location
08 through 7F. The program data structures are, in order, the buffers for terminal 1/0,
the bit flags, the sensor bits, the ready queue, and the remaining program variables, such
as the current encoder count and the commanded encoder count, and finally, the system
stack. A memory map of the on-chip RAM is included in an appendix.

The system stack occupies the top part of the on-chip RAM, from location 54 through
location 7F. This represents a significant change from the original design and was neces-
sitated because the system stack location in the orignal design occasionally resulted in
overwriting some of the flag bits when the stack grew larger than its expected size.

The file generates no object code.

8

"MACROS. 6 1

This file contains all assembly language macros used anywhere in the program. There
are macros for augmenting the instruction set of the 8031 processor, such aa word-sized
(2 byte) arithmetic and compare-and-jumpon-equal, and macros for simplifying procedure
call prologues and epilogues.

The file generates no object code.

HHVECTORS.61

The jump vector locations for the 8031 processor are as follows:
This file contains the code necessary to place the jump vectors for all of the interrupts.

code memory
address interrupt type used for
m power-on reset system initialization and re-initialization
0003 external request 0 positive-going motor shaft encoder
OOOB clock/ timer 0 system clock autoload timer
0013 external request 1 negative-going motor shaft encoder
0023 serial port terminal input /outpu t

When the particular type of interrupt occurs, the 8031 processor executes the code
at the memory address shown. This code is typically a jump to the appropriate interrupt
handler.

HHTTYI0.61
This file contains the subroutines needed for terminal input and output, namely:

the handler for the serial port interrupt. This handler actually does the low-level
work of writing the output buffer to the terminal screen and storing input from the
terminal keyboard into the input buffer.
the routine that moves characters from the program to the output buffer.
the routine that moves characters from the input buffer into the program and echoes
them to the screen. All character comparisons in the program are made between
upper case ASCII characters. This routine also coverts lower case ASCII characters
into upper case before storing them in the input buffer and echoing them to the
terminal. This feature relieves the user of having to reset his or her terminal before
using the program, since it accepts lower case and upper case input equivalently.
t h e toiltines that do Character conversion and number conversion from binary used in
the program into hexadecimal for display and from hexadecimal entered by the user
into binary for use by the program. The original program used octal notation for input
and output instead of hexadecimal. With the inclusion of an interactive monitor, the
change to hexadecimal offers a considerable convenience to the user, since it relieves
the user from having to convert back and forth from the octal terminal 1/0 to the
hexadecimal used in the assembler listing.
the high-level routine that writes strings to the terminal screen. This routine is used
to write all messages to the user.

0

0

0

0

9

HHSY STEM.61

This file contains the basic operating system aubroutines:

0 the interrupt handler for the clock timer interrupt. This routine maintains the ready
queue and the associated schedule variables.
the routine to initialize the operating system and 8031 processor variables.
the schedule routine that adds routines to the ready queue. The behavior of this
routine was described in the previous section.
the wait routine. This routine is used in the initialization routine where it is necessary
to pause briefly before proceeding - to wait for the worm drive motor to stop turning
or to wait for the 8155 chip to reset. The wait is accomplished through clearing a flag
bit, scheduling a subroutine that will set the bit when it executes in the future, and
then entering a “busy wait” loop that terminates when the bit is set.

0

0

0

HHINIT .6 1

This file contains the two main subroutines that are used to bring the end-effector
and its controller into a consistent initial state.

The init routine initializes the 8155 110 chip, the se~sor data hits, and the variables
in the on-chip RAM that relate to encoder counts.

The fullopen routine drives the jaws to the position of maximum jaw opening. This is
the position that corresponds to zero encoder count value that is set by the init routine.
The full open position is detected by the limit sensor. The sensor self-scheduling routine
sets the limit bit in the program when the limit sensor fires.

In the old program, if the limit sensor was inoperative, the limit bit would never be
set and the program would continue to drive the jaws open. After the jaws reached the
physical limit of jaw opening, the jaws would stop moving, but current would continue to
be applied to the worm screw drive motor. This does not damage the drive motor but
it does generate heat that is harmful to the heat-sensitive components in the end-effector
housing, such as the force-torque sensors.

The new program checks to be sure that the jaws are moving during the fulZopen
initialization. If the jaws stop moving before the limit bit goes on, the initialization is
aborted and control is passed to the interactive monitor. The new program successfully
detects limit sensor failure.

HHSENSORS.51

This file contains the self-scheduling sensors routine that reads the current values of
the proximity, crossfire, overload, and limit sensors, stores them in the proper place in the
on-chip RAM, and displays the results in the LEDs on the controller cage front panel.

10

HHMVJAWS.61

This file contains three types of subroutines: the handlers for the encoder interrupts
and the jaw movement and j a w watching self-scheduling subroutines.

Encoder counts are maintained by the two external request interrupt handlers. When
the external request 0 interrupt occurs, the encoder count value stored in on-chip RAM is
incremented, and when the external request 1 interrupt occurs, the encoder count value is
decremented.

The Jaw Movement Subroutine
The jaw movement subroutine is one of the three self-scheduling subroutines used in

the new program. This subroutine is responsible for two types of jaw movement: a move
to a commanded position, or a “jog request” made by the manually-operated jog switch
on the front panel of the controller card cage to open or close the jaws a smaIl amount.

The jaws are also moved by other parts of the program during initialization and
calibration. It is desirable to be able to temporarily disable the effects of this subroutine
during those periods, so that the worm gear drive motor will not receive contradictory
drive information. The jaw movement subroutine is enabled and disabled by means of a
drive bit in the on-chip RAM. If the bit is set, then the subroutine executes normally, but
if the bit is clear, then normal execution is bypassed. The drive bit is on only during a
move to a commanded position.

Each execution of this subroutine consists of the following steps. First, the subroutine
checks io see if either an open or close jog has been requested. If mi then the subroutine
drives the motor in the appropriate direction and returns. If there is no active jog request,
the subroutine checks the drive bit to see if it is on. If so, then the subroutine drives the
jaws with a current that is equal to the difference between the target position and the
current position. Then, the subroutine checks to see if the stopped bit has been set by the
jaw matching subroutine.

If the stopped bit has been set, this means that the jaws may be close to the targeted
position and the move to a commanded position is nearly over. It might seem that under
these conditions the jaws should actually be at the commanded position. What happens
in practice is that the jaws stop moving slightly before the commanded position is reached,
and drive current should continue to be applied to the motor for a short period longer. This
is accomplished by the use of an auxiliary counter variable that is loaded with a positive
value prior to the beginning of a move to a commanded position. After the stopped bit
goes on, this counter variable is decremented in each execution of the subroutine until the
variable reaches zero, at which time the current to the motor is zeroed and the drive bit
is cleared. This counter variable thus briefly delays terminating the drive current to the
motor. Moreover, it prevents a high drive current from being applied to the drive motor
indefinitely.

If the drive bit is off when the subroutine is entered, the subroutine checks to see if
the previous execution of the subroutine involved a jog request. This is done by checking a
different bit flag, the dojog bit, in the on-chip RAM that is set by this subroutine during a
jog request. If the dojog bit is on when this check is made, then the value at the motor port
is zeroed to stop the jog and the dojog bit is cleared. This step is necessary to overcome the
previous value written to the port and stop the jog movement. If the previous execution

11

of the subroutine did not involve a jog request and the drive bit ia off, then the aubroutine
leaves without any further action.

The Jaw Watching Subroutine
This self-scheduled subroutine continually sets or clears the stoppcd bit according to

whether or not the jaws are stopped. In addition, it updates the "current" and "previous"
encoder values and calculates the difference between the targeted and current encoder
Values.

Since the jaw movement subroutine watches the stopped bit carefully, the j a w watching
subroutine should be rescheduled more frequently than the j a w movement subroutine.

HHCMDLOOP.61

This file contains the top-level of the main program. Control passes to this code at
power-up and at power-on reset.

First, the schedule variables for the self-scheduling subroutines and the frequency
with which the clock interrupt handler checks the ready queue are initialized. Then the
jaw movement variables and the jaw opening of the gripper are initialized by calls to the
HHINIT.51 routines. Finally, the program enters a command loop and begins accepting
commands from the user. The prompt used for the main command loop is "CMD: ".

The possible commands that can be entered are:
Command Description

C

E
I

M enter the interactive monitor
P
S display current sensor values
T display target position
W display current position
X

display the range of encoder counts from the
wide open to fully closed jaw positions
display error between target and actual positions
initialize the gripper and its data structures

move to a commanded position

change speed of jaw movement
The S command displays the current states of the sensors in binary format; all other

displays are given in hexadecimal.
C

E

Display the range of encoder counts from the wide open to the fully closed positions.
This command initializes the gripper as in the I command below, closes the jaws
until they stop, displays the corresponding encoder count value, and re-initializes the
gripper. The value displayed is slightly more than the actual total range of encoder
counts because of looseness in the jaw linkage and compliance of the material used
in the jaw surfaces. If either initialization of the gripper fails, control passes to the
interactive monitor (see the M command below).
Display error between target and actual positions. As mentioned in the hardware
section, the error value is kept in excess-128. Since the error value is shown in hex-
adecimal, a value of "0080" corresponds to zero error, a value of "008F" corresponds
to an error of 15 (the actual position is 15 encoder counts more than the target value),

12

I

M

and a value of "007A" corresponds to an error of -6. The error value is always equal
to the actual position (the value displayed by the W command) minus the target
position (the value displayed by the T command).
Initialize the gripper and its data structures. This command initializes the gripper by
initializing the on-chip RAM location dealing with encoder counts and then driving
the jaws to the wide-open position. The wide-open position of the jaws is sensed by
the limit sensor. The current value of this sensor is stored in the limit bit. If the
initialization procedure notices that the jaws have stopped (the etopped bit is on)
before the limit bit comes on, the initialization is aborted with an error message, and
control is passed to the interactive monitor so that the mer can determine the cause
of the initialization failure (see the M command below).
This command enters the interactive monitor. The command line prompt changes
from "CMD: " to "* n. The following commands are accepted:

Monitor
Command Description

C
D
I toggle clock/timer interrupts
L test sensor LEDs
N
8
S

C addr value

change contents of a location in on-chip RAM
display contents of a location in on-chip RAM

display contents of next location in on-chip RAM
quit the monitor and retcrm to main command level
display contents of SP, the stack pointer

Change the contents of on-chip RAM location addr (0 5 addt 5 7F) to value.
The address and new value stored at the address are displayed after the storage
takes place.

Display the contents of on-chip RAM location addr (0 5 addt 5 7F).

Toggle the clock/timer interrupt on or off. This command is needed to be able
to look at the ready queue or test the sensor LEDs. Disabling the clock/timer
interrupt suspends all changes to the ready queue so that the user can use the
D monitor command to inspect the ready queue and the associated schedule
variables. If the clock/timer interrupt is not disabled, then use of the D command
to inspect the ready queue leads to confusing results, since the ready queue is
being changed by the clock/timer interrupt handler as it is being inspected.

Test sensor LEDs. This command allows the user to test each sensor LED indi-
vidually. The full word (two-byte) bit-parttern is stored at the two on-chip RAM
locations used to store the sensor information. The proximity sensor bits are
stored at location 2D and the crossfire, overload, and limit bits are stored at
location 2E. This command stores the full word bit pattern entered by the user
at locations 2D and 2E and then displays the contents of location 2D. The action

D addr

I

L bit-pattern

13

of displaying the contents of the location just stored was added to make eure that
the intended value for the sensor LEDs was actually being stored at locations 2D
and 2E.

The following example of use of this command may be helpful. In the
interaction shown below, the typing done by the user is shown in italics.

* I
* L F B F E 2 D F E
* N 2 E F B

The user has stored the bit pattern "FBFE" (in hexadecimal) or "1111 1011
1111 1110" (in binary) in the sensor bytes of the on-chip RAM. The I command
was necessary to suspend the clock/timer interrupts, so that the self-echeduling
 en sot subroutine will not replace the values entered with the current sensor
values. The value "FE" is stored at location 2D and the value "FB" is stored at
the location 2E (the low order byte is stored at the lower address and the high
order byte is stored at the higher address). The "FE" of the pattern turns on the
crossfire LED, and the "FB" turns on the LED corresponding to the +X detector
on the right jaw (see the main command level S command for a description of
the locations of the sensor bits). The LED is ON if and only if the corresponding
bit is zero. You will notice that, as a side-effect of the command, the contents
of location 2D are displayed. If, as the user has done here, you want to see the
contents of the next byte (the next sensor byte containing the limit, overload,
and crossfire bits), you can use the monitor N command to display the contents
of the byte at location 2E.

The following bit patterns can be used to test each LED on the front panel
of the controller cage:

Bit Pattern LED Location
FF7F -X, left jaw
FFBF +X, left jaw
FFDF +Z, left jaw
FFEF -Ya, left jaw
FFF7 -X, right jaw
FFFB +X, right jaw
FFFD +Z, right jaw
FFFE +Ya, right jaw
FBFF limit
FDFF overload
FEFF crossfire
F8OO all LEDs ON oooo all LEDs ON
FFFF all LEDs OFF
07FF all LEDs OFF

N
Display the next memory address and its contents. The address displayed is the
address next to the most recently referenced address by the C or D commands.

14

8

S

When the monitor is entered, the default memory address is set to the current
value of the stack pointer, SP.

Quit the monitor and return to the main command loop.

Display the current contents of the stack pointer, SP. Even though the stack
pointer is kept at location 81 in the on-chip RAM, the D command cannot be used
to display its value. The D command is implemented using the MOV instruction
with register-indirect addressing, and the 8031 chip restricts the range of this
instruction to the values between 00 and 7F. The stack pointer cannot be accessed
by the D instruction since its address is outside of this range.

Any other characters are accepted but ignored.

P Move to a commanded position. This command accepts a target encoder value from
the user, stores it in the on-chip RAM, and sets the drive bit no that the jaw rnoocment
routine will start driving the worm screw motor to zero the difference between the
current encoder value and the target value.

Encoder counts range from “oo00” when the jaws are wide open to the value
of approximately “D600” when the jaws are closed. Encoder counts are always non-
positive and are represented in two’s complement notation. Consequently, a value of
“D600” really stands for the two’s complement negative of “3A00”. Therefore, the
commands “PE47A” and “P-1B86” have the same effect, since “E47A” is the two’s
complement representation of the negative of “1B86”. Either form of the command
will be accepted by the command interpreter.

A comment is needed about use of the P command. The P command has been
improved in the new version of the program. With the two’s complement convention
used for the number of encoder counts, any positive number of encoder counts can
never be achieved. In the old program, supplying a positive target would cause the
jaws to be driven closed and the position encoder counts would become increasingly
negative. This resulted in an unrecoverable error situation since the encoder counts
could never become positive. The new program rejects a positive encoder target as
an invalid command.

S Display current sensor values. This command displays the current sensor values as a
16-bit binary string. These values are stored in locations 2E and 2F of the on-chip
RAM. The leftmost eight bits of the binary string are the bits of location 2F and the
rightmost eight bits are the bits of location 2E. The bits have the following meanings
(bit 15 is the leftmost bit and bit 0 is the rightmost bit):

15

Bit Pattern LED Location
15..11

10
9
8
7
6
5
4
3
2
1
0

unused - bit might be either 0 or 1
crossfire
over load
limit
right jaw, -X
right jaw, +X
right jaw, f Z
right jaw, -Ya
left jaw, -X
left jaw, +X
left jaw, +Z
left jaw, +Ya

The bit in the sensor bit string is "0" if and only if the corresponding sensor is on.
For example, if, in response to the S command, the user receives the bit string:

1111101101101101
this would indicate that the following detectors are on (proceeding from left to right):

crossfire (leftmost 0)
right jaw, -X
right jaw, -Ya
left jaw, tZ (rightmost 0)

T Display target position. This command shows the last commanded position in encoder
counts. When the jog switch is used to open or close the jaws, the target position
is kept equal to the actual position, so that the jaws will not be moved back to the
previously targeted position by the jaw movement subroutine.
Display current position. This command shows the encoder counts corresponding to
the current jaw opening.
With this command, the user can change the speed at which the jaws open and
close. When a combination of worm and sector gears is used in an end-effector with a
significantly higher gear ratio than the ratio used in the original design, the maximum
speed of the worm drive motor has to be reduced because the jaws move too rapidly.
With the original worm/sector combination, a speed value of "7F" is used, but with
the newer high-ratio worm/sector combination, a speed of "33" S~XXIIS to move the
jaws at approximately the same speed as the original gearing.

W

X

Conclusions

The program and documentation produced by this research comprise the latest step
in the evolution of software to control the ISRL parallel jaw end-effector. As such, it
represents the cumulative experience of a large group of people over a long period of time.

The capabilities of the controller program have been expanded considerably. The
software has been thoroughly documented. The user interface has been extended to include
an interactive monitor. The flexibility of the program has been improved by moving several

16

of the program parameters from the EPROM object code to storage locations in the on-chip
RAM that can be modified with the interactive monitor.

Of all of the modifications to the existing program, the addition of the interactive mon-
itor probably has the greatest aignificance. Assembly language programming ie. difficult,
even in the beet of circumstances. The information provided by the interactive monitor is
invaluable in determining root causes for irregular or hard-to-explain program behavior.
The program is interrupt-driven and the interrupts occur with a frequency related to pro-
cessor clock frequency. Consequently, simulation of the interrupt behavior of the system
through the 8051 software simulator is not possible. There are many interrupts that can
be interleaved in arbitrary order - this represents a combinatorially explosive number of
possible test cases. Therefore, the interactive monitor is the principal tool available to the
programmer in testing the program and correcting errors. It was invaluable in this work.

I References

1. M. J. Wise, Description of the End-Effector/Sensor System, Automation and Tech-
nology Branch Internal Report, NASA/Langley Research Center, Hampton, Virginia.

2. MCS-51 Familty of Single Chip Microcomputers - User’s Manual, July, 1981, Intel
Corporation, Santa Clara, California.

3. Microcontroller Handbook, 1986, pp. 7-1 through 8-85, Intel Corporation, Santa Clara,
California.

17

Appendix A
On-Chip RAM Memory Map

On-chip RAM Program
Address (hex) Name Description

00 REG0
01 REG1
02 REG2
03 REG3
04 REG4
05 REG5
06 REG6
07 REG7
08 OINPTR
09 OOUTPTR
OA OBYTCNT
OB
15 IINPTR
16 IOUTPTR
17 IBYTCNT
18
2 c

-

-
-

2c.o TBFULL
2c.1 SEMA
2c.2 STOPPED
2C.3 DRVON
2C.4 DOJOG

bits 2C.5, 2C.6, 2C.7 are unused
2D -

2D.0 -
2D.1 -
2D.2 -
2D .3 -
2D.4 -
2D.5 -
2D .6 -
2D.7 -
2E -

2E.0 -
2E.1 -
2E.2 -

2F T
35 Q
41 SYSCLKCNT
42 SYSCLKPD

bits 2E.3 . . . 2E.7 are unused

RO, register 0
R1, register 1
R2, register 2
R3, register 3
R4, register 4
R5, register 5
R6, register 6
R7, register 7
address of characters entering the output buffer
address of characters leaving the output buffer
count of bytes in output buffer
output buffer
address of characters entering the input buffer
address of characters leaving the input buffer
count of bytes in input buffer
input buffer
bit flags
bit 0, 1 if transmit buffer full
bit 1, semaphore used by WAIT routine
bit 2, 1 if jaws are stopped, else 0
bit 3, 1 if jaws are driven in servo mode
bit 4, 1 if last jaw movement was a jog

proximity sensor bits
bit 0, left jaw, +Ya sensor
bit 1, left jaw, +Z sensor
bit 2, left jaw, +X sensor
bit 3, left jaw, -X sensor
bit 4, right jaw, -Ya sensor
bit 5 , right jaw, +Z sensor
bit 6, right jaw, +X sensor
bit 7, right jaw, -X sensor
other sensor bits
bit 0, crossfire sensor
bit 1, overload sensor
bit 2, limit sensor

queue of schedule values, ready queue routines
queue of addresses, ready queue routines
system software clock, check ready queue when it’s 0
reload value of SYSCLKCNT

A1

43
44
45
46
48
4A
4 c
4E
50
51
52
53

54 ... 7F

Appendix A
On-Chip RAM Memory Map

MVJAWSPD
SENSORPD

WTCHJWSPD
ERROR-CNT

RATE
ENCODER-CNT
COMMAND-CNT

OLDXNC
STOPCNT

JSPEED
MXPJSPD
MXNJSPD

-

MVJAWS routine schedule value
SENSORS routine schedule value
WATCHJAWS routine schedule value
error between target and actual encoder counts
difference between current and previous encoder counts
current encoder count
target encoder count
previous encoder count
times to bump jaws at end of commanded move
maximum absolute value of jaw speed
maximum positive jaw speed (in excess-128)
maximum negative jaw speed (in excess-128)
system stack

A2

Appendix B
EPROM Addresses of Self-scheduling Subroutines

EPROM Subroutine Schedule RAM Addr.
Address (hex) Name Value of Sched. Val. Function

0295 SYSCLK 04* 42 clock/timer interrupt handler

04C2 MVJAWS OC 43 move jaws, either jog or
in differential servo drive

0473 SENSORS OA 44 read and display sensor values

054 1 WATCHJAW 01 45 check to see if jaws are stopped dc
calculate error value

* This value is the number of clock interrupts that occurs before the subroutine checks
the ready queue.

Appendix C
Summary of Controller Commands

Top-level Controller Commands
Form of

Command Action

C

E
I

M
P target

S

T
W

X speed

open jaws fully, close fully, report total encoder range

display current error value in excess-128

open jaws fully, initialize controller data structures

enter the interactive monitor (commands are listed below)

move to target position (encoder counts)

display current sensor values as a binary bit string

display target position (encoder counts)

display current position (encoder counts)

change speed of jaw movement to speed

Interactive Monitor Commands
Form of

Command Act ion

C addr value

D addr

I

L bit-pattern

N

Q
S

change the contents of on-chipRAM location addr to value

display the contents of on-chip RAM location addr

toggle clock/timer interrupt ON or OFF

test sensor LEDs (oo00 + all LEDs ON, FFFF + all OFF)

display address and contents of next on-chip RAM location

quit the monitor and return to the top level

display the contents of the stack pointer

c1

